Аппараты автоматизации процессов управления. Основные принципы автоматизации производственных процессов

Введение

Чтобы различные технические устройства выполняли тре­буемые функции, необходимо организовать тот или иной процесс управления. Процесс управления может быть реализован "руч­ным" способом или с помощью совокупности технических средств, которые, в общем случае, называют системами автома­тического управления,

Системы автоматического управления в сельскохозяйствен­ном производстве и переработке продукции призваны управлять режимами работы оборудования, теплиц, холодильных установок и т.п. Особенностью этих систем является работа с биологиче­скими объектами, животными, растениями и продуктами их пе­реработки.

Необходимость внедрения и развитие систем автоматическо­го управления способствовали созданию отдельного научно-технического направления, которое включает элементную базу, теоретические вопросы анализа и синтеза, вопросы проектирова­ния и обеспечения требуемой надёжности. Вместе с тем это от­дельное направление имеет тесную связь с электроникой, элек­тротехникой, математикой и другими разделами науки и техники. В развитие систем автоматики внесли вклад ученые Н.Н.Боголюбов, И.Ф.Бородин, Н.Винер, Н.Е.Жуковский, А.Н.Колмогоров, Н.М.Крылов, А.В.Михайлов, Г.Найквист, В.Д.Шеповалов, С.А.Чаплыгин, и многие другие ученые.

Предметом дисциплины "Автоматика" является - теоретиче­ские основы и технические средства автоматики.

Основы теории автоматического управления

Лекция 1 . «Принципы построения автоматизированных производств»

Автоматизация производства

Автоматика - отрасль науки и техники, охватывающая тео­рию и устройства средств и систем автоматического управления машинами и технологическими процессами Она возникла в 19 ве­ке с появлением механизированного производства на базе пря­дильных и ткацких станков, паровых машин и др., которые за­менили ручной труд и дали возможность повысить его произво­дительность.

Автоматизации всегда предшествует процесс полной механи­зации - такого производственного процесса, в котором человек не затрачивает на выполнение операций физической силы.

По мере развития техники функции управления процессами и машинами расширялись и усложнялись. Человек уже во многих случаях не был в состоянии управлять механизированным произ­водством без специальных дополнительных устройств. Это обусло­вило возникновение автоматизированного производства, при ко­тором работники высвобождаются не только от физического тру­да, но и от функций контроля за машинами, оборудованием, произ­водственными процессами и операциями, а также управления ими.

Под автоматизацией производственных процессов пони­мают комплекс технических мероприятий по разработке но­вых технологических процессов и создание производства на основе высокопроизводительного оборудования, выпол­няющего все основные операции без непосредственного уча­стия человека.


Автоматизация способствует значительному повышению про­изводительности труда, улучшению качества продукции и усло­вий труда людей

В сельском хозяйстве, пищевой и перерабатывающей про­мышленности автоматизируется контроль и управление темпера­турой, влажностью, давлением, регулирование скорости и перемещение, сортирование по качеству, упаковка и многие другие процессы и операции, обеспечивая более высокую их эффективность, экономию труда и средств.

Автоматизированные производства по сравнению с не автоматизированными обладают определенной спецификой:

· для повышения эффективности они должны охватывать большее количество разнородных операций;

· необходима тщательная проработка технологии, анализ объектов производства, маршрутов движения и операций, обеспечения надежности процесса с заданным качеством;

· при широком ассортименте выпускаемой продукции и се­рости работы технологические решения могут быть многовариатными;

· повышаются требования к четкой и слаженной работе раз­личных служб производства.

При проектировании автоматизированного производства должны быть соблюдены следующие принципы:

1. Принцип завершенности. Следует стремиться к выполнению всехопераций в пределах одной автоматизированной производственной системы без промежуточной передачи полуфабрикатов

в другие подразделения. Для реализации этого принципа необходимо обеспечить:

Технологичность продукта, т.е. на его изготовление должно расхсодоваться минимальное количество материалов, времени и средств:

Унификацию методов обработки и контроля продукта;

Расширение типажа оборудования с повышенными технологическими возможностями для обработки нескольких видов сырьяили полуфабрикатов.

2. Принцип малооперационной технологии. Количество опе­раций промежуточной обработки сырья и полуфабрикатов должно быть сведены к минимуму, а маршруты их подачи - оптими-зированы.

3. Принцип малолюдной технологии. Обеспечение автомат­икой работы на протяжении всего цикла изготовления продукта. Для этого необходимо стабилизировать качество входного сырья, повысить надежность оборудования и информационного обеспечения процесса.

4. Принцип безотладочной технологии. Объект управления не должен требовать дополнительных наладочных работ после того, как он пущен в эксплуатацию.

5. Принцип оптимальности. Все объекты управления и служ­бы производства подчинены единому критерию оптимальности, например, выпускать продукцию только высшего качества.

6. Принцип групповой технологии. Обеспечивает гибкость производства, т.е. возможность перехода с выпуска одного про­дукта на выпуск другого. В основе принципа лежит общность операций, их сочетаний и рецептур.

Для серийного и мелкосерийного производства характерно создание автоматизированных систем из универсального и агре­гатного оборудования с межоперационными емкостями. Это обо­рудование в зависимости от перерабатываемого продукта может переналаживаться.

Для крупносерийного и массового выпуска продукции авто­матизированное производство создается из специального обору­дования, объединенного жесткой связью. В подобных производ­ствах применяется высокопроизводительное оборудование, на­пример, роторное для разливки жидкостей в бутылки или пакеты.

Для функционирования оборудования необходим промежу­точный транспорт для сырья, полуфабрикатов, компонентов, раз­личных сред.

В зависимости от промежуточного транспорта автоматизиро­ванные производства могут быть:

Со сквозной транспортировкой без перестановки сырья, по­луфабриката или сред;

С перестановкой сырья, полуфабрикатов или сред;

С промежуточной емкостью.

По видам компоновки оборудования (агрегатирования) разли­чают автоматизированные производства:

Однопоточные;

Параллельного агрегатирования;

Многопоточные.

В однопоточном оборудование расположено последовательно по ходу выполнения операций. Для увеличения производитель­ности однопоточного производства операция может выполняться на однотипном оборудовании параллельно.

В многопоточном производстве каждый поток выполняет аналогичные функции, но работает независимо один от другого.

Особенностью сельскохозяйственного производства и пере­работки продукции является быстрое снижение ее качества, на­пример, после забоя скота или съема плодов с деревьев. Это тре­бует такого оборудования, которое имело бы высокую мобиль­ность (возможность выпуска широкого ассортимента продуктов из однотипного сырья и переработки различных видов сырья на однотипном оборудовании).

Для этого создаются переналаживаемые производственные системы, обладающие свойством автоматизированной перена­ладки. Организационным модулем таких систем является произ­водственный модуль, автоматизированная линия, автоматизиро­ванный участок или цех.

Производственным модулем называют систему, состоящую из единицы технологического оборудования, оснащенного авто­матизированным устройством программного управления и сред­ствами автоматизации технологического процесса, автономно функционирующую и имеющую возможность встраиваться в систему более высокого уровня (рис. 1.1).

1- оборудование для вы­полнения одной или нескольких операций; 2- управляющее устройство; 3- погрузочно-разгрузочное устройство; 4- транспортно-накопительное устройство (промежуточная емкость); 5- контрольно-измерительная система

Рисунок 1.1 - Структура производст­венного модуля

Производственный модуль может включать в себя, например, сушильную камеру, контрольно-измерительную систему, погрузочно-разгрузочную и транспорт­ную системы с локальным управлением или смесительную уста­новку с аналогичным добавочным оборудованием.

Частным случаем производственного модуля является произ­водственная ячейка - комбинация модулей с единой системой измерения режимов работы оборудования, транспортно- накопительной и погрузо-разгрузочной системами (рис. 1.2). Производственная ячейка может встраиваться в системы более высокого уровня.

1- оборудования для выполнения одной или не­скольких операций; 2- приемный бункер; 3-погрузочно-разгрузочное устройство; 4- конвейер; 5- проме­жуточная емкость; 6- управляющий компьютер; 7- контрольно-измерительная система.

Рисунок 1.2 - Структура производ­ственной ячейки

Автоматизированная ли­ния - переналаживаемая систе­ма, состоящая из нескольких производственных модулей или ячеек, объединенных еди­ной транспортно- складской системой и системой автоматического управления технологического процесса (АСУ ТП). Оборудование автоматизированной линии расположено в приня­той последовательности выполнения технологических операций. Структура автоматизированной линии изображена на рис. 1.3.

1,2,3,4- производствен­ные ячейки и модули; 5- транспортная система; 6-склад; 7- управляющий компьютер.

Рисунок 1.3 - Структура автоматизированной линии

В отличие от автоматизированной линии на переналаживае­мом автоматизированном участке предусмотрена возможность изменения последовательности использования технологического оборудования. Линия и участок могут иметь отдельно функцио­нирующие единицы технологического оборудования. Структура автоматизированного участка приведена на рис. 1.4.

1,2,3- автоматизиро­ванные линии; 4- производственные ячейки; 5- производственные модули; 6- склад; 7- управляющий компьютер

Рисунок 1.4 - Структура автоматизированного участка

Cтраница 1


Автоматизированные производственные процессы - это такие процессы, при которых основные работы по изготовлению продукции автоматизированы полностью, а вспомогательные - - полностью или частично. Функции рабочего сводятся к наблюдению и контролю за работой машин-автоматов, загрузке сырья и выгрузке готовой продукции.  

Комплексно автоматизированный производственный процесс описывается следующими уравнениями.  

Под автоматизированными производственными процессами понимаются такие, при которых основные работы по изготовлению продукции автоматизированы полностью, а вспо - могательные - полностью или частично.  

Под автоматизированными производственными процессами понимают такие, при которых основные работы по изготовлению продукции автоматизированы полностью, а вспомогательные - полностью или частично. Функции рабочего сводятся к наблюдению и контролю за работой машин-автоматов, загрузке сырья и выгрузке готовых изделий.  

Под автоматизированными производственными процессами понимаются такие, при которых основные работы по изготовлению продукции автоматизированы полностью, а вспомогательные - полностью или частично. Функции рабочего сводятся к наблюдению и контролю за работой машин-автоматов, загрузке сырья и выгрузке готовой продукции.  

Такой подход к автоматизированным производственным процессам имеет много преимуществ. Тот факт, что они обходятся дешево и окупаются быстро, позволяет с большой легкостью протолкнуть их у высшего начальства. Одним из наиболее разительных управленческих аргументов против внедрения крупных автоматических установок является то, что спрос на товар может измениться прежде, чем проектируемая для него автоматическая установка будет пущена в ход.  

Важнейшим, этапом создания автоматизированного производственного процесса является выбор наиболее целесообразного варианта технологического процесса.  

Оптимальные технологические варианты изготовления готовой продукции должны служить основой автоматизированного производственного процесса. Наименование Технология машиностроения в данное время неправильно приписывается существующим курсам и учебным специальностям, представляющим собою, по существу, обработку резанием.  

На современных промышленных предприятиях, в металлургических, химических, нефтеобрабатывающих и других отраслях с автоматизированными производственными процессами измерительная техника используется главным образом для контроля производственных процессов (их параметров), сочетаемого с автоматическим регулированием и управлением, и контроля качества выпускаемой продукции. Хотя контроль производственного процесса, осуществляемый через те или иные его параметры, преследует иную цель чем измерение отдельных величин, а именно-проверку степени (в установленных пределах) выполнения заданных режимов (параметров), тем не менее процесс контроля имеет много общего с измерением как в методике, так и в аппаратуре. Примером могут служить измерительные преобразователи, которые преобразуют всевозможные неэлектрические величины в электрические и широко применяются как при измерениях, так и при контроле. Кроме того, в устройствах, применяемых для контроля, в ряде случаев осуществляют именно измерения, если, например, требуется знать числовые значения контролируемого параметра и его изменения во времени.  


Во многих случаях при проведении различного рода научных экспериментальных исследований, испытании новых образцов техники, а также при контроле автоматизированных производственных процессов применяется документальная регистрация значений во времени контролируемых неэлектрических величин. В этих случаях вместо индикаторного прибора используется устройство регистрирующее (записывающее) поступающие на его вход электрические сигналы. Наиболее широко используются магнитная и осциллографическая записи электрических сигналов.  

Так как в автоматизации заложены возможности повышения технико-экономических показателей, то при разработке алгоритма управления нужно стремиться к тому, чтобы автоматизированный производственный процесс, протекал оптимально. Это значит, что при прочих равных условиях производительность оборудования должна быть максимальной, качество получаемых продуктов высоким, энергетические затраты минимальными и, как следствие этого, себестоимость готовой продукции невысокой.  

Каждый агрегат должен по возможности иметь наименьшие габариты, массу и стоимость; конструкция преобразователя должна быть технологична, допускать применение автоматизированных производственных процессов при его изготовлении и обеспечивать благоприятные условия для эксплуатации.  

Прежде, когда производственные процессы не были автоматизированы, и технология в значительной мере базировалась на опыте и навыках людей, когда средства измерительной техники не были столь развиты, как сейчас, попытки четкого осмысливания к изысканиям наиболее обоснованных оптимальных решений и тем более попытки построения оптимальных систем были беспредметными. Сейчас вопросы построения научно обоснованных и автоматизированных производственных процессов приобретают актуальный характер. Следовательно, повышается роль проблемы оптимума, проблемы выбора единственного наиболее рационального решения.  

Этапы и средства автоматизации производства

Предшественником автоматизации явилась комплексная механизация производства, в процессе которой физические функции человека в производственном процессе выполнялись с помощью механизмов с ручным управлением. Труд человека при этом облегчался физически, и его основной деятельностью становилось управление механизмами. Механизация направлена на облегчение условий человеческого труда и повышение его производительности.

По мере развития механизации возникает задача полной или частичной автоматизации управления механизмами. В результате решения этой задачи создаются технологические автоматы, способные в большей или меньшей степени выполнять производственные функции без участия человека. Возникновение и распространение технологических автоматов положило начало автоматизации производства.

В развитии автоматизации можно выделить ряд последовательных этапов, каждый из которых характеризуется появлением новых средств автоматизации и расширением состава объектов автоматизации производства. Укрупненно, применительно к промышленному производству, можно выделить следующие основные этапы автоматизации.

1. Автоматизация массового производства. При массовом производстве промышленной продукции задача повышения производительности труда стоит особенно остро. Здесь возможны значительные затраты на средства автоматизации, поскольку будучи отнесенными к единице продукции (при большом числе единиц продукции), они приводят к приемлемому росту ее цены.

В результате становится целесообразным создание и использование в производстве специализированных и специальных технологических автоматов. Каждый такой автомат рассчитан на единственную технологическую операцию или ограниченный набор технологических операций при производстве определенного изделия. Задача перестройки автомата на выпуск других изделий либо ставится в ограниченном объеме, либо не ставится вовсе.

Основной целью автоматизации является получение максимальной производительности. Технологический процесс изготовления изделия разбивается на простые операции малой длительности, которые можно выполнять параллельно на разных технологических автоматах.

Из технологических автоматов создаются поточные линии в соответствии с последовательностью технологических операций процесса изготовления изделия. Дальнейшее повышение уровня автоматизации достигается путем автоматизации межоперационного транспорта и промежуточного складирования (межоперационные накопители полуфабрикатов). Результатом такой комплексной автоматизации технологического процесса является создание автоматических линий.

Автоматическая линия реализует в автоматическом режиме технологический процесс изготовления определенного изделия. Автоматическая линия для достижения наивысшей производительности строится из специального и специализированного оборудования. Создание и внедрение автоматической линии требует больших временных и материальных затрат, следовательно, такие линии экономически эффективны только при массовом производстве изделий, когда одно и то же изделие в неизменном виде выпускается непрерывно в больших количествах в течение рядя лет. Автоматические линии имеют ограниченные возможности для переналадки на изготовление иной продукции или такие возможности вообще не предусматриваются.

Поскольку использование автоматических линий и цикловых технологических автоматов ограничено массовым и крупносерийным производством, то соответственно ограничены объемы автоматизированного производства на их основе. По разным оценкам объем массового и крупносерийного производства составляет от 15 до 20 % общего объема производства и эта доля имеет тенденцию к сокращению. Следовательно, уровень автоматизации производства с помощью автоматических линий и цикловых автоматов может составить не более 15–20 %. Реально этот уровень еще меньше.

Цикловые технологические автоматы и автоматические линии относятся к средствам "жесткой" автоматизации. С их помощью можно достичь весьма высокой производительности труда, однако область использования таких средств ограничена, и только на их основе полная автоматизация производства невозможна.

2. Автоматизация основных операций обработки многономенклатурного производства. Многономенклатурное производство предполагает изготовление разнообразных изделий партиями ограниченного объема в ограниченные сроки. Номенклатура изделий и объемы партий могут колебаться в широких пределах: от единичных изделий до партий среднесерийного производства.

При многономенклатурном производстве технологическое оборудование должно быть в значительной степени универсальным и обеспечивать переналадку и перестройку на изготовление разнообразных изделий (в пределах технологических возможностей оборудования). В случае автоматизированного производства такая переналадка и перестройка должны осуществляться в автоматизированном режиме с минимальным объемом ручных операций или с полным их исключением.

Выполнение перечисленных условий определяет "гибкую" автоматизацию. Основным принципом гибкой автоматизации является принцип программного управления технологическим оборудованием. Рабочий цикл технологического автомата при этом задается управляющей программой, содержащей кодированное описание последовательности элементов цикла с использованием определенной символики. Управляющая программа разрабатывается обособленно от управляемого оборудования и оформляется на некотором машинном носителе, что позволяет считывать ее автоматическому устройству управления технологического автомата.

Впервые этот принцип (который возник и усовершенствовался при управлении ЭВМ) был реализован для автоматизации металлорежущих станков. Появились и начали широко распространяться станки с числовым программным управлением (ЧПУ). Первые модели станков с ЧПУ из-за недостаточного совершенства требовали при изменении рабочего цикла не только замены управляющей программы, но и некоторых ручных операций для переналадки. Такие станки оказывались эффективными при обработке партий однотипных деталей объемом не менее 50–100 шт. По мере совершенствования принципов ЧПУ и технических решений этот предел постоянно снижался, и в настоящее время станки с ЧПУ эффективны даже в индивидуальном производстве.

Вначале были созданы станки с ЧПУ для определенных видов механической обработки. В последующем получили распространение многооперационные станки с ЧПУ с автоматической сменой обрабатывающего инструмента (обрабатывающие центры).



Станки с ЧПУ позволяют автоматизировать процесс обработки деталей и обладают гибкостью, поскольку способны перестраиваться на обработку деталей иной формы путем замены управляющей программы. Это обстоятельство позволяет, например, автоматизировать процесс переналадки станка и, следовательно, повышает уровень автоматизации производства.

Принцип ЧПУ, ввиду эффективности, получил распространение и для другого технологического оборудования, что позволило обеспечить гибкую автоматизацию разнообразных технологических операций. Оборудование с ЧПУ в первую очередь получило распространение в машиностроении, приборостроении и металлообработке. Однако его использование не ограничено перечисленными отраслями.

Основным недостатком оборудования с ЧПУ является отсутствие автоматизации вспомогательных операций и необходимость в ручном обслуживании оборудования. Названное обстоятельство приводит к снижению коэффициента использования оборудования до уровня 40–60 %.

3. Промышленная робототехника. Автоматизация основных операций технологических процессов привела к росту противоречия между уровнем их автоматизации и уровнем автоматизации вспомогательных операций (в первую очередь операций загрузки-разгрузки автоматизированного оборудования). В качестве средства устранения этого противоречия была предложена концепция программно-управляемого перестраиваемого автомата для выполнения вспомогательных операций по обслуживанию автоматизированного оборудования.

Такие автоматы появились в шестидесятых годах прошлого столетия и получили название промышленных роботов (ПР). Первые разработки промышленных роботов были ориентированы на замену человека при выполнении операций загрузки заготовок в технологические автоматы и разгрузки обработанных изделий. На базе технологического автомата и обслуживающего его робота создаются роботизированные технологические комплексы (РТК), представляющие собой комплексно автоматизированные технологические ячейки.

С помощью РТК появляется возможность комплексной автоматизации отдельных технологических операций или ограниченного набора технологических операций в многономенклатурном производстве. Первые РТК с использованием простых ПР с цикловым управлением были эффективны в среднесерийном производстве. По мере совершенствования ПР (роботы с ЧПУ, адаптивные роботы, интеллектуальные роботы), повышается их гибкость и возможность эффективного применения в мелкосерийном и индивидуальном производстве.

Промышленные роботы постоянно совершенствуются. В процессе совершенствования улучшаются технические характеристики роботов, расширяются их функциональные возможности, расширяется сфера применения. В настоящее время основная масса выпускаемых ПР ориентирована на выполнение технологических операций: сварка, окраска, сборка и некоторые другие основные технологические операции. Наряду с такими роботами продолжают использоваться загрузочно-разгрузочные роботы, появились транспортные роботы и др.

4. Автоматизация управления. Управление в любом производстве требует решения большого объема задач по сбору и обработке информации, принятию решений и контролю их исполнения. Для решения задач управления привлекаются значительные людские ресурсы. Качество решения управленческих задач в существенной мере определяет результат производства.

Возможность автоматизации управления появилась с развитием и широким распространением ЭВМ, когда ЭВМ стали доступны для использования отдельными предприятиями. Появилась возможность автоматизации (с помощью ЭВМ и соответствующего программного обеспечения) процессов сбора и обработки информации, необходимой для принятия управленческих решений и контроля хода производства. С использованием ЭВМ стали решаться задачи планирования производства, задачи материального обеспечения, задачи учета труда и заработной платы, а также ряд других задач управления производством.

Решение таких задач не было жестко привязано во времени к производственным процессам и могло осуществляться в "машинном" времени ЭВМ, т.е. в течение такого временного периода, который требуется для выполнения соответствующей программы ЭВМ. Характерным для этого этапа автоматизации явилось создание на производстве централизованных вычислительных центров для решения задач управления. Связь между ЭВМ и производством, в основном, осуществлялась с использованием оперативного персонала.

Подобные централизованные системы получили название автоматизированных систем управления производством (АСУП). АСУП обеспечивает решение задач организационного и диспетчерского управления производством. Основной эффект от внедрения АСУП заключается в сокращении времени, необходимого для принятия управленческих решений, повышении оперативности управления и его качества, а также в сокращении управленческого персонала, занятого рутинной обработкой информации.

Значительный объем управления в производстве приходится на задачи оперативно-технического управления производственным оборудованием и технологическими процессами. Для автоматизации решения этих задач необходимо обеспечить непосредственную связь между управляющей ЭВМ и объектами управления. Кроме того, задачи оперативно-технического управления должны решаться в реальном времени управляемого процесса.

Поэтому наряду с АСУП появились системы автоматизированного управления технологическими процессами (АСУ ТП), которые обеспечивают в автоматизированном режиме решение задач оперативно-технического, диспетчерского и организационного управления отдельными технологическими процессами производства. Интеграция АСУ ТП с автоматизированным технологическим комплексом обеспечивает реализацию концепции безлюдной технологии в производстве.

5. Автоматизация инженерного труда. Производство требует затрат высококвалифицированного труда специалистов – инженеров. Инженеры разрабатывают новую продукцию, проводят научные исследования и испытания, разрабатывают новые технологические процессы и модернизируют старые. Без инженерного труда невозможен прогресс производства. Затраты на оплату инженерного труда в производственных расходах составляют значительную долю (по стандартам промышленно развитых стран).

Стремление повысить эффективность инженерного труда, сократить материальные и временные затраты на проектирование новой или модернизированной продукции, на проведение исследований, на подготовку производства привело к появлению соответствующих автоматизированных систем. Основой таких систем явилось использование ЭВМ, поскольку инженерный труд – интеллектуальный труд. Типичные инженерные задачи являются эвристическими задачами, опирающимися на значительный объем рутинных работ.

Рутинные работы (получение справочной информации, оформление результатов, оформление чертежей и текстовых документов и др.) в большинстве случаев поддаются алгоритмизации (описанию в виде детерминированной последовательности простых операций) и, следовательно, их можно автоматизировать, используя ЭВМ. В принципе, автоматизировать можно любые процессы, поддающиеся алгоритмизации.

Средством автоматизации инженерного труда являются програм-мно-технические комплексы на базе ЭВМ: системы автоматизации проектирования (САПР), автоматизированные системы научных исследований (АСНИ), автоматизированные системы технологической подготовки производства (АСТПП). Первые две системы используются конструкторами и исследователями для разработки новой или модернизации существующей продукции. Результатом их работы являются технические и рабочие проекты новой продукции.

Для реализации этих проектов необходимо выполнить подготовку производства спроектированной продукции. Эта задача возлагается на специалистов-технологов, осуществляющих проектирование новых технологических процессов или модернизацию существующих. Для автоматизации труда технологов (тех работ, которые поддаются алгоритмизации) предназначены АСТПП. Использование АСТПП позволяет повысить эффективность подготовки производства, сократить материальные и временные затраты на этот процесс, повысить качество результатов и сократить затраты человеческого труда.

6. Интеграция автоматизированных производственных систем в единое гибкое автоматизированное производство (ГАП). Интеграция заключается в совместном использовании и взаимодействии перечисленных выше систем автоматизации для достижения конечной цели производства. При этом системы автоматизации интеллектуальных функций человека (проектирование, управление, исследования, разработка технологий) используют общие базы данных, что обеспечивает прямой обмен информацией между ними.

В ГАП основным принципом управления оборудованием и процессами является программное управление от ЭВМ, что обеспечивает перестройку производства на выпуск новой или модернизированной продукции программным путем (заменой управляющих программ) в автоматизированном режиме. В результате производство приобретает свойство гибкости и реализует концепцию гибкой технологии. Комплексная автоматизация человеческого труда позволяет сократить долю человеческого труда в ГАП в 20 раз по сравнению с традиционным производством. Такое производство реализует концепцию безлюдной технологии.

В условиях ГАП автоматизированы как физические, так и интеллектуальные функции человека. Для автоматизации интеллектуальных функций основным средством являются ЭВМ. Поэтому ГАП часто называют интегрированным и компьютеризированным производством.

1. Особенности проектирования технологических процессов в условиях автоматизированного производства

Основой автоматизации производства являются технологические процессы (ТП), которые должны обеспечивать высокую производительность, надежность, качество и эффективность изготовления изделий.

Характерной особенностью ТП обработки и сборки является строгая ориентация деталей и инструмента относительно друг друга в рабочем процессе (первый класс процессов). Термообработка, сушка, окраска и прочее в отличие от обработки и сборки не требуют строгой ориентации детали (второй класс процессов).

ТП классифицируют по непрерывности на дискретные и непрерывные.

Разработка ТП АП по сравнению с технологией неавтоматизированного производства имеет свою специфику:

1.Автоматизированные ТП включают не только разнородные операции механической обработки резанием, но и обработку давлением, термообработку, сборку, контроль, упаковку, а также транспортно-складские и другие операции.

2.Требования к гибкости и автоматизации производственных процессов диктуют необходимость комплексной и детальной проработки технологии, тщательного анализа объектов производства, проработки маршрутной и операционной технологии, обеспечения надежности и гибкости процесса изготовления изделий с заданным качеством.

3.При широкой номенклатуре изделий технологические решения многовариантны.

4.Возрастает степень интеграции работ, выполняемых различными технологическими подразделениями.

Основные принципы построения технологии механообработки в АПС

1.Принцип завершенности . Следует стремиться к выполнению всех операций в пределах одной АПС без промежуточной передачи полуфабрикатов в другие подразделения или вспомогательные отделения.

2.Принцип малооперационной технологии. Формирование ТП с максимально возможным укрупнением операций, с минимальным числом операций и установок в операциях.

3.Принцип «малолюдной» технологии. Обеспечение автоматической работы АПС в пределах всего производственного цикла.

4.Принцип «безотладочной» технологии . Разработка ТП, не требующих отладки на рабочих позициях.

5.Принцип активно-управляемой технологии. Организация управления ТП и коррекция проектных решений на основе рабочей информации о ходе ТП. Корректироваться могут как технологические параметры, формируемые на этапе управления, так и исходные параметры технологической подготовки производства (ТПП).

6.Принцип оптимальности . Принятие решения на каждом этапе ТПП и управления ТП на основе единого критерия оптимальности.

Помимо рассмотренных для технологии АПС характерны и др. принципы: компьютерной технологии, информационной обеспеченности, интеграции, безбумажной документации, групповой технологии.

2. Типовые и групповые ТП

Типизация технологических процессов для сходных по конфигурации и технологическим особенностям групп деталей предусматривает их изготовление по одинаковым ТП, основанным на применении наиболее совершенных методов обработки и обеспечивающим достижение наивысшей производительности, экономичности и качества. Основа типизации - правила обработки отдельных элементарных поверхностей и правила назначения очередности обработки этих поверхностей. Типовые ТП находят применение, главным образом, в крупносерийном и массовом производстве.

Принцип групповой технологии лежит в основе технологии переналаживаемого производства - мелко- и среднесерийного. В отличие от типизации ТП при групповой технологии общим признаком является общность обрабатываемых поверхностей и их сочетаний. Поэтому групповые методы обработки характерны для обработки деталей с широкой номенклатурой.

И типизация ТП, и метод групповой технологии являются основными направлениями унификации технологических решений, повышающей эффективность производства.

Классификация деталей

Классификацию производят в целях определения групп технологически однородных деталей для их совместной обработки в условиях группового производства. Выполняют ее в два этапа: первичная классификация, т. е. кодирование деталей обследуемого производства по конструктивно-технологическим признакам; вторичная классификация, т. е. группирование деталей с одинаковыми или несущественно отличающимися признаками классификации.

При классификации деталей нужно учитывать следующие признаки: конструктивные - габаритные размеры, массу, материал, вид обработки и заготовки; число операций обработки; точностные и другие показатели.

Группирование деталей выполняют в такой последовательности: выбор совокупности деталей на уровне классов, например тела вращения для механообрабатывающего производства; выбор совокупности деталей на уровне подкласса, например детали типа вала; классификация деталей по комбинации поверхностей, например валы с комбинацией гладких цилиндрических поверхностей; группирование по габаритным размерам с выделением областей с максимальной плотностью распределения размеров; определение по диаграмме областей с наибольшим числом наименований деталей.

Технологичность конструкций изделий для условий АП

Конструкция изделия считается технологичной, если для его изготовления и эксплуатации требуются минимальные затраты материалов, времени и средств. Оценка технологичности проводится по качественным и количественным критериям отдельно для заготовок, обрабатываемых деталей, сборочных единиц.

Детали, подлежащие обработке в АП, должны быть технологичны, т. е. просты по форме, габаритам, состоять из стандартных поверхностей и иметь максимальный коэффициент использования материала.

Детали, подлежащие сборке, должны иметь как можно больше стандартных поверхностей соединений, простейших элементов ориентации сборочных единиц и деталей.

3. Особенности проектирования технологических процессов изготовления деталей на автоматических линиях и станках с ЧПУ

Автоматическая линия - это непрерывно действующий комплекс взаимосвязанного оборудования и системы управления, где необходима полная временная синхронизация операций и переходов. Наиболее эффективными методами синхронизации являются концентрация и дифференциация ТП.

Дифференциация технологического процесса, упрощение и синхронизация переходов - необходимые условия надежности и производительности. Чрезмерная дифференциация приводит к усложнению обслуживающего оборудования, увеличению площадей и объема обслуживания. Целесообразная концентрация операций и переходов, не снижая практически производительность, может быть осуществлена путем агрегатирования, применением многоинструментальных наладок.

Для синхронизации работы в автоматической линии (АЛ) определяется лимитирующий инструмент, лимитирующий станок и лимитирующий участок, по которым устанавливается реальный такт выпуска АЛ (мин) по формуле

где Ф - действительный фонд работы оборудования, ч; N -программа выпуска, шт.

Для обеспечения высокой надежности АЛ разделяют на участки, которые связаны друг с другом через накопители, осуществляющие так называемую гибкую связь между участками, обеспечивая независимую работу смежных участков в случае отказа на одном из них. Внутри участка сохраняется жесткая связь. Для оборудования с жесткой связью важно планировать время и длительность плановых остановок.

Станки с ЧПУ дают высокую точность и качество изделий и могут использоваться при обработке сложных деталей с точными ступенчатыми или криволинейными контурами. При этом снижается себестоимость обработки, квалификация и число обслуживающего персонала. Особенности обработки деталей на станках с ЧПУ определяются особенностями самих станков и в первую очередь их системами ЧПУ, которые обеспечивают:

1)сокращение времени наладки и переналадки оборудования; 2)увеличение сложности циклов обработки; 3) возможность реализации ходов цикла со сложной криволинейной траекторией; 4) возможность унификации систем управления (СУ) станков с СУ другого оборудования; 5) возможность использования ЭВМ для управления станками с ЧПУ, входящими в состав АПС.

Основные требования к технологии и организации механической обработки в переналаживаемых АПС на примере изготовления основных типовых деталей

Для разработки технологии в АПС характерен комплексный подход - детальная проработка не только основных, но и вспомогательных операций и переходов, включая транспортировку изделий, их контроль, складирование, испытания, упаковку.

Для стабилизации и повышения надежности обработки применяют два основных метода построения ТП:

1)использование оборудования, обеспечивающего надежную обработку почти без участия оператора;

2)регулирование параметров ТП на основе контроля изделий в ходе самого процесса.

Для повышения гибкости и эффективности в АПС используют принцип групповой технологии.

4. Особенности разработки ТП автоматизированной и роботизированной сборки

Автоматизированная сборка изделий выполняется на сборочных автоматах и АЛ. Важным условием разработки рационального ТП автоматизированной сборки является унификация и нормализация соединений, т. е. приведение их к определенной номенклатуре видов и точностей.

Главным отличием роботизированного производства является замена сборщиков сборочными роботами и выполнение контроля контрольными роботами или автоматическими контрольными устройствами.

Роботизированная сборка должна выполняться по принципу полной взаимозаменяемости или (реже) по принципу групповой взаимозаменяемости. Исключается возможность подгонки, регулировки.

Выполнение операций сборки должно проходить от простого к сложному. В зависимости от сложности и габаритов изделий выбирают форму организации сборки: стационарную или конвейерную. Состав РТК - это сборочное оборудование и приспособления, транспортная система, операционные сборочные роботы, контрольные роботы, система управления.

Все вопросы

Основные принципы автоматизации производственных процессов

Автоматизация производственных процессов остается генеральной линией развития и модернизации в сфере промышленного производства на протяжении многих десятилетий.

Понятие « автоматизация» предполагает, что машинам, приборам и станкам помимо собственно производственной функции передаются функции управления и контроля, которые до этого выполнялись человеком. Современное развитие технологий позволяет автоматизировать не только физический, но и интеллектуальный труд, если он основан на формальных процессах.

За последние 7 десятилетий автоматизация предприятий прошла долгий путь, который умещается в 3 этапа :

  1. системы автоматического контроля (САК) и системы автоматического регулирования (САР)
  2. системы автоматизации технологических процессов (САУ)
  3. автоматизированные системы управления технологическими процессами (АСУ ТП)

На современном уровне автоматизация систем управления производством представляет собой многоуровневую схему взаимодействия людей и машин на основе систем автоматического сбора данных и сложных вычислительных комплексов, которые неустанно совершенствуются.

В нынешних экономических условиях на передовых позициях оказываются промышленные предприятия, которые гибко реагируют на изменяющиеся условия, могут выпускать разнообразную номенклатуру, быстро наладить выпуск продукции по новым стандартам, точно исполняют сроки и объемы заказов, при этом предлагая конкурентную цену и сохраняя качество на высоком уровне. Без современных средств и систем автоматизации производства соответствовать данным требованиям практически невозможно.

Основные цели и преимущества автоматизации предприятия в современных условиях:

  • уменьшение числа рабочих и обслуживающего персонала, в особенности на непрестижных, « грязных», « горячих», вредных, физически трудных участках производства
  • улучшение качества продукции;
  • увеличение производительности (рост объема продукции);
  • создание ритмичного производства с возможностью точного планирования;
  • повышение эффективности производства, в том числе более рациональное использование сырья, снижение потерь, повышение скорости выпуска продукции, повышение энергоэффективности,
  • улучшение показателей экологичности и безопасности производства, в том числе снижение вредных выбросов в атмосферу, снижение уровня травматизма и т.п.
  • повышение качества управления на предприятии, согласованная работа всех уровней системы производства.

Таким образом, затраты на автоматизацию производства и предприятия непременно окупаются при условии наличия спроса на выпускаемую продукцию.

Для достижения данных целей необходимо решить следующие задачи по автоматизации производственных процессов :

  • внедрение современных средств автоматизации (оборудования, программ, систем управления и контроля и т.п.)
  • внедрение современных методов автоматизации (принципов построения систем автоматизации)

В результате повышается качество регулирования, удобство труда оператора, коэффициент готовности оборудования. Кроме этого упрощается получение, обработка и хранение информации о производственных процессах и работе оборудования, а также контроль качества.

Характеристика АСУ ТП

Автоматизированные системы управления технологическими процессами освобождают человека от функций контроля и управления. Здесь станок, линия или целый производственный комплекс с помощью собственной системы связи самостоятельно осуществляют сбор, регистрацию, обработку и передачу информации при помощи всевозможных датчиков, контрольно-измерительных приборов и процессорных модулей. Человеку необходимо лишь задать параметры для выполнения работы.

Например, так работает автоматизированная система приварки крепежа Soyer:

Эти же устройства сбора информации могут выявить отклонения от заданных норм, дать сигнал для устранения нарушения, или в отдельных случаях самостоятельно исправить его.

Гибкие системы автоматизации предприятия

Ведущей современной тенденцией в автоматизации производств и предприятий является использование гибких автоматизированных технологий (ГАП) и гибких производственных систем (ГПС). Среди характерных особенностей таких комплексов:

  1. Технологическая гибкость: ускорение и замедление производительности с сохранением слаженности работы всех элементов системы, возможность автоматической смены инструмента и т.п..
  2. Экономическая гибкость: быстрая перестройка системы под новые требования номенклатуры без лишних производственных затрат, без замены оборудования.
  3. В структуре ГПС задействованы промышленные роботы, манипуляторы, средства транспортировки, процессорные, в том числе микропроцессорные системы управления.
  4. Создание ГПС предполагает комплексную автоматизацию предприятия или производства. При этом производственная линия, цех или предприятие работают в едином автоматизированном комплексе, который включает, помимо основного производства, проектирование, транспортировку, складирование готовой продукции.

Элементы автоматизации производства

  1. Станки с числовым программным управлением (ЧПУ);
  2. Промышленные роботы и роботизированные комплексы;
  3. Гибкие производственные системы (ГПС);
  4. Системы автоматизированного проектирования;
  5. Системы автоматического складирования;
  6. Компьютерные системы контроля качества;
  7. Автоматизированная система технологического планирования производства.

В следующем видео вы сможете увидеть, как промышленные сварочные роботы Kuka выполняют автоматизированную сварку:

Средства автоматизации производства от Вектор-групп

Компания Вектор-групп - профессиональный поставщик промышленного оборудования ведущих мировых производителей. В нашем каталоге вы найдете оборудование для автоматизации производств и заводов машиностроения, сварочных производств, производств, связанных с металлообработкой и другими направлениями.

Оборудование для автоматизации включает:

— промышленные роботы Kuka (Германия) - позволяют выполнить автоматизацию процессов сварки, резки, обработки материалов, манипулирования, сборки, паллетирования, а также другие процессы.

— системы автоматической приварки крепежа Soyer (Германия),

— автоматические системы транспортировки и грузозахваты DESTACO (США).

Компания предлагает помощь в подборе, выполняет поставку оборудования, осуществляет сервисное обслуживание. Вы можете заказать как типовое производственное решение, так и решение, спроектированное под конкретные индивидуальные требования.

По всем вопросам, касающимся нашего оборудования, специфике его работы, стоимости, а так же любым другим вопросам, обращайтесь к нашим специалистам



Поделиться