Агрофирма закупает куриные 40 яиц из первого. При артиллерийской стрельбе автоматическая система

Решение задач по теме «Основы теории вероятностей»

    Вероятность того, что новый электрический чайник прослужит больше года, равна 0,9. Вероятность того, что он прослужит больше двух лет, равна 0,82. Найдите вероятность того, что он прослужит меньше двух лет, но больше года.

Решение.

Опыт состоит в длительной работе электрического чайника.

Пусть A = «чайник прослужит больше года, но меньше двух лет», В = «чайник прослужит больше двух лет», тогда A + B = «чайник прослужит больше года».

События A и В совместные, вероятность их суммы равна сумме вероятностей этих событий, уменьшенной на вероятность их произведения. Вероятность произведения этих событий, состоящего в том, что чайник выйдет из строя ровно через два года - строго в тот же день, час и секунду - равна нулю.

Тогда : P(A + B) = P(A) + P(B) − P(A·B) = P(A) + P(B),

откуда, используя данные из условия, получаем

0,9 = P(A) + 0,82.

Тем самым, для искомой вероятности имеем:

P(A) = 0,9 − 0,82 = 0,08.

Ответ: 0,08.

    Агрофирма закупает куриные яйца в двух домашних хозяйствах. 55% яиц из первого хозяйства - яйца высшей категории, а из второго хозяйства - 35% яиц высшей категории. Всего высшую категорию получает 45% яиц. Найдите вероятность того, что яйцо, купленное у этой агрофирмы, окажется из первого хозяйства.

Решение

Опыт состоит в том, что у агрофирмы покупают яйцо, которое может быть произведено одним из двух домашних хозяйств. По требованию задачи необходимо оценить вероятность события «яйцо, купленное у этой агрофирмы, окажется из первого хозяйства».

По условию задачи известно, что вероятность случайного события А=“купленное у агрофирмы яйцо является яйцом высшей категории” равна Р(А)=

Событие А может произойти вместе только с одним из событий H1 или H2, где случайное событие Hi = «яйцо произведено i-ым домашним хозяйством» (i = 1, 2).

По условию задачи известно, что 55% яиц из первого хозяйства - яйца высшей категории, а из второго хозяйства - 35% яиц высшей категории, поэтому Р(А/H1) = 0,55 и Р(А/H2) = 0,35

Пусть Р(H1) = х. Так как события H1 и H2, образуют полную группу попарно несовместных событий, то Р(H1)·+ Р(H2)·=1, поэтому Р(H2)·= 1-х

Используем формулу полной вероятности:

Р(А)= Р(H1)·Р(А/H1) + Р(H2)·Р(А/H2)

Имеем: 0,45 = х ·0,55 + (1-х) · 0,35

Решив линейное уравнение, получим x=0,5

Ответ: 0,5

    Фабрика выпускает сумки. В среднем на 100 качественных сумок приходится восемь сумок со скрытыми дефектами. Найдите вероятность того, что купленная сумка окажется качественной. Результат округлите до сотых.

Опыт состоит в покупке качественной сумки.

Вероятность найдем по формуле: . Общее количество сумок складывается из качественных (100 штук) и некачественных (8 штук), т.е. m = 100 + 8 = 108 .

Среди этих 108 сумок, качественных было 100 штук, n = 100

Ответ: 0,93

    Игральный кубик бросают дважды. Сколько элементарных исходов опыта благоприятствуют событию А = {сумма очков равна 9}?

Опыт состоит в том, что бросают игральный кубик. Предполагая равновозможность всех элементарных исходов опыта, найдем те из их, которые благоприятствуют событию А: это пары чисел (3; 6), (6; 3), (4; 5), (5; 4).

Ответ: 4.

    Из множества натуральных чисел от 13 до 24 наудачу выбирают одно число. Какова вероятность того, что оно делится на 2?

1) Опыт состоит в том, что из двенадцати (от 13 до 24) натуральных чисел выбирают одно число, которое кратно двум. Указание на то, что выбор числа происходит наудачу, говорит о равновозможности всех элементарных исходов опыта. Следовательно, для оценки вероятности события А= “выбранное число делится на 2” применим классический способ: Р(А)=

2)Количество всех равновозможных элементарных исходов опыта n = 12.

3) Вычислим количество всех элементарных исходов опыта, в которых наступает событие А. Для этого ответим на вопрос: сколько натуральных чисел из промежутка от 13 до 24 делится на 2? Согласно признаку делимости на 2 («на 2 делятся все четные натуральные числа»), получаем m=6

4) Таким образом, вероятность события А равна Р(А)= =

Ответ:

    Из районного центра в деревню ежедневно ходит автобус. Вероятность того, что в понедельник в автобусе окажется меньше 20 пассажиров, равна 0,94. Вероятность того, что окажется меньше 15 пассажиров, равна 0,56. Найдите вероятность того, что число пассажиров будет от 15 до 19.

Опыт состоит в том, что, сколько пассажиров окажется в автобусе.

Рассмотрим события A = «в автобусе меньше 15 пассажиров» и В = «в автобусе от 15 до 19 пассажиров». Их сумма - событие A + B = «в автобусе меньше 20 пассажиров». События A и В несовместные, вероятность их суммы равна сумме вероятностей этих событий:

P(A + B) = P(A) + P(B).

Тогда, используя данные задачи, получаем: 0,94 = 0,56 + P(В), откуда P(В) = 0,94 − 0,56 = 0,38.

О т в е т: 0,38.

    Автоматическая линия изготавливает батарейки. Вероятность того, что готовая батарейка неисправна, равна 0,03. Перед упаковкой каждая батарейка проходит систему контроля. Вероятность того, что система забракует неисправную батарейку, равна 0,96. Вероятность того, что система по ошибке забракует исправную батарейку, равна 0,03. Найдите вероятность того, что случайно выбранная изготовленная батарейка будет забракована системой контроля.

Опыт состоит в выборе изготовленной батарейки, которая будет забракована системой контроля. Указание на случайный выбор батарейки говорит о равновозможности всех исходов.

Для отбраковки неисправной батарейки должны произойти два независимых события: «линия произвела неисправную батарейку» и «неисправная батарейка забракована». Вероятность события А «произведена и забракована неисправная батарейка» равна Р(А)= 0,030,96=0,0288

Исправную батарейку линия производит с вероятностью 1-0,03=0,97. Для отбраковки исправной батарейки должны произойти два независимых события: «линия произвела неисправную батарейку» и «исправная батарейка забракована». Вероятность события В «произведена и забракована исправная батарейка» равна Р(В)= 0,970,03=0,0291.

События А и В несовместны. Искомая вероятность равна Р(АВ)= Р(А)+Р(В)=0,0288+0,0291=0,0579.

Ответ: 0,0579.

    В некотором городе из 5000 появившихся на свет младенцев 2450 девочек. Найдите частоту рождения мальчиков в этом городе.

Опыт состоит в рождении младенца, который может быть как мальчиком, так и девочкой. Случайное событие А = “рождение мальчика”.

Количество опытов, в которых событие А имело место, равно

N(A)=5000-2450=2550.

Найдем частоту появления события А как

Ответ:

    Помещение освещается фонарём с двумя лампами. Вероятность перегорания одной лампы в течение года равна 0,3. Найдите вероятность того, что в течение года хотя бы одна лампа не перегорит.

Опыт состоит в длительной работе ламп освещения.

Найдем вероятность того, что перегорят обе лампы. Эти события независимые, вероятность их произведения равно произведению вероятностей этих событий:

Событие, состоящее в том, что не перегорит хотя бы одна лампа, противоположное. Следовательно, его вероятность равна:

Ответ: 0,91.

    В кармане у Пети было 2 монеты по 5 рублей и 4 монеты по 10 рублей. Петя, не глядя, переложил какие-то 3 монеты в другой карман. Найдите вероятность того, что пятирублевые монеты лежат теперь в разных карманах.

Опыт состоит в том, что из 6 монет Петя переложил какие-то 3 монеты в другой карман и пятирублевые монеты оказались в разных карманах.

Чтобы пятирублевые монеты оказались в разных карманах, Петя должен взять из кармана одну пятирублевую и две десятирублевые монеты. Это можно сделать тремя способами: 5, 10, 10; 10, 5, 10 или 10, 10, 5. Эти события несовместные, вероятность их суммы равна сумме вероятностей этих событий:

Ответ:

Задача 1. На экзамене по геометрии школьнику достаётся один вопрос из списка экзаменационных вопросов. Вероятность того, что это вопрос на тему «Внешние углы», равна 0,35. Вероятность того, что это вопрос на тему «Вписанная окружность», равна 0,2. Вопросов, которые одновременно относятся к этим двум темам, нет. Найдите вероятность того, что на экзамене школьнику достанется вопрос по одной из этих двух тем.

Решение:

События «Достанется вопрос по теме Вписанные углы» и «Достанется вопрос по теме вписанная окружность» – . Значит, вероятность того, что на экзамене школьнику достанется вопрос по одной из этих двух тем равна сумме вероятностей этих событий: 0,35+0,2=0,55.

Ответ: 0,55.

Задача 2. Две фабрики выпускают одинаковые стекла для автомобильных фар. Первая фабрика выпускает 70% этих стекол, вторая – 30%. Первая фабрика выпускает 1% бракованных стекол, а вторая – 3%. Найдите вероятность того, что случайно купленное в магазине стекло окажется бракованным.

Решение:

Ситуация 1:

Стекло оказывается с первой фабрики (вероятность события 0,7) и (умножение) оно бракованное (вероятность события 0,01).

То есть должны произойти оба события. На языке теории вероятностей это означает каждого из событий:

Ситуация 2:

Стекло оказывается со второй фабрики (вероятность события 0,3) и оно бракованное (вероятность события 0,03):

Посколько при покупке стекла мы оказываемся в ситуации 1 или (сумма) в ситуации 2, то по получаем:

Ответ: 0,016.

Задача 3. В тоговом центре два одинаковых автомата продают кофе. Вероятность того, что к концу дня в автомате закончится кофе, равна 0,3. Вероятность того, что кофе закончится в обоих автоматах, равна 0,16. Найдите вероятность того, что к концу дня кофе останется в обоих автоматах.

Решение:

Вероятность события А: «кофе закончится в первом автомате» P(A) равна 0,3.

Вероятность события В: «кофе закончится во втором автомате» P(B) равна 0,3.

Вероятность события АB: «кофе закончится в обоих автоматах» P(АB) равна 0,16.

Вероятность суммы двух совместных событий А+В, есть сумма их вероятностей без вероятности события АB:

Нас же интересует вероятность события, противоположного событию А+В. Действительно, всего возможны 4 события, три из них, помеченные желтым цветом, отвечают событию А+В:

Ответ: 0,56.

Задача 4. В магазине стоят два платёжных автомата. Каждый из них может быть неисправен с вероятностью 0,12 независимо от другого автомата. Найдите вероятность того, что хотя бы один автомат исправен.

Решение:

Оба автомата неисправны с вероятностью

Хотя бы один автомат исправен (исправен+неисправен, неисправен+исправен, исправен+исправен)– это событие, противоположное событию «оба автомата неисправны», поэтому его вероятность есть

Ответ: 0,9856.


Задача 5. Биатлонист 5 раз стреляет по мишеням. Вероятность попадания в мишень при одном выстреле равна 0,85. Найдите вероятность того, что биатлонист первые 3 раза попал в мишени, а последние два промахнулся. Результат округлите до сотых.

Решение:

Биатлонист попадает в мишень первый раз и (умножение) второй, и третий:

Так как вероятность попадания в цель – , то вероятность противоположного события, промаха, –

Биатлонист промахнулся при четвертом выстреле и при пятом:

Тогда вероятность того, что биатлонист первые 3 раза попал в мишень, а (и! ) последние два промахнулся такова:

Ответ: 0,01.

Задача 6. Вероятность того, что новый пылесос прослужит больше года, равна 0,92. Вероятность того, что он прослужит больше двух лет, равна 0,84. Найдите вероятность того, что он прослужит меньше двух лет, но больше года.

Решение:

Рассмотрим следующие события:

А – «пылесос прослужит больше года, но меньше 2» ,

В – «пылесос прослужит больше 2-х лет»,

С – «пылесос прослужит больше года».

Событие С есть сумма совместных событий А и В, то есть

Но , так как не может одновременно произойти и А, и В.

Ответ: 0,08.


Задача 7. Помещение освещается фонарём с тремя лампами. Вероятность перегорания одной лампы в течение года равна 0,07. Найдите вероятность того, что в течение года хотя бы одна лампа не перегорит.

Решение:

Вероятность перегорания всех трех лампочек в течении года

Тогда вероятность противоположного события – хотя бы одна лампа не перегорит – есть

Ответ: 0,999657.


Задача 8. Агрофирма закупает куриные яйца в двух домашних хозяйствах. 40% яиц из первого хозяйства - яйца высшей категории, а из второго хозяйства - 90% яиц высшей категории. Всего высшую категорию получает 60% яиц. Найдите вероятность того, что яйцо, купленное у этой агрофирмы, окажется из первого хозяйства.

Решение:

I способ

Пусть вероятность того, что яйцо, купленное у агрофирмы, – из I хозяйства – . Тогда вероятность того, что яйцo, купленное у агрофирмы, – из II хозяйства – .


1) из I хозяйства и I категории

2) из II хозяйства и I категории,

II способ

Пусть –количество яиц первого хозяйства, тогда количество яиц высшей категории в этом хозяйстве – .

Пусть –количество яиц второго хозяйства, тогда количество яиц высшей категории в этом хозяйстве – .

Так как по условию высшую категорию получает 60% яиц, а всего яиц, закупаемых агрофирмой , из которых высшей категории, то

То есть у первого хозяйства закупается в раза больше яиц.

Тогда вероятность того, что яйцо, купленное у этой агрофирмы, окажется из первого хозяйства есть

Ответ: 0,6.

Задача 9. Ковбой Джон попадает в муху на стене с вероятностью 0,9, если стреляет из пристрелянного револьвера. Если Джон стреляет из непристрелянного револьвера, то он попадает в муху с вероятностью 0,3. На столе лежит 10 револьверов, из них только 4 пристрелянные. Ковбой Джон видит на стене муху, наудачу хватает первый попавшийся револьвер и стреляет в муху. Найдите вероятность того, что Джон промахнётся.

Решение:

Джон хватает пристрелянный револьвер (вероятность этого ) и промахивается (вероятность ). Вероятность этого события

Джон хватает непристрелянный револьвер (вероятность этого ) и промахивается (вероятность ). Вероятость этого события

Джон может схватить пристрелянный револьвер и промахнуться или схватить непристрелянный револьвер и промахнуться, поэтому искомая вероятность есть:

Ответ: 0,46.


Задача 10. Вероятность того, что на тесте по математике учащийся У. верно решит больше 12 задач, равна 0,78. Вероятность того, что У. верно решит больше 11 задач, равна 0,88. Найдите вероятность того, что У. верно решит ровно 12 задач.

Решение:

Пусть событие А: «учащийся верно решит 12 задач»,

событие В: «учащийся решит больше 12 задач»,

событие С: «учащийся решит больше 11 задач».

При этом вероятность события С есть сумма вероятностей событий А и В:

– это и есть искомая вероятность.

Ответ: 0,1.


Задача 11. В Волшебной стране бывает два типа погоды: хорошая и отличная, причём погода, установившись утром, держится неизменной весь день. Известно, что с вероятностью 0,8 погода завтра будет такой же, как и сегодня. 3 августа погода в Волшебной стране хорошая. Найдите вероятность того, что 6 августа в Волшебной стране будет отличная погода.

Решение:

(Мы отметили за «X» – «хорошая погода», «O» – «отличная погода»)

Событие D: XХXO произойдет с вероятностью

Событие F: ХХОО произойдет с вероятностью

Событие J: ХOОО произойдет с вероятностью

Событие H: ХОXО произойдет с вероятностью

Ответ: 0,392.

Задача 12. На рисунке изображён лабиринт. Паук заползает в лабиринт в точке «Вход». Развернуться и ползти назад паук не может, поэтому на каждом разветвлении паук выбирает один из путей, по которому ещё не полз. Считая, что выбор дальнейшего пути чисто случайный, определите, с какой вероятностью паук придёт к выходу D.

Решение:


На своем пути паук встречает четыре развилки. И на каждой развилке паук может выбрать путь, ведущий к выходу D, с вероятностью 0,5 (ведь на каждой развилке возможны два независимых равновозможных события: «выбор верного пути» и «выбор неверного пути»). Паук дойдет до выхода D, если выберет «верный путь» на первой развилке и на второй, и на третьей, и на четвертой, то есть к выходу D паук придет с вероятностью, равной
Ответ: 0,0625.


Задача 13. Всем пациентам с подозрением на гепатит делают анализ крови. Если анализ выявляет гепатит, то результат анализа называется положительным. У больных гепатитом пациентов анализ дает положительный результат с вероятностью 0,9. Если пациент не болен гепатитом, то анализ может дать ложный положительный результат с вероятностью 0,01. Известно, что у 6% пациентов с подозрением на гепатит анализ дает положительный результат. Найдите вероятность того, что пациент, поступивший с подозрением на гепатит, действительно болен гепатитом. Ответ округлите до тысячных.

Решение:

Пусть – вероятность того, что пациент, поступивший с подозрением на гепатит, действительно болен гепатитом.

Тогда – вероятность того, что пациент, поступивший с подозрением на гепатит, не болен гепатитом.


Анализ дает положительный результат в случаях

пациент болен и (умножение) анализ положителен

или (сложение)

пациент не болен и анализ ложно положителен

Так как по условию задачи у 6% пациентов с подозрением на гепатит анализ дает положительный результат, то

Округляем до тысячных: .

Ответ: 0,056.


Задача 14. При ар­тил­ле­рий­ской стрель­бе ав­то­ма­ти­че­ская си­сте­ма де­ла­ет вы­стрел по цели. Если цель не уни­что­же­на, то си­сте­ма де­ла­ет по­втор­ный вы­стрел. Вы­стре­лы по­вто­ря­ют­ся до тех пор, пока цель не будет уни­что­же­на. Ве­ро­ят­ность уни­что­же­ния не­ко­то­рой цели при пер­вом вы­стре­ле равна 0,4, а при каж­дом по­сле­ду­ю­щем - 0,6. Сколь­ко вы­стре­лов по­тре­бу­ет­ся для того, чтобы ве­ро­ят­ность уни­что­же­ния цели была не менее 0,98?

Решение:

Переформулируем вопрос задачи:

Сколько выстрелов потребуется для того, чтобы вероятность промаха была бы меньше 0,02?

При одном выстреле вероятность промаха – 0,6.

При двух выстрелах вероятность промаха – (первый выстрел – промах и второй выстрел – промах).

При трех выстрелах вероятность промаха –

При четырех выстрелах вероятность промаха –

При пяти выстрелах вероятность промаха –

Замечаем, что .

Итак, пяти выстрелов достаточно, чтобы ве­ро­ят­ность уни­что­же­ния цели была не менее 0,98.

Условие

Агрофирма закупает куриные яйца в двух домашних хозяйствах. 40% яиц из первого хозяйства — яйца высшей категории, а из второго хозяйства — 20% яиц высшей категории. Всего высшую категорию получает 35% яиц. Найдите вероятность того, что яйцо, купленное у этой агрофирмы, окажется из первого хозяйства.

Решение

Пусть событие A состоит в том, что яйцо имеет высшую категорию, события \[{{B}_{1}}\] и \[{{B}_{2}}\] состоят в том, что яйцо произведено в первом и втором хозяйствах соответственно. Тогда события $A|{{B}_{1}}$ и $A|{{B}_{2}}$ — события, состоящие в том, что яйцо высшей категории произведено в первом и втором хозяйстве соответственно. По формуле полной вероятности, вероятность того, что будет куплено яйцо высшей категории, равна:

Поскольку по условию эта вероятность равна 0,35, поэтому для вероятности того, что купленное яйцо произведено в первом хозяйстве имеем:

Примечание Ивана Высоцкого

Это решение можно записать коротко. Пусть \ — искомая вероятность того, что куплено яйцо, произведенное в первом хозяйстве. Тогда\ — вероятность того, что куплено яйцо, произведенное во втором хозяйстве. По формуле полной вероятности имеем:

Приведем другое решение

Пусть в первом хозяйстве агрофирма закупает $x$ яиц, в том числе, \ яиц высшей категории, а во втором хозяйстве —\[~y\] яиц, в том числе \ яиц высшей категории. Тем самым, всего агрофирма закупает \ яиц, в том числе \ яиц высшей категории. По условию, высшую категорию имеют 35% яиц, тогда:

\[\frac{0,4x+0,2y}{x+y}=0,35\Leftrightarrow 0,4x+0,2y=0,35\left(x+y \right)\Leftrightarrow 0,05x=0,15y\Leftrightarrow x=3y\].

Следовательно, у первого хозяйства закупают в три раза больше яиц, чем у второго. Поэтому вероятность того, что купленное яйцо окажется из первого хозяйства равна

\[\frac{3y}{3y+y}=\frac{3}{4}=0,75\].



Поделиться