Что является основной причиной отказа. Отказ в технике

Виды отказов объектов

Основные понятия теории надежности

Теория надежности изучает процессы возникновения отказов технических объектов и способы борьбы с отказами. Техническими объектами могут быть изделия, системы и их элементы, в частности сооружения, установки, устройства, машины, аппараты, приборы и их части, агрегаты и отдельные детали.

В последние годы область применения теории надежности расширяется, ее методы распространяются также на формализованные алгоритмы целенаправленного применения технических объектов (программы для ПК, планы систем работ) и на действия пользователя ПК как звена системы управления.

Часто в целях общности речь будет идти о системах и единичных рабочих частях систем - элементах. Система предназначена для самостоятельного выполнения определенной практической задачи. Термин элемент применяется для составной части системы. Обычно элемент не предназначается для самостоятельного практического применения вне связи с другими элементами. Примеры элементов: процессор ПК. В принципе систему можно разбить на любое число элементов, необходимое для исследования (расчета) надежности. Однако деление системы на элементы нельзя считать произвольным. Каждый элемент должен обладать способностью выполнять в системе определенные функции. Иногда ставится условие, чтобы элемент был такой частью системы, которая может быть восстановлена только путем полной замены.

Различают два основных состояния объектов: работоспособное и неработоспособное . Состояние объекта, при котором он способен выполнять заданные функции, сохраняя значения заданных параметров в пределах, установленных нормативно-технической документацией, называют работоспособным.

Состояние объекта, при котором значение хотя бы одного заданного параметра, характеризующего способность выполнять заданные функции, не соответствует требованиям, установленным нормативно-технической документацией, называют неработоспособным.

Отказ событие, заключающееся в нарушении работоспособности, т. е. в переходе в неработоспособное состояние.

Обычно неработоспособность – состояние, при котором нельзя начинать применение объекта (например, выпускать самолет в воздух). Однако возможны задачи, в которых неработоспособность – состояние, при котором объект не может продолжать выполнять свое назначение. Возможны и другие признаки неработоспособного состояния объекта (например, объект требует среднего или капитального ремонта, производительность объекта стала ниже критической и т. д.). Поэтому при оценке надежности необходимо заранее оговорить, какое состояние объекта считается неработоспособным.

Когда объект предназначен для выполнения нескольких функций, часто находят значения показателей надежности по каждой из функций.

Возможен и другой путь: оценивают свойство объекта выполнять все требуемые от него функции. Отказом считается невыполнение хотя бы одной из функций независимо от того, возникла ли случайная ситуация, в которой требуется выполнение этой функции, или нет.

Опишем еще одну постановку задачи оценки надежности, которая, к сожалению, довольно часто встречается в литературе. В этой задаче при оценке надежности учитывают случайную потребность в выполнении объектом отдельных функций.

Пусть состоящая из п элементов система предназначена для выполнения нескольких k функций. Функционирование такой системы может быть представлено как процесс изменения вектора состояний Z (t ) в пространстве состояний [x (t), y (t )], где x i – состояние i -го элемента системы, (i =1, 2, …, n ; y j – переменная, характеризующая потребность в выполнении j -й функции, j =l, 2,..., k.

Обычно предполагается, что отдельные координаты вектора Z (t ) являются независимыми случайными функциями времени (наработки), принимающими одно из двух возможных значений:

Искомые показатели «надежности» находят как числовые характеристики некоторого функционала от случайного процесса Z (t ). Понятие функционала является обобщением понятия функции. Функционал Ф определен на процессе Z (t ), если каждой траектории z (t ) ставится в соответствие некоторое число T=Ф[z (t )]. В рассматриваемом случае найденные показатели «надежности» характеризуют не техническую систему, а ситуацию по удовлетворению случайного спроса. Поэтому слово «надежность» приведено в кавычках.

Приведенные выше соображения можно пояснить таким простейшим примером. Пусть необходимо везти груз ночью через лес, в котором могут быть грабители. Человек, охраняющий груз, вооружен пистолетом. Очевидно, что значение показателя надежности этого пистолета не должно зависеть от случайной потребности в нем, т. е. от того, нападут грабители или нет.

Виды отказов объектов

Отказы можно классифицировать по различным признакам.

1. По характеру устранения можно различать окончательные (устойчивые) и перемежающиеся (то возникающие, то исчезающие) отказы. Окончательные отказы являются следствием необратимых процессов в деталях и материалах. При окончательных отказах для восстановления работоспособности объекта необходимо производить его ремонт (регулировку). Пример окончательного отказа – отказ компьютера из-за выхода из строя оперативной памяти.

Перемежающиеся отказы в большинстве случаев являются следствием обратимых случайных изменений режимов работы и параметров объектов. При возвращении режима работы в допустимые пределы объект сам, обычно без вмешательства человека, возвращается в работоспособное состояние. Например, совершенно исправный элемент компьютера может перестать реагировать на управляющий сигнал из-за случайного резкого уменьшения напряжения питания. Когда напряжение питания опять станет равным номинальному значению, этот элемент будет продолжать исправно работать (конечно, если в результате колебаний напряжения не произошел окончательный отказ).

Обычно последствия возникновения перемежающихся отказов отличаются от последствий появления окончательных отказов. Например, если из-за низкого напряжения питания нет изображения в телевизоре, то это меньшая неприятность, чем окончательный отказ кинескопа. В ряде случаев перемежающиеся отказы дают более тяжелые последствия, чем окончательные. Перемежающиеся отказы особенно неприятны в информационных системах, где они известны под названием сбоев. Появление сбоя трудно обнаружить, так как после его исчезновения объект остается работоспособным.

Таким образом, перемежающиеся отказы существенно отличаются от окончательных причиной возникновения, внешними проявлениями и последствиями проявления. Поэтому иногда целесообразно различать два показателя надежности: для окончательных отказов и для перемежающихся отказов.



2. По связи с другими отказами можно различать отказы первичные , т. е. возникшие по любым причинам, кроме действия другого отказа, и вторичные , т. е. возникшие в результате другого отказа. Например, из-за пробоя конденсатора может сгореть сопротивление. При вычислении показателей надежности обычно учитываются лишь первичные отказы.

Отказы являются случайными событиями, которые могут быть независимыми или зависимыми. Отказы являются зависимыми, если при появлении одного из них изменяется вероятность появления второго отказа. Для независимых отказов вероятность появления одного из них не зависит от того, произошли другие отказы или нет.

3. По легкости обнаружения отказы могут быть очевидными (явными или скрытыми (неявными).

4. Для каждого определенного типа объектов отказы можно различать по внешним проявлениям. Например, различные отказы конденсаторов можно разбить на две группы: типа обрыв и типа замыкание.

5. По характеру возникновения можно различать отказы внезапные , состоящие в резком, практически мгновенном изменении характеристик объектов, и отказы постепенные , происходящие за счет медленного, постепенного ухудшения качества объектов.

Внезапные отказы обычно проявляются в виде механических повреждений элементов (поломки, трещины, обрывы, пробои изоляции и т. п.), из-за чего эти отказы часто называют грубыми. Внезапные отказы получили свое название из-за того, что обычно отсутствуют видимые признаки их приближения, т. е. перед отказом обычно не удается обнаружить количественные изменения характеристик объекта.

Постепенные отказы (параметрические, плавные) связаны с износом деталей, старением материалов и регулированием устройств. Параметры объекта могут достигать критических значений, при которых его состояние считается неудовлетворительным, т.е. происходит отказ.

Внезапный отказ объекта также является следствием накопления необратимых изменений материалов. Иначе говоря, возникновение внезапного отказа также является следствием случайного процесса изменения какого-то параметра объекта. Внезапным отказ кажется лишь потому, что не контролируется изменяющийся параметр, при критическом значении которого наступает отказ объекта, обычно связанный с его механическим повреждением.

Таким образом, возникновению всякого отказа предшествует накопление тех или иных изменений внутри объекта (при этом, конечно, не рассматриваются отказы, происшедшие из-за небрежности или неумения работников).

Для объектов разного назначения и устройства применяются различные показатели надежности. В настоящее время можно выделить четыре группы объектов, различающиеся показателями и методами оценки надежности:

1) неремонтируемые объекты, применяемые да первого отказа;

2) ремонтируемые объекты, восстановление которых в процессе применения невозможно (невосстанавливаемые объекты);

3) ремонтируемые восстанавливаемые в процессе применения объекты, для которых недопустимы перерывы в работе;

4) ремонтируемые восстанавливаемые в процессе применения объекты, для которых допустимы кратковременные перерывы в работе.

Классификация объектов по показателям и методам оценки надежности приведена на рис.1, где прямоугольниками выделены перечисленные выше группы объектов.

Рис. 1. Группы объектов, различающиеся показателями надежности.

Тема 12. Обеспечение надежности ЭВА.

Понятие надежности. Один из основных параметров ЭВМ - надежность - зависит как от надежности используемой элементной базы, так и от принятых схемотехнических и конструкторских решений. Учитывая значимость современной ВТ в человеческой деятельности, требования к ее надежности постоянно повышают. Это связано с тем, что от правильной работы ЭВМ зависят ход выполнения технологического процесса, достоверность получения результатов расчетов, надежность системы жизнеобеспечения в медицине, космического аппарата и т.д. Поэтому вопросам повышения надежности ЭВМ на всех этапах ее проектирования и производства уделяется самое большое внимание.

Под надежностью понимают свойство изделия выполнять заданные функции, сохраняя свои эксплуатационные показатели в заданных пределах в течение требуемого промежутка времени или требуемой наработки при соблюдении режимов эксплуатации, правил технического обслуживания, хранения и транспортировки. Надежность - это сложное комплексное понятие, с помощью которого оценивают такие важнейшие характеристики изделий, как работоспособность, долговечность, безотказность, ремонтопригодность, восстанавливаемость и др.

В любой момент времени ЭВМ может находиться в исправном или неисправном состоянии. Если ЭВМ в данный момент времени удовлетворяет всем требованиям, установленным как в отношении основных параметров, характеризующих нормальное выполнение вычислительных процессов (точность, быстродействие и др.), так и в отношении второстепенных параметров, характеризующих внешний вид и удобство эксплуатации, то такое состояние называют исправным состоянием . В соответствии с этим определением неисправное состояние - состояние ЭВМ, при котором она в данный момент времени не удовлетворяет хотя бы одному из этих требований, установленных в отношении как основных, так и второстепенных параметров. Не каждая неисправность приводит к невыполнению ЭВМ заданных функций . Например, образование вмятин или ржавчины на корпусе машины, выход из строя лампочек подсветки не могут препятствовать эксплуатации ЭВМ.

Работоспособность - состояние изделия, при котором оно способно выполнять заданные функции с параметрами, установленными требованиями технической документации .

Отказ - событие, состоящее в полной или частичной утрате работоспособности системы. Так как не всякая неисправность приводит к отказу, то различают неисправности основные и второстепенные.

Только основные неисправности приводят к отказу. Второстепенные неисправности называют дефектами . По характеру изменения параметров до момента возникновения отказы делят на внезапные и постепенные .


Внезапные (катастрофические) отказы возникают в результате мгновенного изменения одного или нескольких параметров элементов, из которых построена ЭВМ (обрыв или короткое замыкание). Устранение внезапного отказа производят заменой отказавшего элемента (блока, устройства) исправным или его ремонтом.

Постепенные (параметрические) отказы возникают в результате постепенного изменения параметров элементов до тех пор, пока значение одного из параметров не выйдет за некоторые пределы, определяющие нормальную работу элементов - (старение элементов, воздействие окружающей среды, колебания температуры, влажности, давления, уровня радиации и т. п.), механические воздействия (вибрации, удары, перегрузки). Устранение постепенного отказа связано либо с заменой, ремонтом, регулировкой параметров отказавшего элемента, либо с компенсацией за счет изменения параметров других элементов.

По характеру устранения отказы делят на устойчивые и самоустраняющиеся . Для устранения устойчивых отказов оператор, обслуживающий ЭВМ, должен отрегулировать или заменить отказавший элемент. Самоустраняющиеся отказы исчезают без вмешательства оператора и проявляются в форме сбоя или перемежающего отказа . Сбой - однократно возникающий самоустраняющийся отказ. Если несколько сбоев следуют друг за другом, то имеет место перемежающийся отказ . Отказ типа сбоя особенно характерен для ЭВМ.

Появление сбоев обусловливается внешними и внутренними факторами. К внешним факторам относятся колебания напряжения питания, вибрации, температурные колебания. Специальными мерами (стабилизации питания , амортизация , термостатирование и др.) влияние этих факторов может быть значительно ослаблено. К внутренним факторам относятся флуктуационные колебания параметров элементов, несинхронность работы отдельных устройств, внутренние шумы и наводки. Если в ЭВМ возникает сразу несколько отказов, то по их взаимной связи различают независимые отказы (возникновение их не связано с предшествующими отказами) и зависимые (появление их вызвано отказом в предыдущий момент времени).

По внешним проявлениям отказы делят на явные и неявные. Явные отказы обнаруживаются при внешнем осмотре, а неявные отказы - специальными методами контроля.

Классификация отказов

Отказы классифицируют по следующим категориям: по харак-теру возникновения и возможности прогнозирования (постепен-ные, внезапные); по причине возникновения; по связи с отказа-ми других элементов; по последствиям; по методам устранения; по частоте возникновения (наработке); по трудоемкости устране-ния; по влиянию на потери рабочего времени.

По характеру (закономерности) возникновения и возможности прогнозирования различают

постепенные (монотонное измене-ние показателя технического состояния)

внезапные (скачко-образное изменение показателя технического состояния) отка-зы.

Постепенные отказы возникают в результате плавного изме-нения показателей технического состояния объекта, чаще всего вследствие изнашивания. Для постепенных отказов характерен последовательный переход изделия из начального исправного со-стояния в состояние отказа через ряд промежуточных состоя-ний.

Он характеризуется постепенным изменением одного или нескольких заданных параметров машины. Например, постепенное падение мощности двигателя из-за износа поршне-вых колец и гильз цилиндра. То же относится к уменьшению ве-личины прогиба рессоры из-за старения металла ее листов и по-тери ими упругости.

Внезапный отказ характеризуется скачкообразным изменени-ем одного или нескольких заданных параметров, определяющих работоспособность машины, вследствие превышения нагрузок, а также некачественного состояния элементов автомобиля. К таким отказам относят поломки и разрывы конструкционных (например, резиновых) материалов, поломки металлических деталей.

По причине возникновения различают отказы:

конструкционные, возникающие вследствие несовершенства конструкции;

производ-ственные — вследствие нарушения или несовершенства техноло-гического процесса изготовления или ремонта изделия; эксплуа-тационные , вызванные нарушением действующих правил (напри-мер, перегрузкой автомобиля, несвоевременным проведением технического обслуживания и т.п.).

По связи с отказами других элементов различают зависимые и независимые отказы.

Зависимым называется отказ, обусловленный отказом или неисправностью других элементов изделия.

Независи-мый отказ такой обусловленности не имеет.

Перемежающийся отказ, отличается тем, что многократно воз-никает и самоустраняется. Такой отказ, например, может возник-нуть при ослаблении крепления электрического контакта.

Последствиями отказов могут быть изъятие объекта из эксплу-атации или продолжение ее после устранения отказа.

Методами устранения отказов могут быть замена элементов или восстановление требуемой взаимосвязи между ними.

По частоте возникновения (наработке) для современных авто-мобилей различают отказы

с малой наработкой (3...4 тыс. км в зависимости от типа, марки и модели автомобиля)

средней (до 16 тыс. км)

большой (свыше 16 тыс. км)

Следует иметь в виду, что наработки между отказами существенно сокращаются при уве-личении пробега автомобиля с начала эксплуатации.

По трудоемкости устранения отказы можно разделить на требу-ющие

малую (до 2 чел.-ч)

среднюю (2 ...4 чел.-ч)

большую (свыше 4 чел.-ч) трудоемкость восстановления автомобиля.

По влиянию на потери рабочего времени отказы подразделяют на устраняемые без потери рабочего времени, т.е. при ТО или в нерабочее (межсменное) время, и отказы, устраняемые с поте-рей рабочего времени.

При организации ТО и ремонта и определении потребности в рабочей силе и средствах обслуживания важно знать распределение неисправностей по агрегатам, механизмам и узлам автомобиля. Для организации снабжения и определения соответствующих норм не-обходимо также знать и характер отказов каждой детали, их причи-ны, характер повреждения и возможность восстановления детали или изделия. В связи с этим различают восстанавливаемые и невос- станавливаемые, ремонтируемые и неремонтируемые изделия.

Отказы элементов систем являются основными предметами исследования при анализе причинных связей. Как показано во внутреннем кольце (рис. 4.1.2), расположенном вокруг «отказа элементов», отказы могут возникать в результате:

1) первичных отказов;

2) вторичных отказов;

3) ошибочных команд (инициированные отказы).

Отказы всех этих категорий могут иметь различные причины, приведенные в наружном кольце. Когда точный вид отказов определен и данные по ним получены, а конечное событие является критическим, то они рассматриваются как исходные отказы .

Первичный отказ элемента определяют как нерабочее состояние этого элемента, причиной которого является он сам, и необходимо выполнить ремонтные работы для возвращения элемента в рабочее состояние. Первичные отказы происходят при входных воздействиях, значение которых находится в пределах, лежащих в расчетном диапазоне, а отказы объясняются естественным старением элементов. Разрыв резервуара вследствие старения (усталости) материала служит примером первичного отказа.

Вторичный отказ - такой же, как первичный, за исключением того, что сам элемент не является причиной отказа. Вторичные отказы объясняются воздействием предыдущих или текущих избыточных напряжений на элементы.

Амплитуда, частота, продолжительность действия этих напряжений могут выходить за пределы допусков или иметь обратную полярность и вызываются различными источниками энергии: термической, механической, электрической, химической, магнитной, радиоактивной и т.п. Эти напряжения вызываются соседними элементами или окружающей средой, например - метеорологическими (ливень, ветровая нагрузка), геологическими условиями (оползни, просадка грунтов), а также воздействием со стороны других технических систем.

Примером вторичных отказов служит «срабатывание предохранителя от повышенного электрического тока», «повреждение емкостей для хранения при землетрясении». Следует отметить, что устранение источников повышенных напряжений не гарантирует возвращение элемента в рабочее состояние, так как предыдущая перегрузка могла вызвать необратимое повреждение в элементе, требующее в этом случае ремонта.

Инициированные отказы (ошибочные команды). Люди, например операторы и обслуживающий технический персонал, также являются возможными источниками вторичных отказов, если их действия приводят к выходу элементов из строя. Ошибочные команды представляются в виде элемента, находящегося в нерабочем состоянии из-за неправильного сигнала управления или помех (при этом лишь иногда требуется ремонт для возвращения данного элемента в рабочее состояние). Самопроизвольные сигналы управления или помехи часто не оставляют последствий (повреждений), и в нормальных последующих режимах элементы работают в соответствии с заданными требованиями. Типичными примерами ошибочных команд являются: «напряжение приложено самопроизвольно к обмотке реле», «переключатель случайно не разомкнулся из-за помех», «помехи на входе контрольного прибора в системе безопасности вызвали ложный сигнал на остановку», «оператор не нажал на аварийную кнопку» (ошибочная команда от аварийной кнопки).

Множественный отказ (отказы общего характера) есть событие, при котором несколько элементов выходят из строя по одной и той же причине. К числу таких причин могут быть отнесены следующие:

Конструкторские недоработки оборудования (дефекты, не выявленные на стадии проектирования и приводящие к отказам вследствие взаимной зависимости между электрическими и механическими подсистемами или элементами избыточной системы);

Ошибки эксплуатации и технического обслуживания (неправильная регулировка или калибровка, небрежность оператора, неправильное обращение и т. п.);

Воздействие окружающей среды (влага, пыль, грязь, температура, вибрация, а также экстремальные режимы нормальной эксплуатации);

Внешние катастрофические воздействия (естественные внешние явления, такие как наводнение, землетрясение, пожар, ураган);

Общий изготовитель (резервируемое оборудование или его компоненты, поставляемые одним и тем же изготовителем, могут иметь общие конструктивные или производственные дефекты. Например, производственные дефекты могут быть вызваны неправильным выбором материала, ошибками в системах монтажа, некачественной пайкой и т. п.);

Общий внешний источник питания (общий источник питания для основного и резервного оборудования, резервируемых подсистем и элементов);

Неправильное функционирование (неверно выбранный комплекс измерительных приборов или неудовлетворительно спланированные меры защиты).

Известен целый ряд примеров множественных отказов: так, некоторые параллельно соединенные пружинные реле выходили из строя одновременно и их отказы были вызваны общей причиной; вследствие неправильного расцепления муфт при техническом обслуживании два клапана оказались установлены в неправильное положение; из-за разрушения паропровода имели место сразу несколько отказов коммутационного щита. В некоторых случаях общая причина вызывает не полный отказ резервированной системы (одновременный отказ нескольких узлов, т.е. предельный случай), а менее серьезное общее понижение надежности, что приводит к повышению вероятности совместного отказа узлов систем. Такое явление наблюдается в случае исключительно неблагоприятных окружающих условий, когда ухудшение характеристик приводит к отказу резервного узла. Наличие общих неблагоприятных внешних условий приводит к тому, что отказ второго узла зависит от отказа первого и спарен с ним.

Для каждой общей причины необходимо определить все вызываемые ею исходные события. При этом определяют сферу действия каждой общей причины, а также место расположения элементов и время происшествия.

Некоторые общие причины имеют лишь ограниченную сферу действия. Например, утечка жидкости может ограничиваться одним помещением, и электрические установки, их элементы в других помещениях не будут повреждены вследствие утечек, если только эти помещения не сообщаются друг с другом.

Отказ считают по сравнению с другим более критичным, если его предпочтительнее рассматривать в первую очередь при разработке вопросов надежности и безопасности. При сравнительной оценке критичности отказов учитывают последствия отказа, вероятность возникновения, возможность обнаружения, локализации и т. д.

Указанные выше свойства технических объектов и промышленная безопасность – взаимосвязаны. Так, при неудовлетворительной надежности объекта вряд ли следует ожидать хороших показателей его безопасности.

В то же время перечисленные свойства имеют свои самостоятельные функции. Если при анализе надежности изучается способность объекта выполнять заданные функции (при определенных условиях эксплуатации) в установленных пределах, то при оценке промышленной безопасности выявляют причинно-следственные связи возникновения и развития аварий и других нарушений с всесторонним анализом последствий этих нарушений.

Одним из основных понятий теории надежности является понятие отказа (изделия, объекта, элемента, системы).Как уже отмечалось выше, отказ - это потеря способности изделия выполнить требуемую функцию.

В соответствии с ГОСТ Р 53480-2009 даны определения видов отказов (п.1.1).

Основными причинами возникновения отказов являются:

Конструктивные дефекты;

Технологические дефекты;

Эксплуатационные дефекты;

Постепенное старение (износ).

Отказы вследствие конструктивных дефектов возникают как следствие несовершенства конструкции из-за «промахов» при конструировании. В этом случае наиболее распространенными являются недоучет «пиковых» нагрузок, применение материалов с низкими потребительскими свойства­ми, схемные «промахи» и др. Отказы этой группы сказываются на всех экземплярах изделия, объекта, системы.

Отказы из-за технологических дефектов возникают как следствие нару­шения принятой технологии изготовления изделий (например, выход отде­льных характеристик за установленные пределы). Отказы этой группы ха­рактерны для отдельных партий изделий, при изготовлении которых наблюдались нарушения технологии изготовления.

Отказы из-за эксплуатационных дефектов возникают по причине несо­ответствия требуемых условий эксплуатации, правил обслуживания дейст­вительным. Отказы этой группы характерны для отдельных экземпляров из­делий.

Отказы из-за постепенного старения (износа) вследствие накопления необратимых изменений в материалах, приводящих к нарушению прочнос­ти (механической, электрической), взаимодействия частей объекта.

По типу отказы подразделяются на:

- отказы функционирования (выполнение основных функций изделием прекращается, например, поломка зубьев шестерни);

- отказы параметрические (некоторые параметры изделия изменяются в недопустимых пределах, например, потеря точности станка).

По своей природе отказы могут быть:

- случайные, обусловленные непредусмотренными перегрузками, дефектами материала, ошибками персонала или сбоями системы управления и т. п.;

- систематические , обусловленные закономерными и неизбежными явлениями, вызывающими постепенное накопление повреждений: усталость, износ, старение, коррозия и т. п.

Отказы элементов систем могут возникать в результате (рис. 1.1):

1) первичных отказов;

2) вторичных отказов;

3) ошибочных команд (инициированные отказы).

Рис. 1.2Классификация отказов

Отказы всех этих категорий могут иметь различные причины, приведенные в наружном кольце. Когда точный вид отказов определен и данные по ним получены, а конечное событие является критическим, то они рассматриваются как исходные отказы.

Первичный отказ элемента определяют как нерабочее состояние этого элемента, причиной которого является он сам, и необходимо выполнить ремонтные работы для возвращения элемента в рабочее состояние. Первичные отказы происходят при входных воздействиях, значение которых находится в пределах, лежащих в расчетном диапазоне, а отказы объясняются естественным старением элементов. Разрыв резервуара вследствие старения (усталости) материала служит примером первичного отказа.

Вторичный отказ - такой же, как первичный, за исключением того, что сам элемент не является причиной отказа. Вторичные отказы объясняются воздействием предыдущих или текущих избыточных напряжений на элементы. Амплитуда, частота, продолжительность действия этих напряжений могут выходить за пределы допусков или иметь обратную полярность и вызываются различными источниками энергии: термической, механической, электрической, химической, магнитной, радиоактивной и т.п. Эти напряжения вызываются соседними элементами или окружающей средой, например - метеорологическими (ливень, ветровая нагрузка), геологическими условиями (оползни, просадка грунтов), а также воздействием со стороны других технических систем.

Примером вторичных отказов служит «срабатывание предохранителя от повышенного электрического тока», «повреждение емкостей для хранения при землетрясении». Следует отметить, что устранение источников повышенных напряжений не гарантирует возвращение элемента в рабочее состояние, так как предыдущая перегрузка могла вызвать необратимое повреждение в элементе, требующее в этом случае ремонта.

Инициированные отказы (ошибочные команды). Люди, например, операторы и обслуживающий технический персонал, также являются возможными источниками вторичных отказов, если их действия приводят к выходу элементов из строя. Ошибочные команды представляются в виде элемента, находящегося в нерабочем состоянии из-за неправильного сигнала управления или помех (при этом лишь иногда требуется ремонт для возвращения данного элемента в рабочее состояние). Самопроизвольные сигналы управления или помехи часто не оставляют последствий (повреждений), и в нормальных последующих режимах элементы работают в соответствии с заданными требованиями. Типичными примерами ошибочных команд являются: «переключатель случайно не разомкнулся из-за помех», «помехи на входе контрольного прибора в системе безопасности вызвали ложный сигнал на остановку», «оператор не нажал на аварийную кнопку» (ошибочная команда от аварийной кнопки).

Множественный отказ (отказы общего характера) есть событие, при котором несколько элементов выходят из строя по одной и той же причине. К числу таких причин могут быть отнесены следующие:

Конструкторские недоработки оборудования (дефекты, не выявленные на стадии проектирования и приводящие к отказам вследствие взаим­ной зависимости между электрическими и механическими подсистема­ми или элементами избыточной системы);

Ошибки эксплуатации и технического обслуживания (неправильная ре­гулировка или калибровка, небрежность оператора, неправильное об­ращение и т. п.);

Воздействие окружающей среды (влага, пыль, грязь, температура, виб­рация, а также экстремальные режимы нормальной эксплуатации);

Внешние катастрофические воздействия (естественные внешние явле­ния, такие как наводнение, землетрясение, пожар, ураган);

Общий изготовитель (резервируемое оборудование или его компонен­ты, поставляемые одним и тем же изготовителем, могут иметь общие конструктивные или производственные дефекты. Например, производ­ственные дефекты могут быть вызваны неправильным выбором мате­риала, ошибками в системах монтажа, некачественной пайкой и т. п.);

Общий внешний источник питания (общий источник питания для основного и резервного оборудования, резервируемых подсистем и элементов);

Неправильное функционирование (неверно выбранный комплекс из­мерительных приборов или неудовлетворительно спланированные меры защиты).

Известен целый ряд примеров множественных отказов: так, некоторые параллельно соединенные пружинные реле выходили из строя одновремен­но и их отказы были вызваны общей причиной; вследствие неправильного расцепления муфт при техническом обслуживании два клапана оказались установлены в неправильное положение; из-за разрушения паропровода имели место сразу несколько отказов коммутационного щита. В некоторых случаях общая причина вызывает не полный отказ резервированной систе­мы (одновременный отказ нескольких узлов, т.е. предельный случай), а ме­нее серьезное общее понижение надежности, что приводит к повышению вероятности совместного отказа узлов систем. Такое явление наблюдается в случае исключительно неблагоприятных окружающих условий, когда ухудшение характеристик приводит к отказу резервного узла. Наличие об­щих неблагоприятных внешних условий приводит к тому, что отказ второго узла зависит от отказа первого и спарен с ним.

Для каждой общей причины необходимо определить все вызываемые ею исходные события. При этом определяют сферу действия каждой общей причины, а также место расположения элементов и время происшествия. Некоторые общие причины имеют лишь ограниченную сферу действия. Например, утечка жидкости может ограничиваться одним помещением, и электрические установки, их элементы в других помещениях не будут по­вреждены вследствие утечек, если только эти помещения не сообщаются друг с другом.

Отказ считают по сравнению с другим более критичным, если его пред­почтительнее рассматривать в первую очередь при разработке вопросов на­дежности и безопасности. При сравнительной оценке критичности отказов учитывают последствия отказа, вероятность возникновения, возможность обнаружения, локализации и т. д.

Указанные выше свойства технических объектов и промышленная безо­пасность – взаимосвязаны. Так, при неудовлетворительной надежности объекта вряд ли следует ожидать хороших показателей его безопасности. В то же время перечисленные свойства имеют свои самостоятельные функ­ции. Если при анализе надежности изучается способность объекта выпол­нять заданные функции (при определенных условиях эксплуатации) в уста­новленных пределах, то при оценке промышленной безопасности выявляют причинно-следственные связи возникновения и развития аварий и других нарушений с всесторонним анализом последствий этих нарушений.

Отказы по причинным схемам возникновения подразделяются на следую­щие группы:

Отказы с мгновенной схемой возникновения;

Отказы с постепенной схемой возникновения;

Отказы с релаксационной схемой возникновения;

Отказы с комбинированными схемами возникновения.

Отказы с мгновенной схемой возникновения характеризуются тем, что время наступления отказа не зависит от времени предшествующей эксплуа­тации и состояния объекта, момент отказа наступает случайно, внезапно. Примерами реализации такой схемы могут служить отказы изделий под дей­ствием пиковых нагрузок в электрической сети, механическое разрушение посторонним внешним воздействием и т. п.

Отказы с постепенной схемой возникновения происходят за счет посте­пенного накопления вследствие физико-химических изменений в материа­лах повреждений. При этом значения некоторых «решающих» параметров выходят за допустимые границы, и объект (система) не способен выполнять заданные функции. Примерами реализации постепенной схемы возникно­вения могут служить отказы вследствие снижения сопротивления изоляции, электрической эрозии контактов и т. п.

Отказы с релаксационной схемой возникновения характеризуются пер­воначальным постепенным накоплением повреждений, которые создают условия для скачкообразного (резкого) изменения состояния объекта, после которого возникает отказное состояние. Примером реализации релаксаци­онной схемы возникновения отказов может служить пробой изоляции кабе­ля вследствие коррозионного разрушения брони.

Отказы с комбинированными схемами возникновения характерны для ситуаций, когда одновременно действуют несколько причинных схем. При­мером, реализующим эту схему, может служить отказ двигателя в результате короткого замыкания по причинам снижения сопротивления изоляции об­моток и перегрева.

При анализе надежности необходимо выявлять преобладающие причи­ны отказов и лишь затем, если в этом есть необходимость, учитывать влия­ние остальных причин.

По временному аспекту и степени предсказуемости отказы подразделя­ются на внезапные и постепенные .

По характеру устранения с течением времени различают устойчивые (окончательные) и самоустраняющиеся (кратковременные) отказы. Кратко­временный отказ называется сбоем. Характерный признак сбоя - то, что восстановление работоспособности после его возникновения не требует ре­монта аппаратуры. Примером может служить кратковременно действующая помеха при приеме сигнала, дефекты программы и т. п.

Для анализа и исследования надежности причинные схемы отказов можно представить в виде статистических моделей, которые вследствие ве­роятностного возникновения повреждений описываются вероятностными законами.

Основные признаки классификации отказов представлены в таблице 1.1.

Таблица 1.1 Основные признаки классификации отказов

характер возникновения:

    внезапный отказ – отказ, проявляющийся в резком (мгновенном) изменении характеристик объекта;

    постепенный отказ – отказ, происходящий в результате медленного, постепенного ухудшения качества объекта.

Внезапные отказы обычно проявляются в виде механических повреждений элементов (трещины – хрупкое разрушение, пробои изоляции, обрывы и т. п.) и не сопровождаются предварительными видимыми признаками их приближения. Внезапный отказ характеризуется независимостью момента наступления от времени предыдущей работы.

Постепенные отказы - связаны с износом деталей и старением материалов.

причина возникновения:

    конструкционный отказ, вызванный недостатками и неудачной конструкцией объекта;

    производственный отказ, связанный с ошибками при изготовлении объекта по причине несовершенства или нарушения технологии;

    эксплуатационный отказ, вызванный нарушением правил эксплуатации.

характер устранения:

    устойчивый отказ;

    перемежающийся отказ (возникающий/исчезающий). последствия отказа: легкий отказ (легкоустранимый);

    средний отказ (не вызывающий отказы смежных узлов – вторичные отказы);

    тяжелый отказ (вызывающий вторичные отказы или приводящий к угрозе жизни и здоровью человека).

дальнейшее использование объекта:

    полные отказы, исключающие возможность работы объекта до их устранения;

    частичные отказы, при которых объект может частично использоваться.

легкость обнаружения:

    очевидные (явные) отказы;

    скрытые (неявные) отказы.

время возникновения:

    отказы при нормальной эксплуатации;

    износовые отказы, вызванные необратимыми процессами износа деталей, старения материалов и пр.



Поделиться