Авария на магистральном трубопроводе считается. Аварии на трубопроводах

Фото: Крупные газовые и нефтяные трубопроводы в США. Красным обозначены трубопроводы, входящие в зону риска.

10 сентября 2010 года, в 6 часов вечера, в службу спасения г. Сан-Бруно, в штате Калифорния поступил тревожный звонок. По сообщениям перепуганных свидетелей, произошел ужасный взрыв на автомобильной заправке. Огонь полыхал с такой силой, что очевидцы подозревали авиакатастрофу, либо теракт. Память о случившемся 11 сентября давала о себе знать.

Почти час понадобился на то, чтобы установить истинную причину - ей оказался взрыв стального газопровода диаметром 76 см, принадлежавшего Тихоокеанской газовой и электрической компании. Взрыв оставил после себя кратер диаметром 51 м, 7,9 м в ширину и глубиной до 12 метров. Восемь человек погибло, и более пятидесяти было ранено. Высота пламени достигала 300 футов, очевидцы сообщали об огненном шаре и стене огня высотой 1000 футов.

Геологическая служба США зарегистрировала результат ударной волны, эквивалентный землетрясению в 1.1 балл по шкале Рихтера. К ликвидации пожара были привлечены более 200 пожарных - сильный ветер раздувал пламя, затрудняя борьбу с огнем. В результате взрыва и последующего пожара были повреждены 35 домов, три из них были признаны непригодными для проживания.

Фото: Части газопровода на улицах после взрыва.

Фото: Разрушения после взрыва и пожара в Сан-Бруно

Фото: Применение авиации для тушения пожара в Сан Бруно

Критики утверждают, что трубопроводы должны стать еще более безопасными в эксплуатации. По их словам, многих аварий на трубопроводах можно было бы избежать - при должном контроле со стороны правительства и усилении мер безопасности в отрасли.

На общую длину всех трубопроводов Америки - 2,5 млн. км, ежегодно приходится сотни утечек и разрывов, ценой которых становятся в отдельных случаях и человеческие жизни. И по мере старения трубопроводных систем, риск аварий на этих линиях будет только увеличиваться. При том, что с 1986 года, при авариях на трубопроводах уже погибли более 500 человек, пострадали свыше 4000, а убытки составили почти семь миллиардов долларов.

Причин аварий очень много - это и банальная коррозия оборудования, и плохое качество сварных швов, и даже стихийные бедствия. Так, в 2012 году трубопроводы в штате Нью-Джерси подверглись атаке урагана "Сэнди", что привело к возникновению более 1600 случаев разгерметизации трубопровода. Все утечки были взяты под контроль, и никто не пострадал, но компания-оператор понесла значительные убытки и обанкротилась, оставив почти 28 тысяч человек без подачи газа.

Наконец, одна из самых банальных причин - старость. Трубопроводы элементарно стареют. Более половины из них построены около пятидесяти лет назад. И такая ситуация также чревата авариями.

Так, в 2011 году, в городе Аллентаун взорвался газопровод. Погибло 5 человек, было уничтожено почти пятьдесят домов. Причиной был названо превышение срока эксплуатации - газопровод был изготовлен из чугунных труб в 1928 году. 83 года назад.

Фото: Пожар бушует в городе Аллентаун, штат Пенсильвания, после взрыва газа в феврале 2011 года

Другая причина выхода трубопроводов из строя - коррозия. Сталь, находящаяся в соприкосновении с активными средами, такими как нефть и газ - закономерно ржавеет.

На долю коррозионных процессов приходится от 15 до 20 процентов всех сообщений о "серьезных инцидентах", что в переводе с бюрократического языка означает гибель людей, или серьезный ущерб имуществу.

В общем и целом, аварии по причине коррозии насчитывают более 1400 инцидентов с 1986 года.

Сокращение государственного контроля

Основная часть государственного контроля за функционированием тысяч километров нефтепроводов и газопроводов возложена на небольшое агентство в составе Департамента транспорта. Это так называемое "Управление по безопасности трубопроводов и опасным материалам" США (Pipelines and Hazardous Materials Safety Administration ),сокращенно - PHMSA

Агентство утверждает, что только семь процентов линий передачи природного газа, и лишь 44% всех опасных линий передачи жидких нефтепродуктов, соответствуют строгим критериям проверки и проверяются регулярно. Все остальное проходит контроль гораздо реже.

Причина тут кроется в давней ошибке. В 60-е и 70-годы было принято большинство федеральных законов о безопасности трубопроводов, а также установлены стандарты безопасности для вновь построенных линий.

Однако на трубопроводы, построенные ранее этого срока, данные правила не распространялись - просто нереально было, даже для США, привести эти трубопроводы к единому стандарту безопасности. Именно к таким объектам принадлежал газопровод, взорвавшийся в городе Сан-Бруно

Эта магистраль, участок которой лопнул вдоль дефектного шва, как показало расследование, никогда не проходила тестов на высокое давление. Но, парадокс в том, что, поскольку он был установлен в 1956 году, его владелец и не обязан был проводить такое тестирование.

То, к чему привела такая ситуация - на фотографии:

Фото: Сгоревшие автомобили и разрушенные дома в Сан-Бруно, США, после взрыва газопровода в сентябре 2010 года.

Позже, в 1990 годах были приняты дополнительные акты, и сегодня PHMSA набирает персонал для тестирования старых трубопроводов в зоне риска. Сюда относится населенные пункты, или крупные источники пресной воды. Однако многие старые газопроводы в сельской местности все равно не могут быть охвачены тестированием.

Другой элемент риска - это временные и технические линии, например магистрали, соединяющие скважины на месторождениях. К ним вообще неприменимы какие-либо стандарты регулирования, потому что многие из этих линий работают при очень низких давлениях и находятся в отдаленных районах.

Поэтому правительственные агенты не могут собрать объективных данных о разрывах и протечках, а также о том, соблюдаются ли вообще какие-либо стандарты для сварочных швов, или глубинах залегания на этих объектах.

Еще одна проблема, в последнее время ставшая традиционной для США - недостаток финансирования. Миф о "супербогатой Америке«» уже практически прописался у нас в подкорке. Возможно, когда-то так и было, но сегодня это именно что миф. Денег на обслуживание инфраструктуры в Америке не хватает точно так же, как и в России, или других странах мира.

Причины этого разные, одна из них - гигантские объемы и расстояния. В частности, при огромной протяженности линий передачи нефти и газа в Соединенных Штатах, PHMSA не хватает ресурсов для адекватного мониторинга миллионов километров трубопроводов.

Агентство может финансировать деятельность лишь 137 инспекторов, а зачастую, реально работает еще меньше. Некомплект персонала - настоящий бич этой структуры. Согласно отчету, в период между 2001 и 2009 агентство сообщало о кадровом дефиците в среднем 24 человек в год.

По сообщениям газеты "Нью-Йорк Таймс", агентству хронически не хватает инспекторов, потому что их переманивают трубопроводные компании, которые используют их для проверки своих собственных магистральных линий.

Пути решения проблемы

Если люди не справляются с мониторингом сотен тысяч километров трубопроводов, то на помощь должна прийти техника. Одним из выходов из такой ситуации является повсеместная установка запорной арматуры с автоматическим дистанционным управлением , которая может быстро остановить подачу газа или нефти в случае аварии.

В июле 2010 года, в результате прорыва нефтепровода, в реку Каламаза вытекло около миллиона галлонов сырой нефти. Операторам трубопровода понадобилось почти 17 часов, для того чтобы найти и вручную перекрыть место разрыва. Использование автоматической арматуры позволило бы значительно сократить это время, а значить - уменьшить масштаб экологического загрязнения местности.

Фото: Контрольно-измерительный снаряд Smart Pig

Эти устройства помещаются в газопровод и перемещаются в нем, измеряя важные параметры, такие как деформации труб и повреждения металла.

Однако не каждый газопровод имеет подходящий диаметр для использования подобного устройства, а для регулярной диагностики нужен частичный демонтаж, а значит простой трубопровода, вновь влекущий за собой убытки.

Таким образом, на кону стоят деньги - против человеческих жизней. Ведь пока компании-операторы считают убытки, взрывы на газопроводах продолжают уносить человеческие жизни.

В июне 2013 года разрыв газопровода вызвал крупный взрыв и пожар в городке Вашингтон-Пэрриш в штате Луизиана.

Фото: Взрыв в городе Вашингтон-Пэрриш, штат Луизиана

Взрыв произошел в 5:30 утра по местному времени. Жители в радиусе одной мили от эпицентра взрыва были эвакуированы. Обошлось без человеческих жертв, но некоторые близлежащие строения были уничтожены огнем. Данная линия перекачивает 3,1 млрд кубических футов газа в день из Техаса в Южную Флориду. Часть линии была закрыта, и остается неясным, когда подача газа будет возобновлена. Ведется следствие, чтобы определить причину взрыв.

15 июня 2015 года, около 8 часов вечера по местному времени, страшный взрыв потряс окрестности городка Куэро в Техасе

Огромный столб огня был виден за 20 километров. Жители близлежащих домов были оперативно эвакуированы. К счастью, обошлось без человеческих жертв, однако люди были изрядно напуганы

Cтраница 1


Аварии трубопроводов в условиях эксплуатации происходят в основном из-за коррозии металла (33 - 50 %), дефектов строительного происхождения (механические повреждения, дефекты кольцевого шва), дефектов заводского шва, нарушение правил эксплуатации, неисправности оборудования и других. Статистические данные по разрушениям газопроводов и нефтепроводов, представленные в табл. 3.2 за десятилетний период (1967 - 1977 годы), свидетельствуют о достаточно большом числе отказов. Ежегодно происходило более 220 разрушений трубопроводов.  

Анализ аварий трубопроводов, проработавших более 20 лет, показывает, что их старение влияет на увеличение числа отказов. Это прежде всего связано со снижением защитных свойств изоляционных покрытий, с накоплением и развитием дефектов в трубах и сварных соединениях, процессами усталости металла. Снижаются пластические и вязкостные свойства металла и сварных соединений.  

Основными-причинами аварий трубопроводов являются дефекты их изготовления и монтажа, гидравлические удары.  

При авариях трубопроводов из-за дефектов тройников (отводов) следует вырезать тройниковый узел целиком и заменить его новым.  

Чаще всего аварии трубопроводов происходят из-за неисправности в месте соединения труб.  

Для предотвращения аварий трубопроводов, проложенных в сложных инженерно-геологических условиях, необходимо установить влияние изменения условий и параметров эксплуатации на прочность и устойчивость трубопровода, а также найти потенциально опасные участки. Отказам и авариям трубопроводов, проложенных в этих условиях, наряду с другими факторами способствует их чрезмерный изгиб, который сопровождается неравномерной осадкой и нестабильным положением системы грунт-труба-жидкость или газ.  

Основными причинами аварий трубопроводов являются дефекты их изготовления и монтажа, гидравлические удары.  

Когда ликвидация аварии трубопровода производится с помощью подводной сварки в кессоне, а для получения качественного шва трубу предварительно нагревают до высоких температур, водолаз-сварщик подвергается двойному воздействию: с одной стороны - высокой температуры газов сварочной дуги, с другой стороны - высокой радиационной температуры, выделяемой трубой. Работа в жаркой, влажной среде кессона, обильное потоотделение, наклоны тела могут вызвать обморочное состояние. Чтобы этого не случилось, нужно обеспечить активное охлаждение работающего, запас воды для питья.  

При ликвидации аварии трубопроводов для сжи - женных газов требуются некоторые дополнительные меры, предосторожности, связанные со спецификой свойств про дуктов.  

Отмечены случаи аварий трубопроводов, вызванных ошибками в выборе труб и арматуры по нормалям, дефектами, допущенными при изготовлении. При монтаже и ремонтных работах необходимо строго контролировать соответствие материалов указанным в проектах, ГОСТах, нормалях и технических условиях. Размещение и способы прокладки газопроводов должны обеспечивать возможность наблюдения за их техническим состоянием. На трубопроводах, транспортирующих сжиженные газы, необходимо устанавливать предохранительные клапаны для сброса газа. На газопроводах, подающих сжиженные газы в емкости, должны быть установлены обратные клапаны между источником давления и запорной арматурой. На всех газопроводах сжиженных газов перед их входом в парк емкостей необходимо установить задвижки, отключающие емкости от внутризаводской сети при аварии или каких-либо неисправностях. На вводах газопроводов горючих газов в производственные цехи и установки должна быть установлена отключающая запорная арматура с дистанционным управлением вне здания.  


Во избежание аварии трубопроводов их прокладывают таким образом, чтобы происходила самокомпенсация тепловых удлинений трубопроводов. Однако достичь-самокомпенсации удается не всегда. В большинстве случаев применяют специальные устройства, называемые компенсаторами.  

Данные о наиболее значительных авариях трубопроводов с полным разрывом стыков показывают, что такие стыки также имели значительный непровар по всей длине шва, достигавший 40 % и даже 60 % толщины стенок, и другие дефекты.  

Тяжесть последствий от аварии трубопровода определяется соотношением размера водоема и количества нефти, попавшего в него. Однако, каковы бы ни были эти соотношения, воздействия такого рода молено считать очень опасными для живой природы.  

Все знают, что Россия является нефтедобывающей страной. Однако далеко не всем известно, что, помимо добычи, наши нефтепромыслы славятся также существенными потерями, возникающими в процессе извлечения черного золота из земных недр. Причем количество аварийных разливов нефти и утечек нефтепродуктов ежегодно увеличивается не пропорционально росту добычи, а существенно быстрее.

Так, по информации Greenpeace, потери нефтяного сырья при добыче и транспортировке в России составляют около 1%, а, например, по данным НП "Центр экологии ТЭК" - все 3,5-4,5%. Соответственно при текущем уровне добычи в 510 млн т в год потери составляют от 18 до 23 млн т ежегодно, в денежном выражении - от 14,2 млрд до 17,2 млрд долл.

К сожалению, известные технологии борьбы с крупномасштабными разливами нефти пока малоэффективны. Согласно данным официальной статистики, на территории России ежегодно происходит более 20 тыс. аварий, связанных с добычей нефти. Сколько их в действительности, сложно себе представить. Исходя из вышесказанного, можно прогнозировать, что в перспективе загрязнение нефтью будет только усиливаться - с ростом ее транспортировки по морю и развитием добычи на шельфах.

Откуда течет нефть?

Осложняет ситуацию также то, что понять, сколько выливается нефти, по крайне мере на суше, невозможно. Никто толком не ведет учет нефтяных разливов, а главное - учет количества вытекшей нефти. Регулирующий государственный орган - Росприроднадзор - располагает данными, предоставленными организациями и добывающими компаниями, о таких происшествиях и об устранении их последствий. Однако, по свидетельствам общественных экологических организаций, эти данные не являются объективными, поскольку показатели сильно занижены. Компании не хотят выплачивать компенсации и стремятся уменьшить цифры или же устраняют последствия разливов лишь частично, например только в районе порыва трубы, то есть исключительно в поле зрения проверяющих организаций.

К тому же официальная статистика фиксирует только те разливы, при которых выливается более 8 т нефти, а разлив до 7 т включительно считается просто инцидентом, который не нужно декларировать и о котором можно не оповещать власти.

Больше всего нефти разливается при ее транспортировке - перекачке по трубопроводам. В собственности государства находится более 70 тыс. км трубопроводов, длину остальных - межпромысловых - подсчитать крайне сложно, но можно с уверенностью сказать, что она существенно превышает "государственную" часть. Только в Западной Сибири длина межпромысловых трубопроводов превышает 100 тыс. км. И большинство аварий происходит именно на них. Наиболее распространенной причиной (около 90% случаев) является прорыв трубы, вызванный коррозией и изношенностью.

Одна из последних крупных аварий на трубопроводе произошла в октябре 2011г. на Федоровском месторождении в районе Сургута. Тогда фонтан нефти высотой более 10 м бил двое суток. Аварийным бригадам пришлось откачать более 40 куб. м разлившейся нефти. При этом в окружном управлении Росприроднадзора ущерб от этой аварии оценили в 7 млн руб.

Еще одной важной причиной, приводящей к серьезным авариям, является механическое повреждение трубы. Чаще всего это происходит из-за так называемых несанкционированных врезок, когда мошенники пытаются украсть нефть у государства или частных компаний и использовать ее для производства нефтепродуктов в кустарных условиях. Однако и здесь существует своя специфика. Большинство несанкционированных врезок приходится все же на нефтепродуктопроводы. Понятно, что воровать уже готовую качественную продукцию значительно выгоднее, чем неподготовленное сырье.

Если говорить о мировой практике, то наиболее крупные и масштабные по своим негативным последствиям разливы случаются на воде. Так, по данным британской консалтинговой фирмы TINA Consultants, которая проводила соответствующее исследование, за период с 1995 по 2005г. на каждый 1 млн т добытой или хранимой нефти приходилось 0,94% утечек, в результате которых в различные водоемы попадало 3,06 т нефти или нефтепродуктов.

В России самая крупная катастрофа на воде случилась 11 ноября 2007г., когда во время шторма в Керченском проливе в Азовском и Черном морях за один день затонули четыре судна, еще шесть сели на мель, в том числе два нефтеналивных танкера, получивших серьезные повреждения. Тогда из разломившегося танкера "Волгонефть-139" в море вылилось более 2 тыс. т мазута. Росприроднадзор оценил экологический ущерб от этой аварии в 6,5 млрд руб., причем только ущерб от гибели птицы и рыбы в Керченском проливе оценивался приблизительно в 4 млрд руб.

Самой крупной мировой катастрофой на сегодняшний день признана авария на нефтяной платформе Deepwater Horizon, произошедшая 20 апреля 2010г. в 80 км от побережья штата Луизиана в Мексиканском заливе на месторождении компании ВР. Во время взрыва и пожара на платформе погибли 11 и пострадали 17 человек. За 152 дня борьбы с последствиями аварии в Мексиканский залив вылилось около 5 млн барр. нефти, нефтяное пятно достигло 75 тыс. кв. км.

Произошедшее в Мексиканском заливе, на российский взгляд, кажется чисто американской проблемой. Однако случившееся затрагивает не только США, считает главный редактор научно-популярного и образовательного журнала "Экология и жизнь" Александр Самсонов. Если бы ситуацию не удалось взять под контроль, то масштабы последствий могли бы быть катастрофическими если не для всего мира, то по крайней мере для Атлантического океана точно.

"Слава богу, что природа сама справилась с катастрофой и произошла биоремедиация (комплекс методов очистки вод, грунтов и атмосферы с использованием метаболического потенциала биологических объектов - растений, грибов, насекомых, червей и других организмов). Тем не менее опасность все еще сохраняется, поскольку авария произошла в северных морях. А они наиболее уязвимы по сравнению с южными", - отмечает А.Самсонов. "Если упустить контроль над ситуацией в Мексиканском заливе, а она там пока неоднозначная, то пострадают биоразнообразие и климатическая устойчивость Гольфстрима. В этом случае загрязнение, попавшее в Гольфстрим, "скоростным экспрессом" отправится к берегам Европы, что приведет к дестабилизации экологической и климатической систем всех северных морей", - считает эксперт.

Бомба замедленного действия

По данным руководителя энергетической программы Greenpeace Владимира Чупрова, при попадании в почву всего лишь 1 кубометра нефти потенциально возможная площадь загрязнения поверхностного слоя грунтовых вод может составить более 5 тыс. кв. м. Но, к сожалению, систематических данных о загрязнении подземных вод немного. Имеются данные, свидетельствующие, в частности, что в подземных водах Среднеобской нефтегазоносной провинции (Западная Сибирь) в концентрациях, превышающих допустимые, обнаружены нефть и нефтепродукты, фенолы и другие поллютанты, характерные для нефтедобывающего производства.

Проведенные исследования выявили, что у жителей, вынужденных контактировать с нефтепродуктами, выброшенными в окружающую среду, наблюдается резкий рост заболеваемости. В основном это инфекционные болезни, "прилипающие" к людям из-за ослабления иммунитета, болезни органов дыхания и нервной системы.

Наиболее уязвимыми являются питьевая вода и продукты питания, загрязняемые углеводородами еще на стадии производства - прямое следствие бедственного состояния почвенно-грунтовых подземных вод в регионах нефтедобычи. Как отмечают эксперты, самый неблагоприятный район - Нижневартовский, количество случаев в нем только онкологических заболеваний в 2-3 раза выше, чем во всей остальной России!

Разливы нефти на воде приводят к гибели рыбы, а также морских животных, включая китов и дельфинов. Нефть является смертельной не только для рыб и других морских обитателей, но и для птиц, гнездящихся у воды. Известный факт: для того чтобы отмыть только одну птицу, покрытую нефтяной пленкой, требуются два человека, 45 минут времени и 1,1 тыс. л чистой воды, как подчитали в свое время экологи из Greenpeace.

Арктика: последнее белое пятно Земли

По сравнению со многими районами нашей страны, Арктика считается относительно чистым регионом. Но и здесь есть "горячие точки", в которых масштабы деградации окружающей среды достигают опасных значений, а уровни загрязнения значительно превышают допустимые нормы, отмечает руководитель энергетической программы Greenpeace В.Чупров. По его словам, в Арктической зоне РФ выявлено более сотни таких точек. Часть из них связана с деятельностью нефтегазового комплекса, в том числе Кандалакшский залив, Обская губа, Ямбургское месторождение, Уренгойское месторождение и ряд других промысловых зон.

С прискорбием надо отметить, что загрязнение нефтяными выбросами рек Арктического бассейна уже сейчас достигло высокого уровня. С речным стоком в моря Северного Ледовитого океана ежегодно выносится несколько сотен тысяч тонн нефтепродуктов. Только в Обь (Западная Сибирь) ежегодно попадает около 100 тыс. т нефти. В результате концентрация загрязняющих веществ на многих участках акватории Баренцева, Белого, Карского морей и моря Лаптевых в 2-3 раза превышает норму.

Кроме того, промышленное освоение нефтяных месторождений ведет к деформации грунтов, в том числе к термоэрозии в зонах распространения вечной мерзлоты, отмечает В.Чупров. Особенно это проявляется вдоль линейных сооружений, в том числе нефте- и газопроводов. По оценкам некоторых экспертов, при сооружении магистрального трубопровода на каждые 100 км трассы приходится 500 га поврежденных земельных угодий.

А после нас хоть потоп

Нарисованная экологами картина, мягко скажем, не вселяет оптимизма. К сожалению, обозримые перспективы еще более пессимистичны. Связано это с тем, что в России нет должной системы контроля за авариями на нефтепромыслах, исследований их последствий, современных методов борьбы с ними. Не существует и законодательства, соответствующего современным стандартам. А ведь в скором времени должны заработать проекты, связанные с континентальным шельфом северных морей, то есть ожидается выход отечественной нефтедобычи в Мировой океан. Сетования экологов по этому поводу были услышаны, и рассмотрению данной проблемы было посвящено целое заседание совета при президенте России.

После заседания совета, 20 марта 2012г., министр природных ресурсов и экологии РФ Юрий Трутнев дал поручение Росприроднадзору провести рейдовые проверочные мероприятия с участием общественности по выявлению источников загрязнения рек Арктического бассейна нефтепродуктами и нефтесодержащими веществами. Контрольно-надзорные мероприятия поручено провести в том числе в период весеннего половодья. Особое внимание в рейдовых проверках, согласно распоряжению министра, будет уделяться основным рекам бассейна Северного Ледовитого океана - Оби, Иртышу и Енисею. В ходе проверок будут обследоваться территории вокруг внутрипромысловых, межпромысловых и магистральных нефтепроводов, среди которых могут оказаться объекты, находящиеся в аварийном состоянии и создающие экологические риски.

По окончании проверки Росприроднадзор должен представить предложения по снижению негативного воздействия на водные объекты и взысканию ущерба от нефтедобычи (хранения, транспортировки и переработки нефтепродуктов) в случае выявления фактов загрязнения. По результатам контрольных мероприятий также будет выполнен анализ полученных данных, который позволит разработать комплекс мер по улучшению экологической ситуации не только в бассейнах рек, впадающих в Северный Ледовитый океан, но и Арктики в целом.

Как говорится, лиха беда начало. Безусловно, одной проверкой комплекс экологических проблем, существующий в отечественной нефтедобыче, не разрешить. Тем не менее сложа руки сидеть - смерти подобно, и то, что государственные органы взялись наконец за решение вопроса, не может не радовать.

Елена Забелло, РБК

Одна из ключевых проблем обеспечения промышленной и пожарной безопасности - установление минимальных безопасных расстояний между источниками аварий и соседними сооружениями и объектами. Требования к обоснованию минимальных безопасных расстояний, в том числе на основе моделирования и расчета последствий аварий, содержатся в ряде нормативных правовых документов.

Особенно актуальна задача определения минимальных безопасных расстояний в связи с развитием системы магистральных трубопроводов (МТ). Анализ аварийности показывает, что аварии с гибелью людей на российских МТ достаточно редки, однако в условиях их прокладки вблизи населенных пунктов, объектов производственной и транспортной инфраструктуры не исключена возможность поражения людей при аварии. Особый резонанс вызывают крупные промышленные аварии с групповой гибелью людей. Ниже представлены масштабы и особенности некоторых крупных аварий на МТ:

Под минимальным безопасным расстоянием понимается минимальное допустимое расстояние от оси линейной части магистрального трубопровода до соседних зданий, строений, сооружений, населенных пунктов, транспортных путей, устанавливаемое в целях обеспечения безопасности людей.

  • 1 июля 1959 г. Мексика, штат Веракрус, Коацакоалькос. Взрыв и пожар на нефтепроводе. Погибли 12 человек, более 100 ранены.
  • 19 июля 1960 г. США, штат Висконсин, Меррил. При проведении земляных работ произошла разгерметизация газопровода. Утечка газа с последующим взрывом стали причиной гибли 10 человек.
  • 4 марта 1965 г. США, штат Луизиана, Натчиточес. Взрыв на 32-дюймовом газопроводе компании «Теннесси». Погибли 17 человек, 9 получили ранения. Причина - разгерметизация газопровода из-за коррозионного растрескивания под напряжением.
  • 29 мая 1968 г. США, штат Джорджия, Хэпвиль. Бульдозер задел дюймовый газопровод у детского сада, в результате произошли взрыв и пожар. Семь детей и двое взрослых погибли, трое детей получили серьезные ранения.
  • 4 июня 1989 г. СССР, Уфа. Авария на магистральном продуктопроводе (ВЫ 700, Рра6 = 3,5 -г 3,8 МПа) под Уфой на перегоне между станциями Казаяк и Улу-Теляк на 1710-м км Куйбышевской железной дороги с выбросом и воспламенением паров широкой фракции легких углеводородов (ШФЛУ). Расстояние дрейфа облака 900-1350 м. В зоне взрыва оказались два пассажирских поезда. Погибли 573 человека, более 600 получили травмы различной степени тяжести. В районе взрыва образовалась зона сплошного завала леса площадью 2,5 км2. В радиусе до 15 км от места взрыва в домах населенных пунктов выбиты стекла, частично разрушены рамы и шиферные фронтоны.
  • 17 октября 1998 г. Нигерия, штат Дельта, Джесси. Произошел взрыв на трубопроводе Нигерийской национальной нефтяной корпорации, перекачивающем бензин. Причина аварии - умышленное повреждение трубопровода. Жители ближайших деревень пришли к разрушенному трубопроводу для сбора разлившегося топлива. Произошли взрыв и пожар, в результате которых погибли около 1200 человек. Пожар удалось потушить только 23 октября.
  • 10 июля 2000 г. Нигерия, штат Дельта, Джесси. Разгерметизация трубопровода с последующим взрывом. Погибли около 250 человек.
  • 16 июля 2000 г. Нигерия, штат Дельта, Варри. При разрушении трубопровода и последующем взрыве погибли 100 жителей деревни.
  • 19 августа 2000 г. США, штат Нью-Мексико, Карлсбад. Воспламенение газа при разрыве 30-дюймового газопровода привело к гибели 12 человек, находившихся в кемпинге в 180 м от места аварии. На месте разрыва газопровода образовался котлован 16 м в ширину и 24 м в длину. 15-метровый участок трубы был вырван и выброшен из котлована в виде трех осколков (наибольший - на расстояние 87м). Причина аварии - внутренняя коррозия.
  • 30 ноября 2000 г. Нигерия, штат Лагос. Утечка нефтепродукта из трубопровода с последующим воспламенением. Погибли около 60 жителей рыбацкой деревни.
  • 19 июня 2003 г. Нигерия, штат Абия. При попытке хищения нефтепродукта из трубопровода произошел взрыв. Погибли 125 жителей близлежащей деревни.
  • 30 июля 2004 г. Бельгия, Брюссель. Утечка и взрыв газа на магистральном газопроводе (МГ) (ОЫ 900) газоперерабатывающего завода Ви1а§аг в 40 км от Брюсселя. Цепь взрывов уничтожила две фабрики, оставив между заводами большой кратер. Тела погибших и обломки оборудования были разбросаны в радиусе 500 м от места катастрофы. На расстоянии до 150 м выгорели все припаркованные автомобили, растительность выгорела на расстоянии до 250 м. Действие взрывной волны ощущалось на расстоянии до 10 км от места аварии. Погибли 24 человека (на расстоянии до 200 м), более 120 получили серьезные ожоги и ранения. Большинство погибших - полицейские и пожарные, прибывшие на место утечки по тревоге.
  • 17 сентября 2004 г. Нигерия, штат Лагос. При попытке хищения нефтепродукта из трубопровода произошел взрыв. Погибли десятки людей.
  • 12 мая 2006 г. Нигерия, штат Лагос. Произошел взрыв на нефтепроводе при попытке хищения нефти. Погибли около 150 человек.
  • 26 декабря 2006 г. Нигерия, штат" Лагос. Вандальные действия привели к взрыву нефтепровода. Погибли более 500 человек.
  • 16 мая 2008 г. Нигерия, штат Лагос. Бульдозером поврежден подземный нефтепровод. В результате взрыва и последующего пожара погибли около 100 человек.
  • 19 декабря 2010 г. Мексика, Сан Мартин Тексмелукан де Лабастида. Взрыв на насосной станции Ре1го1еок Мех1сапо8 привел к разгерметизации нефтепровода с последующим истечением горящей нефти. Погибли 27 человек, 52 были
  • ранены. Взрыв вызван неудачной попыткой врезки в нефтепровод в целях хищения нефти.
  • 12 сентября 2011 г. Кения, Найроби. В промышленном районе Лунга Лунга разгерметизировался трубопровод Кенийской трубопроводной компании, перекачивающий бензин, дизельное и реактивное топливо. Часть топлива попала в реку. Люди в соседних густонаселенных трущобах Синая начали собирать вытекающее топливо, оно взорвалось, образовав гигантский огненный шар. Пожар распространился на близлежащие трущобы. Источник воспламенения - искры с горящей свалки. Около 100 человек погибли, 116 были госпитализированы с различной степенью ожогов. Тела погибших и фрагменты построек были найдены в 300 м от места взрыва.

Среди перечисленных аварий обращают на себя внимание многочисленные случаи взрывов при аварийной разгерметизации на магистральных нефте-и продуктопроводах (МН) в Мексике, Нигерии и Кении, что, очевидно, связано с теплым климатом, способствующим при утечках образованию топлив-но-воздушных смесей (ТВС) из-за повышенной температуры окружающей среды. Большое количество пострадавших обусловлено напряженными социальными условиями близпроживающего населения.

Методические подходы к установлению минимальных безопасных расстояний условно можно разделить на три направления, основанные на использовании: фактических данных о зафиксированных при авариях зонах поражения («апостериорный» подход); расчетов максимальных размеров зон поражения; количественной оценки риска (КОР) аварий.

Достоверность данных в первом случае базируется на представительности статистических данных об известных крупных авариях на МТ, во втором - на расчете и моделировании последствий аварий с наиболее протяженными зонами поражения, в третьем - на учете вероятности возникновения аварии с определенными последствиями и использовании критериев приемлемого (допустимого) риска. В любом из этих подходов могут использоваться «коэффициенты запаса», компенсирующие неполноту существующих знаний и представлений.

Рассмотрим для каких видов МТ (газо-, нефтепроводы, трубопроводы СУГ) и в каких случаях преимущественно используются обозначенные выше подходы к установлению минимальных безопасных расстояний.

Наиболее распространенным и устоявшимся способом является определение безопасных расстояний исходя из опыта происшедших аварий на аналогичных объектах. Этот подход частично (совместно с моделированием последствий) реализован в пп. 3.16, 12.3 СНиП 2.05.06-85* «Магистральные трубопроводы». Анализ происшедших достаточно многочисленных аварий на МГ показывает, что размеры зон поражения людей (разлет осколков, тепловое излучение от горения струй) лежат в диапазоне от 100 до 350 м от оси трубы и определяются в первом приближении диаметром и давлением в трубопроводе. В данном случае достаточно представительная статистика аварий не требует, как правило, применения дополнительных «коэффициентов запаса» по безопасности, и минимальные безопасные расстояния принимаются эквивалентными максимальным наблюдавшимся зонам поражения

Опыт аварии под Уфой в 1989 г. обозначил повышенную опасность выбросов сжиженных углеводородных газов (СУГ), связанную с мгновенным вскипанием перегретых жидкостей и образованием протяженных облаков тяжелых газов, способных распространяться у поверхности земли с сохранением способности к воспламенению на расстоянии в несколько километров. Следствие этой катастрофы - десятикратное увеличение нормативных значений безопасных расстояний1 от МТ СУГ до объектов с присутствием людей.

Второй способ установления минимальных безопасных расстояний для МТ - расчет зон поражения при максимальной гипотетической аварии (МГА) с рассмотрением конкретного участка трубопровода (профиль трассы, задвижки и т.д.), свойств транспортируемых углеводородов, технологических параметров перекачки, условий окружающей среды и действий по локализации и ликвидации аварии. «Коэффициент запаса» по безопасности в этом случае неявно заложен в допущениях и предположениях о возникновении и развитии аварии и определяется степенью пессимистичности при выборе рассчитываемого сценария МГА.

Данный детерминистский подход основан на расчете сценария с полным разрушением МТ и максимальной дальностью распространения поражающих факторов при аварийных выбросах опасных веществ. В табл. 1 приведены примеры рассчитанных по программному комплексу ТОКСИ+ зон смертельного поражения человека при авариях на отдельных участках МТ по данным деклараций промышленной безопасности и отчетам по КОР.

Среди основных поражающих факторов, характерных для аварий на МГ, наиболее значимым по размерам зон поражения является термическая радиация от горящих струй газа (см. табл. 1).

При расчете максимальной зоны поражения на МН и МТ СУГ принимается максимальный размер утечки для рассматриваемого участка трассы, консервативно оценивается площадь разлива нефти (нефтепродукта) и рассчитывается расстояние, на которое может дрейфовать облако их паров, сохраняя способность к воспламенению.

Таблица 1

Последствия аварии

Поражающий фактор

Зона действия поражающего фактора, м

МГОЫ600, Р=5,7МПа

Расширение газа

Барическое (Воздействие^

Механическое воздействие

Горение струи

Термическое воздействие

Пожар в котловане

МНОЫ1000, Р=6,ЗМПа

Пожар пролива

Термическое воздействие

Воспламенение облака ТВС

МТ ШФЛУ ОМ 700, Р = 5,5 МПа

Пожар пролива

Термическое воздействие

Воспламенение облака ТВС

Горение струи

Рассе­яние опасных веществ в атмосфере рассчитывается по Методическим указаниям по оценке последст­вий аварийных выбросов опасных веществ (РД-03-26-2007) при наихудших условиях рассеяния в при­земном слое атмосферы. В качестве консервативной оценки минимального безопасного расстояния при расчете дрейфа пожаровзрывоопасного облака принимается расстояние, на котором облако рас­сеивается до концентрации, равной половине ни­жнего концентрационного предела воспламенения (НКПВ), что учитывает неоднородность распреде­ления концентрации в облаке. При необходимости рассматриваются и возможность сгорания (взрыва) дрейфующего облака, и соответствующие данному процессу зоны поражения с учетом допущений.

Основанный на анализе последствий аварии подход также применим для определения безопа­сных расстояний для «типового» участка МГ, так как расстояния, установленные по расчетам терми­ческого поражения от горящих струй газа, незна­чительно отличаются от расстояний, зарегистриро­ванных при авариях, а результаты расчета по модели имеют меньший набор исходных данных и при­нятых допущений по сравнению с моделями расчета последствий аварий на МН и МТ СУГ.

Третий способ обоснования минимальных без­опасных расстояний основан на использовании КОР, позволяющей оценить возможность возник­новения аварии, в том числе МГА.

На рассматриваемом участке трассы МТ рассчи­тываются варианты выброса для всего диапазона размеров дефектных отверстий (от свища до гильотинного разрыва трубопровода) и все возможные исходы аварий на основе дерева событий.

При моделировании распределения в пространстве зон действия поражающих факторов учитываются вероятность возникновения аварии и условная вероятность развития аварии по тому или иному сценарию. Критерии поражения человека определяются по пробит-функции.

В качестве безопасного принимается расстояние, на котором рассчитанное значение потенциального риска гибели человека не превышает уровня, заданного в качестве допустимого.

Согласно п. 4.2.6 Методических указаний по проведению анализа риска опасных производственных объектов (РД 03-418-01) критерии приемлемости риска аварии определяются на основе нормативных правовых документов (например, для МТ горючих веществ целесообразно учитывать критерии) или обосновываются в проектной документации, исходя из опыта эксплуатации аналогичных объектов.

Практика использования КОР по модели, основанной на, при декларировании и разработке специальных технических условий показала, что размер зон поражения и тяжесть последствий при авариях на МТ, определяющие минимальные безопасные расстояния, связаны с технологическими параметрами трубопровода (диаметр, давление), характеристиками перекачиваемого продукта, в том числе пожаро-, взрывоопасными или токсическими свойствами, агрегатным состоянием в трубопроводе (газ, жидкость, в том числе сжиженный газ); особенностями окружающей местности (рельеф); метеоусловиями (температура воздуха, скорость и направление ветра, стратификация (устойчивость) атмосферы); уязвимостью объектов воздействия (наличие селитебных зон, производственных объектов, транспортной инфраструктуры); эффективностью системы обнаружения и ликвидации утечки, действий персонала.

Отметим, что значимость указанных факторов зависит от вида МТ (МГ, МН или МТ СУГ).

Например, основными факторами, определяющими сценарии развития аварий на МГ и зоны поражения людей являются: несущая способность грунта, давление в месте разрыва, расположение места разрыва относительно компрессорных станций и линейных запорных кранов, а метеорологические факторы (скорость и направление ветра, класс стабильности атмосферы, влажность воздуха) влияют незначительно.

Напротив, для МТ СУГ, наибольшая аварийная опасность которых определяется возможностью дрейфа и воспламенения облаков ТВ С, размеры зон поражения существенно зависят от метеорологических факторов в момент аварии.

Также отметим слабое влияние расстояний между узлами запорной арматуры на рассчитанные максимальные зоны поражения при авариях

Расчеты минимальных безопасных расстояний с использованием методологии количественного анализа риска аварий показывают, что для современных продуктопроводов СУГ размеры аварийно-опасных зон для пребывания людей не превышают 1,4 км, тогда как детерминистские расчеты дают оценку размеров зон смертельного поражения до 2,4 км. Соотношения размеров зон, рассчитанных по разным подходам, зависят от вероятности возникновения аварии, рассматриваемой в качестве МГА.

Таким образом, из анализа нормативной базы, аварий и результатов расчета последствий аварийных выбросов опасных веществ и оценки риска аварий на МТ можно сделать следующие выводы:

1. Установлено влияние на размеры зон поражения и безопасных расстояний технологических параметров трубопровода, характеристик перекачиваемого продукта, особенностей окружающей местности, метеоусловий и иных факторов. Значимость указанных факторов зависит от вида МТ (МГ, МН или МТ СУГ), поэтому для решения практических задач необходимы анализ опасности конкретных участков МТ и обоснованный выбор критериев безопасности.

2. Применение методологии количественной оценки риска позволяет обосновывать минимальные безопасные расстояния, размер которых может быть существенно меньше нормативных или определенных зон поражения при МГА.

3. Представленные результаты предлагается использовать при разработке нормативных документов по безопасности объектов трубопроводного транспорта, в том числе законопроекта - Технического регламента о безопасности магистральных трубопроводов для транспортировки жидких и газообразных углеводородов и Правил безопасности для магистральных трубопроводов

Таблица 3

Параметры трубопро­вода

Район проклад­ки трубопровода

Расстояние по СНиП 2.05.06-85* (до населенных пунктов), м

Зона действия поражающих факторов при МГА, м

Расстояние, м, на кото­ром достигается потен­циальный риск гибели человека, год- 1

ОМ 250, Р а6 = 1 ,8 МПа

Самарская обл.

ОМ 500, /> ра6 = 3,3 МПа

Ямало-Ненец­кий автономный округ

Не определено (для продуктопроводов ОЫ 400 - 3000-5000 м)

ОМ 700, Р раб = 5,5МПа

Ханты-Мансий­ский автоном­ный округ

Ликвидация аварий н а газопроводе начинается , прежде всего, с отключения его поврежденного участка и перекрытия газопровода запорными устройствами (замками, задвижками), расположенными на нем и у газгольдерных станций. При срезах или разрывах труб газопровода низкого давления концы их заделывают деревянными пробками, обмазывают глиной или обматывают листовой резиной, трещины на трубах заваривают или заделывают, устанавливая муфты.
Временно трещины можно заделывать, обматывая трубы плотным бинтом и обмазывая глиной, или обматывая листовой резиной с накладкой хомутов.При воспламенении газа его давление в газопроводе снижают, после чего пламя гасят песком, землей, глиной, набрасывают на газопровод мокрый брезент, а затем засыпают землей и поливают водой.

Для поиска утечки газа из подземных трубопроводов используются служебные собаки. На загазованной местности во избежание взрыва газа запрещается зажигать спички, курить, пользоваться инструментом, вызывающим искрообразование, использовать машины и механизмы с работающими двигателями. Работы на газопроводах, находящихся под давлением, а также расположенных в помещениях, производят только инструментом из цветного металла. Стальной инструмент, чтобы исключить искрообразование, должен быть смазан минерализованной смазкой. Для освещения рабочего места на загазованных участках разрешается применять только аккумуляторные фонари во взрывобезопасном исполнении.

Значительную сложность представляет собой тушение пожара горючих газов , истекающих под давлением. Как правило, подавление горения в этих случаях достигается перекрытием газового потока. Нередко быстро перекрыть поток газа не удается и приходится тушить горящий факел. При пожарах природного газа, истекающего из труб диаметром до 150 мм с расходом 75 м 3 /с пламя имеет высоту до 80 м, диаметр - до 20 м, площадь - до 2000 м 2 . Наиболее эффективно тушение таких пожаров с помощью порошковых огнегасительных составов на основе бикарбонатов калия и натрия. Так, тушение пожара при вертикальном истечении газа с расходом до 75 м 3 /с достигается при подаче состава на основе бикарбоната калия из двух стволов с общим расходом порошка около 10 кг/с. Труднее всего поддается тушению горящий газ, истекающий вниз или в горизонтальном направлении. Удельный расход порошков при тушении такого пожара повышается на 30-50%. Воздействие газожидкостных средств на горящий факел, как правило, не позволяет потушить пожар. Гашение пламени в таком случае достигается лишь при снижении давления горючего газа, поступающего в очаг пожара. Одним из наиболее эффективных способов тушения такого пожара является введение газовых средств тушения в магистраль , по которой поступает горючий газ. В газопроводе просверливают отверстие и через него подают огнегасительный газ (двуокись углерода, инертные газы), расход которого должен в 2-5 раз превышать расход горючего газа

.

Одновременно с тушением пожара на газопроводе необходимо осуществлять его охлаждение . Во избежание разрушений, деформаций и разрывов нельзя допускать попадание воды на оборудование и газопровод, которые по условиям технологического процесса работают при высоких температурах. В таких случаях их защита и охлаждение согласовываются с инженерно-техническим персоналом объекта.

Особой осторожности требуют спасательные работы по ликвидации последствий аварий на продуктоводах, расположенных в замкнутых помещениях , резервуарах, шахтах, колодцах. Испаряющиеся СДЯВ могут достигнуть концентрации, опасной для жизни спасателей. Поэтому работать в таких условиях необходимо только с использованием изолирующего противогаза, спецодежды и спецобуви, подбираемых в зависимости от степени агрессивности транспортируемого продукта и его поражающих факторов. Испаряющийся продукт, соединяясь с воздухом, способен создать взрывоопасную смесь, поэтому, выполняя работы в замкнутых помещениях, нельзя пользоваться открытым огнем и инструментом, способным вызвать искрообразование. Особенностью тушения пожаров в замкнутых и подземных производственных помещениях является то, что пламя может повредить находящиеся в них электрооборудование и электропроводку. Если электрооборудование под напряжением и нет возможности его отключить, то тушение пожара следует производить не водой, а огнетушащими порошками и воздушно-механической пеной. В колодцах пожары эффективно тушатся при заполнении их инертными или другими огнетушащими газами.



Поделиться