3 д принтер для используют.

В век микро- и нанотехнологий мало кого удивишь очередным устройством, обладающим способностями на грани магических. И, тем не менее, даже в наше время совершаются прорывы в научных технологиях, способные не просто поразить воображение, но и перевернуть представление о возможном.

Сегодня мы расскажем о технологии, еще в недалеком прошлом казавшейся невероятной — возможности воссоздавать сложнейшие объемные объекты из практически любых материалов. «Полевые синтезаторы» и «репликаторы» мира научной фантастики постепенно перекочевали в нашу с вами реальность, и развиваются весьма быстрыми темпами, осваивая уже не только научные лаборатории, но и домашний интерьер. 3D-печать и 3D-принтеры — наиболее активно обсуждаемая в новостях тема ушедшего 2012 года. И интерес к этому изобретению в массах лишь возрастает, поскольку возможности 3D-печати день ото дня лишь совершенствуются.

Главный секрет 3D принтера

Говоря простым языком, 3D-принтер — это специализированный высокоточный станок с ЧПУ (числовым программным управлением). И как утверждают инженеры, в самом изготовлении предметов с помощью станочного оборудования нет ничего необычного, автоматические технологии изготовления предметов давно и успешно используются в массовом производстве примерно с середины прошлого столетия. Фантастический же ореол вокруг 3D-печати возник, по всей видимости, потому, что применяемые для нее устройства в процессе изготовления предмета, не стачивают по старинке «лишние» части заготовок, а воссоздают необходимый предмет «с нуля». В основе работы 3D-принтера лежит технология аддитивной печати, позволяющая получать нужные объекты методом наращивания слоев рабочего материала. Современный 3D-принтер — результат эволюции устройства под названием стереолитограф, разработанного Чарльзом Халлом в 1984-м году.

Пока 3D-принтеры не используются в серийном производстве деталей и предметов, поскольку безнадежно проигрывают любому из станков с ЧПУ в ситуации, когда важнее не уникальность, а скорость изготовления и низкая цена конечного продукта. Ведь традиционные методы производства разрабатывались, совершенствовались и развивались в условиях необходимости получения дешевой «поточной» продукции.

Как работает 3D принтер

Устройство 3D-принтера аналогично устройству любого обычного принтера, печатающего изображения и тексты: у него также имеются печатающая головка и картридж с рабочим материалом, заменяющим чернила струйной и тонер лазерной печати. Некоторые из 3D-принтеров формируют объекты из особого порошка на основе крахмала или гипса, другие используют расплавленный пластик или светоотверждаемый жидкий фотополимер в качестве рабочего материала. Есть и такие, которые «спекают» с помощью электронного или лазерного луча в готовое изделие керамический или металлический порошок.


Независимо от используемой рабочей технологии общий принцип работы 3D-принтеров один. Объект воссоздается в специально отведенном для него пространстве (камере принтера) по существующей компьютерной 3D-модели послойно — с помощью «печатающей» головки, движением которой управляет программа. Из тонких (в десятые и сотые доли микрона) слоев рабочего материала. Закончив построение очередного слоя, головка перемещается на следующий до тех пор, пока объект не приобретет законченную форму.

Возможности 3D печати

3D принтеры могут воссоздавать сложнейшие объекты различной формы, размеров и цвета, используя весьма широкий спектр порошковых материалов — более 100 наименований, и это, разумеется, не предел. Крахмал, гипс, песок, воск, стекло, керамика, полистирол и другие полимеры, резина, нейлон, нержавеющая сталь, цветные (титан, алюминий, кобальт, хром) и благородные (серебро, золото) металлы и их сплавы — с каждым днем возможности 3D-печати только расширяются. Уже сегодня ученые медики экспериментируют с различными биополимерами, способными вывести мировую медицину на новый, поистине невообразимый, уровень.

Технология 3D-печати в настоящее время используется для изготовления уникальных ювелирных изделий, моделирования обуви, в промышленном дизайне, архитектуре и строительстве, в таких областях, как автомобильная, аэрокосмическая и медицинская промышленности, в сфере образования, информационных систем, гражданского строительства и многих других. Сферы применения 3D-печати продолжают расширяться, находится множество неожиданных и оригинальных решений. Одним из возможных направлений развития 3D-технологии может стать ее бытовое использование — например, для быстрого создания некоторых предметов и деталей домашнего быта.

Примеры успешного применения технологии

Платформа 3D-печати более 20 лет находилась в стадии опытного образца, однако стоимость оборудования в последние два-три года уменьшилась в десятки раз, а затраты на создание оригинальных ювелирных изделий резко упали. В ювелирном деле 3D-технологии позволяют создавать украшения гораздо быстрее, чем при использовании традиционных методов производства. А вносить поправки на стадии проектирования — и того проще, теперь для этого достаточно нескольких щелчков мыши.

Сегодня 3D-принтеры находят достойное применение и в науке. Мы многого не знаем о том, как двигались давно вымершие животные, например, динозавры. Как ни странно это звучит, но за последние полтора века в палеонтологии не произошло сколь либо значительных изменений. Применение 3D-печати в этой области знаний уже позволяет не только воссоздавать точнейшие и полноразмерные копии когда-то населявших Землю существ для музейных выставок, но и успешно тестировать механику движений всех этих вымерших видов.


3D-печать пришла и в мир моды, последний пример такого сотрудничества — Voltage collection, которая в конце января 2013 года демонстрировалась на Парижской Неделе моды. Для этой коллекции дизайнером Ирис Ван Херпен (Van Herpen, Koerner and Materialise) было создано несколько платьев потрясающей сложности из нового экспериментального материала. Точность создания кружевной бесшовной структуры невозможно было реализовать иначе, как посредством 3D-печати. Расширение возможностей работы 3D-принтеров с такими пластичными материалами, как полиуретан и резина, позволяют экспериментировать и с другими современными материалами, что неизбежно отражается на тенденциях моды.

Напечатанный на 3D-принтере образец огнестрельного оружия, армейская винтовка AR-15, было успешно протестировано на работоспособность. Создавший и испытавший действующий образец винтовки, разработчик тут же поделился файлами цифровых 3D-деталей оружия с мировым сообществом, выложив их в открытом доступе на одном из сайтов. Этот акт «пацифизма» и то, что подобное оружие невозможно обнаружить металлодетектором, спровоцировал правительство многих стран закрепить запрет на воспроизводство огнестрельного оружия на 3D-принтерах законодательно.

Японцы также нашли весьма оригинальное применение 3D-технологиям, открыв первый в мире 3D-фотостенд. Пройдя быстрое и необременительное 3D-сканирование на стенде, посетитель получает возможность заказать 3D-печать собственной уменьшенной копии или же собственного бюста — чем не оригинальный подарок себе любимому. Взяла на вооружение 3D-технологии и XXX-индустрия, наладив выпуск заказных персонализированных кукол и прочих игрушек из силикона.


Приятным сюрпризом стал представленный в 2012 году фирмой Essential Dynamics 3D-принтер, способный воссоздавать объекты любой сложности из необычных материалов — шоколада и других пищевых ингредиентов. В самом ближайшем будущем предполагается массовый спрос не только на различные съедобные предметы, но и на подобные принтеры.

Потенциал и перспективы использования 3D печати

Современные 3D-принтеры уже не отстают по своим полиграфическим возможностям от принтеров обычных. Так, применение систем из пяти печатающих головок с материалами стандартных цветов позволяет получать полноцветные 3D-объекты с разрешением до 600 dpi (точек на дюйм).

Огромный потенциал 3D-печати замечательно иллюстрирует изготовленный по этой технологии музыкальный инструмент. Первая скрипка, распечатанная на 3D-принтере, была опробована в прямом эфире CNN пятнадцатилетней студенткой, с успехом сыгравшей на ней. Это необычное выступление доказало многим сомневающимся, что с помощью современных технологий 3D-печати можно воссоздать практически любой известный предмет — причем, с сохранением присущих ему свойств и характеристик.

Изобретатель Kai Parthy создал волокно для популярного 3D-принтера RepRap, позволяющее применять технологию для печати древесины. Волокно под кодовым названием LAYWOO-D3 является композитом древесины и специального полимера. Переработанные отходы деревообрабатывающей промышленности и недорогой безвредный пластик стали источником для поистине революционного материала, способного значительно сократить в будущем вырубку лесов — при условии, что технология получит широкое распространение.

Не прекращаются попытки создать 3D-принтеры, способные воспроизводить структурные элементы зданий из бетона и пеноматериалов. Проводятся исследования возможностей быстрой (до 20-ти часов) «печати» жилых сооружений со встроенными сантехническими и электрическими коммуникациями за один непрерывный цикл с использованием больших 3D-принтеров. Рабочие образцы строительных 3D-принтеров уже печатают до 3-х метров сооружений из строительного материала в час, и это не предел. Технологию 3D-печати зданий планируется использовать для автоматизированного возведения мест обитания человека вне Земли. Первые такие внеземные сооружения планируется построить на Луне уже в 2013-2014 годах, причем для «печати» лунных сооружений планируется использовать лишь 10% доставленного с Земли материала, 90% материала составит лунный грунт.

Американское космическое агентство NASA профинансировало грантом в размере 125000 долларов инженера Анджана Контрактора (Anjan Contractor), выделив эти деньги на создание 3D-принтера, который будет способен «печатать» еду для астронавтов в условиях космоса. Смешивая пищевые ингредиенты из картриджей, устройство сможет обеспечить разнообразие рациона космических путешественников во время длительных экспедиций. Первым блюдом, напечатанным на 3D-принтере, станет пицца — благодаря легкодоступным ингредиентам и простой структуре. Программное обеспечение этого принтера будет изначально с открытым исходным кодом, что позволит совершенствовать энтузиастам устройство и создаст возможность обмена рецептами (распечатками) блюд.

Применение «двуфотонной литографии» позволило ученым технологического университета Виенны (The Vienna University of Technology) совершить серьезный прорыв в невероятной детализации трехмерных объектов, печатаемых с нано-точностью. Чуть позже, в 2012 году, группа ученых из университета Глазго в Великобритании на практике доказала возможность использования технологий 3D-печати для создания химических соединений, что приоткрывает нам дверь в мир, в котором можно будет создавать вещи молекула за молекулой.


Исследователями из Вашингтонского государственного университета найден способ «печатать» кости человеческого организма при помощи 3D-принтера. В основе инновации — открытие вещества, по структуре и свойствам близкого к составу костной ткани. Это изобретение может быть использовано как для полного создания протезов костей, так и для поддержания сломанных участков в течение необходимого времени. Существует проект немецких ученых под названием BioRap, нацеленный на создание 3D-принтеров для распечатки различных человеческих органов и кровеносных сосудов. Считается, в ближайшие несколько лет эти технологии станут широко доступными для медработников, в корне решая проблему с дефицитом и отторжением донорских органов.


Организацией Thiel Foundation был анонсирован грант на создание инновационной технологии 3D-печати органических белковых соединений. Последние наработки в области создания живых клеток и тканей планируется объединить с наработками исследователей из Breakout Labs для получения съедобного прототипа мяса, способного стать в недалеком будущем весьма перспективным и к тому же гуманным источником животного белка для мясоедов всего мира.

3D печать — будущее сегодня

Серийные громоздкие 3D-принтеры, совсем недавно стоившие десятки тысяч долларов и обладавшие минимумом возможностей, быстро стали раритетом, их сменили более функциональные, компактные и несравнимо более дешевые модели стоимостью около 1000 долларов США.


На специализированных сайтах, таких как Thingiverse, уже сейчас можно найти в свободном для скачивания доступе десятки тысяч цифровых 3D-моделей различных объектов — порой, невероятных и удивительных. Но, несмотря на это, сфера «домашнего» применения 3D-печати пока ограничивается, в основном, воспроизводством незамысловатых безделушек и малопрактичных игрушек.


На данный момент уже существует огромное количество материалов, которыми способны печатать 3D-принтеры. Причем готовые изделия по физическим свойствам полностью соответствуют оригинальным материалам — керамике, резине, пластику, металлу, стеклу и т.д. Не за горами печать трехмерных объектов с переменными характеристиками материалов, например, с изменяющейся прозрачностью.

Появление 3D-технологий в массовом доступе окончательно ставит под удар копирайт, вызывая немало дискуссий о неизбежности пересмотра границ и ограничений авторского права. Не за горами тот день, когда в подтверждение шутке о недавнем закрытии крупнейшего российского торрент-трекера, можно будет скачать статую Церетели из интернета.

Бре Петтис (Bre Pettis), 40-летний отец-основатель компании MakerBot Industries, производящей самые популярные сегодня домашние 3D-принтеры, говорит о неизбежности дальнейшего совершенствования 3D-технологий, которые, надо заметить, все еще воспринимаются большинством населения как элемент научной фантастики. Возможно, этот процесс займет некоторое время, но ожидаемые результаты того стоят.

Одной из последних новостей из мира 3D-печати стало сообщение о появлении принтера, который способен напечатать сам себя. Печать не просто отдельных деталей, а полноценных устройств с электронной начинкой и всеми необходимыми комплектующими — следующий гигантский шаг в освоении 3D-технологий будущего.

А между тем не так давно первый 3D-принтер был собран детьми, учениками школы The School in Geldermalsen, работавшими над сложными проектами. Вот оно, удивительное будущее — сегодня, и уже очень близко к нам!

О существовании 3D печати слышал, наверняка, каждый, а в новостях то и дело проскакивают факты о новых возможностях этой технологии. Не так давно трехмерная печать использовалась только в производственных условиях и немногими энтузиастами, сегодня же можно запросто купить 3D принтер для использования в быту. С помощью таких устройств печатают самые разные вещи : от декоративных безделушек для дома до протезов, оружия и даже зданий. Перспективы трехмерной печати настолько фантастические, что мало кто сегодня может в полной мере их себе представить. А пока наблюдаем за тем, как будущее наступает , изучаем принципы работы 3D принтера, его возможности и преимущества, а также разбираемся, какой 3D принтер выбрать для использования в быту.

Несмотря на то, что технология трехмерной печати находится у всех на слуху только последние несколько лет, ее появление стоит искать еще в прошлом веке. Пионером в данной области стала компания Charles Hull, которая в 1984 году разработала технологию трехмерной печати, а чуть позже запатентовала технику стереолитографии, которая сегодня используется повсеместно. Тогда же компания разработала и создала первый промышленный трехмерный принтер, который фактически стал началом новой эпохи.

90-е годы стали временем появления новых разработок в сфере трехмерной печати, благодаря которым 3D принтеры нашли применение в производственных условиях и стали использоваться для прототипирования. Пик развития технологии приходится на XXI век, и мы сами становимся очевидцами того, как семимильными шагами трехмерная печать покоряет новые вершины. Сегодня печать может осуществляться разными материалами, причем не только пластиками и металлом , но и тканью, бумагой, керамикой, пищевыми продуктами и даже живыми клетками.

В 2005 году появилась возможность печатать в цвете, а в 2006 году был создан принтер, который может распечатать около половины всех собственных комплектующих. В 2014 году появились первые принтеры с областью печати, практически неограниченной в размере. С помощью этого устройства уже попытались создать полноценный дом, используя в качестве основного материала бетон. На возведение такого сооружения было потрачено не более суток. Уже в 2016 году было представлено первое здание, построенное с помощью трехмерной печати в Дубае. В феврале 2017 года Россия также представила дом, целиком напечатанный на стройплощадке. В этом году также был разработан принтер с шестью осями, с помощью которого сложные элементы будет печатать намного проще, без необходимости использовать поддерживающие конструкции. На данный момент вовсю ведутся разработки принтеров, которые смогут печатать органы человека, протезы, имплантаты, корпусы автомобилей и даже еду.

Как работает 3D принтер? Просто о сложном

Если коротко, то 3D принтер – это устройство для создания трехмерных объектов методом послойной печати. Спектр используемых для печати материалов постоянно расширяется и можно смело предполагать, что в будущем он будет включать большинство известных нам веществ. Пока самыми популярными материалами для печати остаются термопластики и фотополимерные смолы.

Общий принцип работы 3 D принтера можно представить следующим образом:


Особенности печати зависят той технологии, которую использует принтер, поэтому имеет смысл разобраться с самыми распространенными на данный момент.

Типы 3D-принтеров и особенности печати каждого

Чаще всего сегодня используют технологию FDM -печати, а также SLA -печати. Что стоит за этими непонятными аббревиатурами, и какими еще разработки существуют в данной сфере?

Метод FDM-печати

FDM -технология (Fused Deposition Modeling) – это технология послойного наплавления нити. Сегодня этот способ 3D-печати считается самым распространенным, одновременно он относится и к одним из самых старых методов. Принцип заключается в послойном наплавлении нити пластика по контуру модели.

Для печати используются термопластики, которые поставляются в виде катушек или прутков. Чаще всего печатают PLA и ABS пластиками , в числе которых нейлон, полиамид, поликарбонат, PET (он же полиэтилентерефталат, который используется для создания пластиковых бутылок) и некоторые другие вещества.

Принцип работы заключаются в следующем:

  • нить материала помещается в экструдер, где она плавится под воздействием нагревательного элемента, а потом выдавливается через сопло на рабочую поверхность;
  • экструдер двигается по траектории, заданной ей программным обеспечением, и слой за слоем строит объект;
  • если необходимо напечатать сложный предмет, то могут использоваться два типа материала: один – для модели, второй – для создания опор (он, как правило, растворимый, или же просто очень легко отламывается от объекта). Опоры необходимо печатать , если объект имеет повисшие в воздухе элементы, которые без поддерживающих элементов создать невозможно – принтеру будет просто не на чем печатать. Наглядно все представлено на рисунках ниже;
  • после формирования первого слоя платформа опускается вниз на толщину одного слоя, а экструдер выдавливает новую порцию материала, процесс повторяется много раз;
  • по окончанию печати остается отделить вспомогательные элементы.

Модель и поддерживающие элементы

FDM-технология позволяет использовать термопластики производственного класса, поэтому распечатанные объекты получают отличную механическую, химическую и термическую прочность. Технология простая, чистая и пригодна для использования в условиях офиса или дома.

По такому же принципу работают 3 D -ручки. Это фактически миниатюрные принтеры. Такие ручки предназначены для рисования трехмерных рисунков. Пользователь может выдавливать из нее мгновенно застывающий пластик, придавая ему любую форму и получая забавные изделия. Устройство больше предназначено для баловства, но идея интересная, а дизайнеры смогут сделать много интересных предметов декора для дома.

Метод SLA-печати, или стереолитография

SLA-технология (laser stereolithography) предполагает использование для печати жидких фотополимерных смол, которые имеют свойство застывать под воздействием лазера или подобного источника энергии. Метод позволяет получать предметы с очень точной геометрией , ведь толщина слоя может достигать рекордных 15 микрон, поэтому уже широко применяется в стоматологии при изготовлении имплантатов и в ювелирном деле для создания заготовок с обилием сложных деталей.

Принцип работы 3 D -принтеров , использующих метод лазерной стереолитографии, коротко можно описать так:

  • рабочая платформа погружается в ванну с жидким фотополимером на толщину одного слоя (15-150 микрон);
  • воздействие лазера на стенки будущего объекта. Лазерный луч в буквальном смысле вычерчивает на фотополимере форму объекта, которая, в свою очередь, задается программным обеспечением. Облучение лазера вызывают полимеризацию материала в точках соприкосновения с лучом и его затвердевание;
  • платформа погружается еще чуть глубже в ванну с жидким фотополимером, причем глубина погружения соответствует величине слоя. Лазер снова воздействует на зоны материала, которые должны быть частями печатаемого объекта;
  • процесс повторяется слой за слоем, пока не будет распечатан смоделируемый объект;
  • технология также требует печати поддерживающих элементов. Они выполняются из того же фотополимера;
  • после завершения печати объект погружают в ванну в специальные растворы для удаления излишков и очистки модели;
  • финал – облучение ультрафиолетом для окончательного застывания фотополимера.

Технология прогрессивная, но требует покупки дорогих расходных материалов.

Другие типы печати

Менее распространенными, но не менее интересными и перспективными являются следующие способы трехмерной печати:

Какой 3D-принтер лучше выбрать для бытового использования?

Забегая наперед, отметим, что пока стоимость бытовых 3D-принтеров остается относительно высокой, но в дальнейшем имеем все шансы наблюдать удешевление технологии. Вспомните, когда появились мобильные телефоны, они также были доступны только очень богатым людям.

Цели использования домашнего 3Д-принтера могут быть совершенно любыми: от простого баловства и знакомства с новой технологии до печати полезных в хозяйстве мелочей и моделей-прототипов для бизнеса. В любом случае, при выборе обращайте внимание на такие ключевые характеристики устройства:

  • разрешение печати (точность печати) – это минимально возможная высота слоя, которую может напечатать принтер. Обозначают разрешение в микрометрах (тысячная доля миллиметра). Чем меньше высота слоя, тем менее заметным будет переход между ними, и тем более гладкой будет поверхность печатаемого объекта. С другой стороны, чем меньше слой, тем больше времени принтеру понадобится на печать и тем выше нагрузка на все его элементы. Разрешение зависит от технологии (SLA позволяет печатать точнее, чем FDM), точности работы печатающих головок, настроек программного обеспечения и выбранного материала для печати;

    Образцы с разной толщиной слоя

  • скорость печати напрямую зависит от точности: чем выше точность, тем меньше скорость выращивания модели.
  • область печати говорит о том, какого размера объект можно напечатать на принтере. Другими словами, это зона возможной досягаемости печатающей головки по горизонтальным осям X и Y, а также по вертикальной оси Z. Обычно область печати выражают тремя цифрами – это высота, длина и ширина условного параллелепипеда (например, 20*30*30 мм). У дельта-принтеров область печати имеет форму цилиндра, поэтому указывается его высота и диаметр;
  • тип используемых для печати пластиков. В бытовых условиях используются именно пластики, и это могут быть ABS и PLA пластики, некоторые модели могут печатать обоими видами материалов. Возможность печати тем или иным типом пластиков объясняется наличием или отсутствием подогрева платформы. Если вы пока не решили, чем будете печатать, то лучше выбрать модель, которая поддерживает максимальное количество материалов;
  • страна-производитель . Европейские страны и США производят качественные, но дорогие устройства, завозятся в небольших количествах, сервисное обслуживание затруднено. Китайские устройства стоят недорого, качество часто оставляет желать лучшего, но для того, чтобы побаловаться, такие принтеры пойдут. Есть еще принтеры российского производства: при неплохом качестве они радуют возможностью сервисного обслуживания.

Интересные варианты бытовых 3D-принтеров

MakerBot Replicator 2

Качественный принтер американского производства, печатает по FDM-технологии, минимальная толщина слоя – 100 микрон (0,1 мм). Область печати – 285*153*155 мм, для печати используются PLA и ABS пластики. Максимальная скорость печати – 40 мм в секунду, или 24 см 3 /час. Корпус выполнен из стали, есть ЖК-экран, вес 11,5 кг. Модель хоть и выпущена в 2013 году, до сих пор активно используется для бытовой печати. Стоимость 3100$.

PrintBox3D One

Принтер отечественного производства, печатает по технологии FDM, минимальная толщина слоя – 50 мкм, размеры рабочей платформы – 185*160*150 мм. Устройство печатает ABS и PLA пластиками, оснащено подогреваемой платформой. Цена около 1700$, разработано для использования в сфере образования и дизайна.

PICASO 3D Designer

Печатает по FDM-технологии, как и все бытовые 3D-принтеры на сегодняшний день, использует для печати ABS и PLA пластики, в т.ч. нейлон. Точность печати — 50 мкм, рабочая платформа размерами 200*200*210 мм, максимальная скорость – 30 см 3 /час. Устройство оснащено подогреваемой платформой, стоимость 1700$.

3D принтер Hercules

Неплохое устройство от российской компании IMPRINTA, печатает разными видами пластика, точность печати – 50 мкм. Платформа подогреваемая, максимальная температура – 120 0 С. Скорость печати – 40 см 3 /час. Цена 1150$.

В качестве итога об основных плюсах и минусах трехмерной печати

3D-печать – направление перспективное и с большим потенциалом. Чтобы расставить все точки над «i» в изучении вопроса трехмерной печати, приведем основные ее преимущества:


Существующие минусы :


Трехмерная печать – это будущее медицины и промышленности, а также возможность быстрого создания прототипов и моделей, а это бесценно для инженерии. Кто знает, может, через 5-10 лет мы так же просто будем скачивать модели чашек или обуви и печатать их на собственном домашнем принтере, как сегодня скачиваем и просматриваем фильмы.

Вконтакте

Одноклассники

3D печать всё прочнее входит в нашу жизнь, превращаясь из узконаправленной и дорогой услуги в незаменимого помощника для профессионалов различных сфер деятельности. Доступность 3D печати позволяет проводить смелые эксперименты в архитектуре, строительстве, мелкосерийном производстве, медицине, образовании, ювелирном деле, полиграфии, изготовлении рекламной и сувенирной продукции. В настоящей статье мы раскроем основные сферы применения 3D печати в наши дни.

Архитектура

3D печать находит широкое применение в изготовлении архитектурных макетов зданий, сооружений, целых микрорайонов, коттеджных посёлков со всей инфраструктурой: дорогами, деревьями, уличным освещением.

На рисунке показаны макеты зданий, созданные с использованием трёхмерной печати.

Применение 3D печати в архитектуре

Для печати трёхмерных архитектурных макетов используют дешёвый гипсовый композит, который обеспечивает низкую себестоимость готовых моделей.

На сегодняшний день для 3D печати доступно 390 тысяч оттенков палитры CMYK , что позволяет воплотить в жизнь любую цветовую фантазию архитектора.

Для трёхмерной печати архитектурных моделей и прототипов чаще всего используются цветные 3D ZPrinter модели 250, 450, 650, 850 и чёрно-белые 3D ZPrinter модели 150 и 350.

Строительство

Инженеры из университета Южной Калифорнии создали систему 3D печати для работы с крупногабаритными объектами. Система работает по принципу строительного крана, который возводит стены из слоёв бетона. Такой 3D принтер может возвести двухэтажный дом всего лишь за 20 часов. Рабочим останется только установить окна, двери и провести внутреннюю отделку помещения.

3D принтер строит дом

Голландские архитекторы предложили напечатать при помощи строительного 3D принтера уникальный дом в форме ленты Мёбиуса. «Печать» дома запланирована на 2014 год. Дом планируется напечатать из смеси песка и связующих материалов.

Здание в форме ленты Мёбиуса, напечатанное 3D принтером

Вполне возможно, что через несколько десятков лет вырастут целые посёлки с великолепными комфортными домами, построенными по технологии 3D печати.

Мелкосерийное производство

Профессиональные 3D принтеры постепенно отвоёвывают свои позиции в сфере мелкосерийного производства. Чаще всего данную технологию печати используют для изготовления эксклюзивных изделий, например предметов искусства, фигурок персонажей для участников ролевых интернет-игр, прототипов и концептуальных моделей будущих потребительских товаров или их конструктивных деталей. Такие модели используются как в экспериментальных целях, так и для презентаций новых товаров.

Мелкосерийные модели, напечатанные 3D принтером

Для мелкосерийной 3D печати чаще всего используют системы Dimension, модели Elite и SST 1200ES, а также системы Fortus, модели 400mc и 900 mc.

Функциональное тестирование

Использование 3D принтеров для функционального тестирования – это один из современных методов инновационных разработок. В большинстве случаев требуется протестировать новый механизм в сборе, но изготовить отдельные компоненты в одном экземпляре слишком долго, дорого и весьма проблематично. На помощь приходят 3D принтеры с различной степенью детализации моделей.

Функциональное 3D тестирование

Для функционального 3D тестирования рекомендуется использовать принтеры Objet 24 и 30, устройства Eden 250, 260V, 350, 500V, а также Objet 260 Connex, Connex 350 и 500. Для изготовления функциональных 3D моделей из пластика разработаны машины Dimension uPrint, uPrint+, Elite, SST 1200ES, а также Fortus 400mc и 900mc.

Медицина

Использование 3D принтеров в медицине позволяет спасти человеческие жизни. Такие принтеры могут воссоздать точную копию человеческого скелета для отработки приёмов, гарантирующих проведение успешной операции. Всё чаще 3D принтеры используют в протезировании и стоматологии, так как трёхмерная печать позволяет получить протезы и коронки значительно быстрее классической технологии производства.

Прототипы зубных коронок, напечатанные на 3D принтере

Медицинские трёхмерные модели могут быть изготовлены из целого ряда материалов, включая живые органические клетки. Выбор того или иного материала для медицинского прототипирования зависит от целей и задач, стоящих перед медиками, и проблем, связанных со здоровьем пациента.

Совсем недавно сила и мощь 3D печати была продемонстрирована на примере обыкновенного орла, который по вине браконьеров лишился клюва. 3D печать позволила изготовить точную копию орлиного клюва.

Орлиный клюв, напечатанный 3D принтером

На рисунке ниже показана малышка Emma Lavalle (Эмма Лаваль), страдающая от редкого врождённого заболевания, при котором атрофируются мышцы рук, и ребёнок не может взять в руки даже лёгкую игрушку. Медики разработали и напечатали на 3D принтере специальный пластиковый экзоскелет, который помогает девочке жить полноценной жизнью.

Экзоскелет, напечатанный на 3D принтере для девочки с отрафированными мышцами рук

По мере роста девочки, специалисты печатают новые запасные части для экзоскелета, так что он всегда ей в пору.

Не останавливаясь на достигнутом, медики научились печатать «заплатки» для повреждённой человеческой кожи. В качестве материалов для печати используется специальный гель из клеток донора. По словам учёных, для печати кожи может быть использован даже самый обычный офисный принтер, немного модернизированный под поставленную задачу.

«Заплатка» для человеческой кожи, напечатанная 3D биопринтером

В 2011 году учёные сумели воспроизвести живую человеческую почку. Для этого 3D принтеру потребовалось всего лишь 3 часа.

3D принтер печатает живую почку

Для печати пластиковых медицинских прототипов, совместимых с биологическими организмами, используются 3D принтеры Eden 250, 260V, 350, 350V, 500; Fortus 400mc, 900mc; Objet 260 Connex, Connex 350 и 500.

Образование

Использование технологии 3D печати в образовании позволяет получить наглядные пособия, которые отлично подходят для классных комнат любых образовательных учреждений, начиная от детских садов и заканчивая вузами.

Современные 3D принтеры отлично подходят для классных комнат, поскольку имеют повышенную надёжность, не выделяют во время печати вредных для здоровья продуктов, не предъявляют особых требований к утилизации, не содержат режущих и бритвенных материалов, не имеют лазеров.

Наглядные пособия, напечатанные 3D принтером для учреждений среднего профессионального образования

Предполагается, что оснащение образовательных учреждений конструкторских или дизайнерских специальностей 3D принтерами поспособствует повышению эффективности образовательного процесса и быстрому усвоению знаний учащимися и студентами.

Производство одежды

Принтеры с технологией 3D печати постепенно осваивают сферу производства одежды, и в первую очередь – производство моделей для высокой моды.

Не так давно голландский модельер Айрис Ван Херпен представила коллекцию «Напряжение», все модели которой были созданы при помощи 3D печати. Коллекция была представлена на Неделе высокой моды в Париже.

Комплекты одежды, напечатанные с использованием 3D принтера

Технология 3D печати позволяет использовать для изготовления одного предмета одежды несколько различных материалов. Такой подход позволяет решить проблемы, связанные с прочностью и эластичностью изготавливаемых вещей.

Комплекты одежды, напечатанные 3D принтером

Одежду, напечатанную 3D принтером, пока можно увидеть только на показах мод. Но не остаётся сомнений, что внедрение подобных изделий в массовое производство является лишь вопросом времени. Возможно, в ближайшем будущем мы сможем не выходя из дома напечатать себе новую рубашку, вечернее платье или даже шубу необходимого цвета и размера.

Изготовление обуви

Первая пара обуви, напечатанная на 3D принтере, появилась в 2011 году благодаря стараниям шведских студентов. Сегодня трёхмерная обувь, напечатанная на принтерах, красуется на ведущих подиумах всего мира. Существенным преимуществом такой обуви является точный учёт индивидуальных особенностей её владельца, включая размер и форму стопы.

Женская обувь, напечатанная на 3D принтере

Внешний вид 3D обуви существенно отличается от традиционной, поэтому она будет пользоваться спросом среди креативных молодых людей, которые хотят подчеркнуть свою индивидуальность.

3D принтеры научились печатать не только женскую, но и мужскую обувь. Студент Лондонского колледжа моды Росс Бербер в своей дебютной коллекции представил пять пар обуви, напечатанных на принтере.

Мужская обувь, напечатанная на 3D принтере

Для изготовления 3D обуви используют полиуретан, резину и пластик. Стоимость такой обуви пока слишком высока, чтобы наладить её массовое производство.

Ювелирные изделия

Как известно, при изготовлении ювелирных изделий самой трудоёмкой процедурой является создание восковых прототипов, которое требует колоссальных затрат времени. С появлением 3D принтеров у ювелиров появилась возможность быстро выращивать восковые модели украшений, предварительно разработанные в специальной программе.

Прототипы ювелирных украшений, напечатанные 3D принтером

Для создания прототипов ювелирных украшений с использованием 3D принтера используется специальный материал, по своему составу похожий на ювелирный воск.

Для печати прототипов ювелирных украшений можно использовать следующие 3D принтеры: Soldscape T76, Eden 260V и 500V, Objet260 Connex и др.

Дизайн упаковки

Трёхмерные принтеры позволяют изготавливать пробные макеты упаковки, флаконов и бутылок оригинальной формы. Прототипы могут быть цветными, с включением всех элементов дизайна, в т.ч. этикеток, штрих-кодов, фирменных знаков. Готовые модели упаковки могут быть продемонстрированы заказчику перед запуском в массовое производство. Преимущество 3D прототипов налицо: заказчик может подержать упаковку в руках, оценить её фактуру, текстуру, цветовое оформление и некоторые другие характеристики.

Прототипы бутылок, напечатанные 3D принтером

Для изготовления пластиковых упаковок в настоящее время используют следующие 3D принтеры: Dimension uPrint, uPrint+, Elite, SST 1200ES; Fortus 400mc и 900mc. Для изготовления полупрозрачной и детализированной упаковки используются принтеры: Objet 24 и 30; Eden 250, 260V, 350, 500V; Objet 260 Connex, Connex 350 и 500. Для печати цветной упаковки лучше всего подойдут принтеры ZPrinter 250, 450, 650 и 850.

Печать игрушек и сувениров

Использование 3D принтеров для создания уникальных игрушек и сувениров уже ни у кого не вызывает удивления. Теперь легко получить готовый полноцветный прототип перед запуском изделия в массовое производство. Анализ прототипа позволяет изучить текстуру будущего изделия, его форму, размер и цвет.

Чаще всего сувенирные изделия печатают из гипсовых материалов, дополнительно обработанных для увеличения прочности готового изделия. 3D принтеры печатают сувениры с различной цветностью, вплоть до полноцветной текстуры в 390000 оттенков.

Игрушки и сувениры, напечатанные 3D принтерами

Для изготовления цветных игрушек и сувениров больше всего подходят принтеры ZPrinter 250, 450, 650 и 850.

Геоинформационные системы

Применяя 3D принтеры можно создавать объёмные цветные карты, точно отображающие ландшафт местности или указывающие уровни залегания различных пород.

Ландшафтная 3D карта

Возможно, в ближайшем будущем 3D принтер станет таким же неотъемлемым атрибутом нашего быта, как холодильник, микроволновая печь или телевизор, и мы будем с удивлением вспоминать те времена, когда люди не умели печатать одежду, посуду, обувь и прочие полезные предметы в домашних условиях, а покупали всё это в магазине.

Вконтакте

Во второй половине XVII века человечество изобрело паровой двигатель, подтолкнувший мир к первой промышленной революции. Вторая промышленная революция, связанная с изобретением двигателя внутреннего сгорания и распространением электричества, длится до сих пор и явно переживает период упадка. Ее технологии уже выработали свой потенциал и ждут, когда на смену им придет нечто другое, нечто более совершенное. Что это может быть? Существует мнение, что именно технологии 3D-печати смогут придать развитию человечества новый импульс.

Это сейчас возможности 3Д-принтеров вызывают не более чем любопытство сродни тому, что мы обычно испытываем в зоопарке, глядя на неведомую зверушку, однако в долгосрочной перспективе (20-30 лет) их потенциал поистине огромен. Перечень сфер, в которых задействованы технологии 3Д-печати, довольно широк и затрагивает многие аспекты жизнедеятельности человека.

Быстрое создание прототипов

Если раньше трехмерное моделирование представляло собой исключительно трудоемкий процесс, то сегодня любой, даже самый простой настольный 3D-принтер способен напечатать трехмерную пластиковую модель с разрешением в 100 микрон. Роль человеческого фактора при этом сводится к минимуму, а изготовленный предмет будет в точности соответствовать своей компьютерной модели. Реальные прототипы изделий уже сегодня позволяют компаниям исследовать рынок, а простота процесса дает возможность дизайнерам быстро вносить в концепты необходимые изменения.

Печать сложных объектов

Даже сейчас можно навскидку назвать несколько сфер, в которых 3D-принтеры успешно используются для производства сложных деталей:

  • Индивидуальная ортодонтия – в компании Align Technology уже давно используют метод стереолитографии для изготовления индивидуальных зубных скоб для пациентов. Скобы изготавливаются из безвредного полимера на основе 3D-сканов ротовой полости.
  • Индивидуальные слуховые аппараты – компания Siemens производит слуховые устройства на основе отсканированных ушных раковин, которые идеально подходят пользователю.
  • Изготовление деталей самолетов – при создании системы контроля окружающей среды для истребителя F-18 используются трубки, напечатанные при помощи 3Д-принтера.


3D-печать в медицине

В будущем возможности 3D-принтера в медицине не будут ограничиваться лишь созданием индивидуализированных протезов. Хирурги, занимающиеся пересадкой органов, мечтают о том, что однажды смогут получать требуемые органы по первому требованию. И для этого у них есть все основания, поскольку первый биопринтер уже создан и исправно функционирует.

Стоит он порядка 200 тысяч долларов, а над его разработкой трудились сотрудники компании Organovo, специализирующейся на регенеративной медицине, и инженеры машиностроительной фирмы Invetech. Первый в мире биопринтер использует ту же самую технологию, что и обычные 3Д-принтеры, однако вместо капелек полимера распыляет крошечные кластеры клеток, которые впоследствии как бы «сплавляются» в единую структуру.

Безусловно, индустрия 3D-печати органов только зарождается, однако первые реальные результаты имеются уже сегодня. Так в 2006 году, американские ученые из Северной Каролины успешно пересадили семерым пациентам искусственные мочевые пузыри, которые нормально функционируют до сих пор. В общем, не удивляйтесь, если через 10 лет биопринтер сможет напечатать из стволовых клеток печень, почку или даже сердце.

«Пищевые» 3D-принтеры

Ученые Корнелльского университета (США) разработали новую технологию печати гидроколлоидами, которая в перспективе позволит печатать овощи, хлеб, мясо, молочные продукты и вообще все, что может пожелать душа гурмана. Правда речь идет пока об имитации блюд при помощи смешивания желатина и пищевой добавки E415 (ксантановой камеди), однако существуют модели принтеров, которые, к примеру, способны печатать настоящим шоколадом. Некоторые ученые-футурологи утверждают, что через 15-20 лет в магазинах будут продаваться лишь картриджи с пищевыми добавками, а все продукты будут печататься дома.

Самовоспроизводящиеся принтеры

В 2006 году был создан 3Д-принтер возможности которого выходят за рамки обычных настольных устройств для печати трехмерных объектов. Суть в том, что этот принтер смог напечатать более половины собственных деталей, ранее изготовленных другим способом. Проект получил название RepRap и быстро стал массовым движением, направленным на создание полноценного самокопирующегося устройства. Сегодня устройства в рамках проекта успешно печатают работающие электрические цепи, а список исходных материалов пополнился керамикой, сплавами висмута и индия, глиной, мраморной пылью, тальком.

Безграничные возможности

Многие ученые предрекают наступление эры 3D-печати, которая приведет к полной децентрализации общества. Наряду с развитием солнечной энергетики и тотальной информатизацией, трехмерная печать может стать толчком к развитию автономности домов, в рамках которой единственная потребность в связи с внешним миром будет заключаться в необходимости покупки сырья для 3D-принтеров. В результате логистика в ее нынешнем виде исчезнет, а ее место займет нечто совершенно другое. Хорошо это или плохо, сказать трудно, однако тот факт, что наш мир в скором времени изменится до неузнаваемости, уже не вызывает никаких сомнений.

Применение 3D принтера в быту и на производстве не имеет границ. Это объясняется тем, что благодаря современным технологиям уже сегодня существуют принтеры для трехмерной печати высокой точности.

При этом могут использоваться различные расходные материалы, такие как:

  • Металлическая пудра;
  • Стеклянный порошок;
  • Резина и полиуретан;
  • Различные типы пластиков;
  • Цемент и другие строительные смеси.

Это означает, что при помощи 3Д принтера возможно изготовить практически любую деталь. При этом она не будет уступать деталям, изготовленным традиционными методами.

1. Области применения 3D принтеров

Современный 3D принтер можно применить практически в любой области промышленного производства. К примеру, в автомобилестроении такие устройства используются для того, чтобы создавать уменьшенные копии автомобилей и их деталей. Это позволяет работать с ними наглядно, устранять недоработки и так далее. Кроме этого принтеры для трехмерной печати активно используются в дизайнерских студиях для создания уменьшенных моделей зданий, помещений и декоративных украшений.

Учитывая тот факт, что принтеры могут иметь различные размеры, от самых компактных домашних моделей, до промышленных устройств огромных размеров, стоит понимать, что они могут использоваться в самых разных целях и производственных областях.

1.1. Применение 3D принтеров в промышленности

Использование технологии трехмерной печати в промышленности существенно ускоряет производственный процесс, а также позволяет работать с моделями деталей. Кроме этого такие устройства уже сегодня способны заменять некоторое промышленное оборудование, занимая при этом гораздо меньше места. К примеру, 3Д принтеры по металлу способны производить детали для различных механизмов, которые не уступают деталям, изготовленным традиционным методом. При этом процесс изготовления на принтере занимает меньше времени и сил, а сам принтер гораздо компактнее традиционного оборудования.

На данный момент ведутся активные разработки промышленного 3D принтера, который сможет распечатывать здания в натуральную величину. Конечно, сейчас это кажется фантастикой, однако разработчики возлагают на этот проект достаточно большие надежды, и кто знает, возможно уже через 5-10 лет 3D принтер в строительстве сможет строить здания за считанные месяцы, недели, а может даже и дни.

Кроме этого 3D принтеры используются для производства детских игрушек, бытовых приборов, сувениров, брелоков, элементов украшения, бижутерии и так далее.

1.2. Применение 3Д принтера в быту

Применение 3Д принтеров в повседневной жизни может избавить вас от массы проблем. К примеру, если у вас есть дети, то вы в любой момент можете напечатать целую армию солдатиков и военной техники для мальчика или куклу и наборы кухонной утвари для девочек. Также при помощи трехмерной печати вы можете изготавливать развивающие игрушки для детей любых возрастов:

  • Конструкторы;
  • Пазлы;
  • Буквы и цифры и так далее.

Помимо этого на 3Д принтере можно изготавливать различные предметы повседневного использования:

  • Гребешки и расчески для причесывания волос;
  • Ручки для дверей;
  • Мебельная фурнитура;
  • Бытовой инструмент (разводной гаечный ключ);
  • Плафоны для ламп;
  • Различные украшения;
  • Полочки и подставки;
  • Различные детали для ремонта сантехники и т.д.

2. Топ 3 напечатанных на 3D-принтере вещей: Видео

2.1. 3D принтера для ювелирного производства

Благодаря тому, что современные 3D принтеры отличаются высокой точностью печати, а также тому, что они могут работать с разными материалами, такие устройства активно используются в ювелирном производстве. С их помощью изготавливается огромное количество бижутерии. При этом качество изделий превосходит качество украшений, изготовленных традиционным методом.

Можно предположить, что уже в ближайшем будущем будут разработаны различные порошки из драгоценных металлов для печати золотых и серебряных украшений.

2.2. 3D принтер в медицине

Благодаря высокой точности изготавливаемых деталей технология трехмерной печати активно используется в медицине. При помощи 3Д принтеров распечатываются различные модели протезов, по которым изготавливаются настоящие протезы из биологических материалов. Кроме этого на 3Д принтере можно распечатывать фрагменты поврежденных костных тканей.

В наше время ведутся активные разработки принтеров для трехмерной печати, которые смогут работать с биологическими материалами. Другими словами при помощи таких устройств можно будет распечатывать готовые биологические протезы и фрагменты тканей, вживляемых в тело человека. Вполне возможно, что через некоторое время ученые смогут распечатывать целые органы, пригодные для пересадки живым людям. Это в свою очередь позволит лечить массу заболеваний, а также избавит критически больных людей от очередей на пересадку органов.

Конечно, многое из этого еще не доступно и кажется фантастикой, однако когда-то полет на луну так же был предметом фантазий. Кто знает, может быть через несколько лет технология трехмерной печати позволит спасать множество жизней.



Поделиться