Что значит 1 мб с. Сколько мегабайт в гигабайте, бит в байте (или килобайте) и что это вообще такое за единицы измерения информации

ИМПУЛЬСНЫЕ РЕГУЛЯТОРЫ ПОСТОЯННОГО НАПРЯЖЕНИЯ
для питания многоуровневых инверторов

Юрий Кумаков , соискатель степени к.т.н., Саратовский государственный технический университет

Перспективным направлением в развитии вентильных преобразователей частоты на основе автономных инверторов напряжения является применение схем с многоуровневой модуляцией выходного напряжения. Об одной из разработок в этой области – инверторах напряжения с мультиуровневой модуляцией – Юрий Александрович Кумаков уже рассказывал в нашем журнале («Новости ЭлектроТехники» № 6(36) 2005).
При разработке и внедрении многоуровневых схем возникает необходимость одновременного получения нескольких уровней постоянного напряжения для питания инвертора. В сегодняшнем материале автор рассматривает вопросы, связанные с применением для этой цели импульсных регуляторов постоянного напряжения.

В последние годы схемы вентильных преобразователей частоты на базе автономных инверторов напряжения (АИН) с многоуровневой ступенчатой модуляцией (СМ) или многоуровневой широтно-импульсной модуляцией (ШИМ) выходного напряжения получают всё более широкое распространение. С ростом числа уровней становится возможным формировать ступенчатое напряжение, которое аппроксимирует синусоидальное напряжение с точностью, определяемой числом уровней. В результате появляется возможность уменьшить потери мощности и снизить частоту ШИМ (если она применяется), а также существенно улучшить гармонический состав выходного напряжения АИН. Эти эффекты становятся более значимыми с увеличением числа уровней выходного напряжения . При разработке и внедрении многоуровневых схем появляется необходимость одновременного получения нескольких уровней постоянного напряжения для питания инвертора. В отдельных случаях этого удается достичь исключительно за счет схемных решений при использовании только одного источника питания (ИП) . В остальных случаях возникает необходимость одновременного применения нескольких ИП постоянного тока или напряжения.

СОВРЕМЕННЫЕ СПОСОБЫ ПИТАНИЯ АИН

Одним из перспективных направлений развития многоуровневых преобразователей стало использование многоячейковых структур. Каждая ячейка такой структуры состоит из однофазных мостовых преобразователей, выполненных на полностью управляемых ключах. Все ячейки соединяются последовательно на стороне переменного тока в каскады (преобразователи с такой схемой называются также каскадными). Ячейки получают питание от изолированных ИП постоянного тока, в общем случае имеющих разное напряжение .
Другим шагом стала разработка АИН с мультиуровневой модуляцией, большое число уровней выходного напряжения которых достигается за счет особого способа трансформаторного суммирования напряжений двух мостов. Однако АИН с мультиуровневой модуляцией также требуют наличия нескольких ИП. Например, АИН с 24-уровневой модуляцией требует трех, с 40-уровневой – четырех, с 60-уровневой – пяти ИП .
В некоторых случаях для этой цели можно использовать несколько двухобмоточных трансформаторов, каждый из которых соединен с неуправляемым выпрямителем. Этот способ вполне приемлем, однако стоимость подобного устройства может быть очень высокой.
Возможно и одновременное использование нескольких управляемых выпрямителей, имеющих на выходах разные уровни напряжения. Однако серьезным недостатком такого способа является импульсное потребление тока из входной сети, во многих случаях приводящее к искажению формы кривых напряжения и таким образом к ухудшению работы всех потребителей электроэнергии в той же сети. Эту проблему часто решают путем замены группы управляемых выпрямителей на группу импульсных регуляторов постоянного напряжения (ИРПН) 1 , питающихся от одного или от нескольких неуправляемых выпрямителей, снабженных LC-фильтром. Такой способ позволяет достичь потребления практически синусоидального тока из входной сети с cos j , близким к 1. Схемы с ИРПН имеют высокий КПД; наличие трансформаторов в них не требуется, однако по сравнению с трансформаторными ИП необходимы конденсаторы большой емкости как в самих ИРПН, так и в неуправляемом выпрямителе.

1 ИРПН также называют импульсными стабилизаторами напряжения (ИСН).

ТИПЫ ИРПН

Наиболее известными являются ИРПН трех типов:

  • понижающего (U вых меньше U вх);
  • повышающего (U вых больше U вх);
  • инвертирующего (U вых имеет произвольную величину, но обратно U вх по знаку).
Все три типа ИРПН (рис. 1, а, б, в) состоят из индуктивности (накопительного дросселя) L, регулирующего транзистора T, работающего в ключевом режиме, блокировочного диода VD, фильтрующего конденсатора C, системы управления СУ, формирующей сигналы управления ключом T, а также вспомогательного вольтметра V. Отличия состоят в порядке включения в схему перечисленных элементов и соответственно в алгоритме управления, заложенном в СУ. Принципы их работы описаны, например, в .
Наибольшее распространение получил ИРПН понижающего типа, в котором накопительный дроссель L одновременно является элементом сглаживающего LC-фильтра. В ИРПН повышающего и инвертирующего типов дроссель L не участвует в сглаживании пульсации выходного напряжения, которое достигается только за счет увеличения емкости конденсатора С, что приводит к увеличению массы и габаритов фильтра и устройства в целом.

Рис. 1
Схема ИРПН: а) понижающего типа,
б) повышающего типа,
в) инвертирующего типа




СРЕДСТВА УПРАВЛЕНИЯ ИРПН

Оптимальным алгоритмом управления ключом T для ИРПН любого типа является применение ШИМ, поскольку:

  • обеспечиваются высокий КПД и оптимальная частота преобразования независимо от напряжения первичного источника питания Uвх и тока нагрузки;
  • частота пульсации на нагрузке является неизменной, что имеет существенное значение для ряда потребителей электроэнергии;
  • реализуется возможность одновременной синхронизации частот преобразования неограниченного числа ИРПН, что исключает опасность возникновения биений частот при питании нескольких ИРПН от общего первичного источника постоянного тока.
Последнее дает возможность питать несколько ИРПН от одного неуправляемого выпрямителя с LC-фильтром .
Вольтметр V и система управления (СУ) часто выполняются на аппаратной элементной базе. В таком случае эти два узла для каждого отдельного ИРПН включают в себя делитель напряжения, источник опорного напряжения, сравнивающий элемент, усилитель рассогласования, формирователь синхронизирующего напряжения (задающий генератор) и пороговое устройство, осуществляющее формирование модулированных по длительности импульсов.
Современная техника позволяет использовать в качестве СУ промышленный микроконтроллер (МК). На рынке МК можно найти кристаллы со встроенными аналого-цифровыми преобразователями (АЦП) и ШИМ-модуляторами. Тогда единственным элементом в цепи управления, помимо СУ, будет вольтметр V, представляющий собой делитель напряжения (или, в зависимости от возможностей выбранного кристалла, делитель напряжения и внешний АЦП).
Преимущества МК особенно очевидны, когда один МК обслуживает несколько ИРПН (что актуально в системе питания многоуровневого АИН). Тогда для каждого ИРПН независимыми элементами являются лишь делители напряжения, что приводит к снижению стоимости устройств. Плюсом МК является и возможность прямо в ходе работы гибко настраивать алгоритм управления одним или всеми ИРПН. Например, можно легко повысить или понизить частоту ШИМ в зависимости от чувствительности нагрузки к пульсациям выходного напряжения АИН.
Из-за высокой частоты нескольких ШИМ, скважность каждого импульса которых контролируется, дополнительные задачи возлагать на МК, управляющий несколькими ИРПН, нежелательно.

МЕТОДИКИ УПРАВЛЕНИЯ ИРПН

Традиционно управление ИРПН осуществляется таким образом, чтобы ток через дроссель L был непрерывным. Тогда внешние и регулировочные характеристики ИРПН при непрерывном токе являются линейными. При прерывистом токе они нелинейны, а регулировочные характеристики еще и неоднозначны. Кроме того, расчеты режима прерывистого тока более сложны, чем непрерывного. При выборе режима работы ИРПН для питания АИН необходимо учитывать, что для обеспечения режима непрерывного тока ИРПН индуктивность дросселя должна быть достаточно велика, причем её размер возрастает с уменьшением пульсаций входного тока и выходного напряжения. Однако спецификой АИН как нагрузки ИП является импульсный характер потребления тока со скачкообразным изменением от нуля до рабочего значения и наоборот, что обусловлено вентильным распределением энергии в инверторах напряжения. Накопление значительной энергии в дросселе может привести к всплескам выходного напряжения в моменты отключения вентиля и просадке напряжения в моменты его включения. Поэтому при питании АИН более оптимальным является режим прерывистого тока дросселя, для осуществления которого требуется меньшая индуктивность дросселя.
Итак, преимуществами прерывистого режима ИРПН являются: отсутствие всплесков напряжения при питании импульсной нагрузки и меньший номинал дросселя при том же значении максимального тока ИРПН, отсутствие колебаний выходного напряжения длительностью более одного-двух тактов ШИМ. Недостаток – увеличение емкости конденсатора C. Минусы, связанные с нелинейностью характеристик, при микропроцессорном управлении ИРПН большого значения не имеют.

РАСЧЕТ СХЕМ ДЛЯ РЕЖИМА ПРЕРЫВИСТОГО ТОКА

Исходными (задаваемыми) параметрами ИРПН являются входное и выходное напряжения ИРПН U вх и U вых, максимальный ток I max , потребляемый нагрузкой, и предельная величина пульсаций U вых при токе I max , которую можно обозначить D U max . При питании многоуровневого АИН значения U вх и U вых являются постоянными.
При реализации схемы ИРПН необходимо, отталкиваясь от значений этих четырех величин, рассчитать значения частоты переключения ключа T в режиме ШИМ T ШИМ, емкости конденсатора C, индуктивности дросселя L и найти оптимальный алгоритм расчета величины Q – скважности (коэффициента заполнения) импульса ШИМ, равной отношению времени открытия ключа T к длительности одного периода ШИМ. Поскольку величины T ШИМ, C и D U max непосредственно связаны между собой, то одна из величин TШИМ и C может быть задаваемой, а значение второй должно рассчитываться по заданному параметру и величине D U max .

РАСЧЕТ ЕМКОСТИ C И ЧАСТОТЫ T ШИМ

Из рис. 1 видно, что конденсатор C, формирующий выходное напряжение U вых и сглаживающий пульсации, обусловленные импульсным характером работы ключа, является одинаковым элементом ИРПН всех типов. Поэтому расчет емкости C или величины T ШИМ для ИРПН всех типов выполняется одинаково. При этом целесообразно отталкиваться от максимальной величины пульсаций выходного напряжения D U max в режиме прерывистого тока индуктивности. Для случая, когда задаваемой величиной является частота T ШИМ, а вычисляемой – C, емкость C можно рассчитать по формуле:

(1)
что является минимальной емкостью, при которой величины пульсаций напряжения при токе не выше номинального (I max) не превысят DUmax. Например, если для ИРПН мощностью 165 кВт (3,3 кВ, 50 А) взять D U max = 30 В (коэффициент пульсаций при этом составит менее 1%), а T ШИМ = 20 кГц, то величина C составит 83 мкФ.
Иногда размер емкости может быть искусственно увеличен, если она, помимо сглаживания пульсаций постоянного напряжения, используется для других целей. Например, выходные конденсаторы ИРПН могут использоваться также для возврата реактивной мощности нагрузки, питаемой АИН, как это сделано в мультиуровневых АИН . Существуют различные методики оценки емкости, необходимой для возврата реактивной мощности. Однако если рассчитанная по ним величина C превышает значение, полученное по формуле (1), то имеет место второй случай, когда величина C становится задаваемой. Тогда выгодно понизить частоту ШИМ до такого минимального значения, при котором пульсации выходного напряжения не превысят D U max . Это легко сделать, преобразовав формулу (1) к виду:
(2)
Стоит, однако, заметить, что увеличение емкости C сказывается на стоимости устройства. Поэтому в некоторых случаях, если это допустимо, целесообразно расчет C производить по формуле (1), а возврат реактивной мощности осуществлять не в емкость C, а во входную сеть. Для этого необходима схемная доработка ИРПН – добавление цепи, отвечающей за рекуперацию избыточной энергии. Два варианта доработки ИРПН понижающего типа до реверсивного по току рекуперативного ИРПН приведены на рис. 2.
В неуправляемом варианте (рис. 2, а) диод DR1 препятствует протеканию обратного тока через емкость, а диод DR2 направляет обратный ток в цепь источника питания. Такой вариант более прост в реализации, но имеет ряд недостатков, например, в некоторых случаях он может приводить к перенапряжениям нагрузки.
Более приемлемым является управляемый вариант (рис. 2, б). При превышении напряжением емкости C требуемого значения U вых система управления СУ с помощью управляемого ключа TR (при закрытом ключе T) производит накопление энергии в дросселе L, после чего при размыкании ключа накопленная энергия через диод DR поступает в сеть входного источника питания. Процесс повторяется с частотой, сравнимой с T ШИМ или равной ей, до тех пор, пока напряжение емкости не достигнет допустимых значений.

Рис. 2. Схемы рекуперативных ИРПН понижающего типа
а) неуправляемого,
б) управляемого

Расчет индуктивности L

Следующим шагом при расчете схем ИРПН является получение значения индуктивности L. Из рис. 1 следует, что для ИРПН понижающего типа как ток зарядки, так и ток разрядки дросселя L протекает на землю через емкость C. Для ИРПН повышающего и инвертирующего типов ток разрядки дросселя протекает через емкость, а ток зарядки – нет. Поэтому методики расчета величины L отличаются.

ИРПН повышающего и инвертирующего типов

Рассмотрим сначала расчет индуктивности L для ИРПН повышающего и инвертирующего типов. Допустим, емкость C, заряженную в текущий момент до напряжения U C , необходимо дозарядить за один период ШИМ до требуемого напряжения U вых. Разница заданного и текущего напряжений при этом составляет dU C = U вых – U C . Тогда величины L и Q для этих типов ИРПН в режиме прерывистого тока будут связаны приближенной формулой:

(3)
Предполагается, что за время замыкания ключа реальное значение входного напряжения U вх существенно не изменится, ток через индуктивность в момент замыкания ключа равен нулю, а величина dU C не превышает D U max , причем D U max значительно меньше требуемого выходного напряжения U вых. Полученная формула связывает величины Q и L, поэтому, чтобы выразить одну из этих величин, необходимо определить значение второй. Для того чтобы оценить значение L, зададим номинальную скважность Q 0 для некоторой величины (dU C) 0 (важно, чтобы выбранное значение Q 0 не приводило к переходу в режим непрерывного тока дросселя). Например, при отклонении (dU C) 0 = D U max скважность Q 0 можно выбрать равной 0,3 или 0,4. Тогда, определяя L из формулы (3), получаем окончательное выражение: Видно, что отличие формулы (5) от формулы (3) состоит в методике расчета величины K. Применяя метод оценки L, использованный для получения формулы (4), находим: Подставив в эту формулу значение L, рассчитанное соответственно по формуле (4) или (6), после сокращения получаем формулу для расчета скважности (коэффициента заполнения) импульса ШИМ:
(8)
Эта формула является регулировочной характеристикой ШИМ. Стоит сделать оговорку, что Q теоретически не может превышать 1, следовательно, если рассчитанное значение в какой-то момент превышает 1, необходимо принять его равным 1. На практике рекомендуется ограничить Q значением 0,7–0,9 для предотвращения чрезмерного нарастания тока через индуктивность (рис. 3).

Рис. 3. Зависимости Q от dU C при разных Q 0 .
Все (dU C) 0 = 1 В; Q max = 0,9

Как отмечалось выше, статическая регулировочная характеристика при непрерывном токе дросселя является линейной; при прерывистом токе, как видно из формулы (8) и рис. 3, она нелинейная, однако управляющий МК легко может хранить её в виде таблицы (достаточно 50–100 значений). ИП с таким алгоритмом управления хорошо переносит импульсную нагрузку, не давая просадки или всплеска напряжения в начале или в конце импульсов выходного тока. На рис. 4 представлены результаты моделирования установившегося режима в ИРПН понижающего типа.

Рис. 4. Процессы в ИРПН понижающего типа в установившемся режиме.
U вх = 180 В; U вых = 60 В; ток нагрузки 6 А; T ШИМ = 100 кГц

Особенности пуска ИРПН

Приведенные выше расчеты регулировочной характеристики пригодны лишь для установившегося режима работы ИРПН. Особым случаем является пуск ИРПН, при котором напряжение U C изначально равно нулю. В этом случае применение алгоритма для любого типа ИРПН приведет к чрезмерному накоплению энергии в дросселе L, что в свою очередь вызовет значительный всплеск напряжения емкости C после достижения на ней заданного значения U вых и отключения вентиля T.
Проблема решается двумя путями. Первый состоит в том, что после включения питания управляющий МК должен ограничить максимальную скважность Q max значениями 0,2–0,3 до тех пор, пока напряжение емкости не станет приблизительно равным U вых. Но лучший способ – запретить на время зарядки C работу АИН, добившись таким образом обнуления выходного тока, при этом Q 0 (при (dU C) 0 = D U max) на время зарядки C ограничивается значениями порядка 0,1 или менее.
На рис. 5 представлены результаты моделирования пуска ИРПН понижающего типа при отключенной нагрузке. Видно, что применение описанного алгоритма позволяет избежать сильного всплеска выходного напряжения и последующих колебаний выходного напряжения после достижения заданного значения U вых.
Процессы в реальных сетях могут отличаться от изображенных на рис. 5 в связи, например, с ограничением значения входного тока ИРПН. В последнем случае процесс зарядки емкости удлиняется.

Рис. 5. Процессы в ИРПН понижающего типа в режиме пуска без нагрузки и в момент после включения нагрузки.
U вх = 180 В; U вых = 60 В; ток нагрузки 6 А; T ШИМ = 10–5 с; Q 0 (пусковое) = 0,08; Q 0 (рабочее) = 0,6

Выводы

1. Все типы ИРПН пригодны для питания многоуровневых АИН. Тип ИРПН для питания конкретных АИН может выбираться исходя из соотношения U вх и U вых, а также из рассчитываемых индуктивностей дросселя L для разных модификаций ИРПН.
2. При питании многоуровневых АИН оптимальным является режим прерывистого тока дросселя, поскольку ИП на базе такого ИРПН лучше приспособлен для питания импульсной нагрузки (отсутствуют всплески и просадки выходного напряжения в начале и в конце импульсов выходного тока). Кроме того, режим прерывистого тока позволяет избежать нежелательных колебаний напряжения длительностью более одного-двух тактов ШИМ.
3. Управление несколькими ИРПН одного АИН целесообразно возлагать на один управляющий МК, оснащенный нужным числом АЦП и ШИМ-модуляторов. Управляющий МК должен предусматривать специальный режим пуска ИРПН с целью предотвращения перенапряжений нагрузки.

Литература

Бурман А.П., Розанов Ю.К., Шакарян Ю.Г. Перспективы применения в ЕЭС России гибких (управляемых) систем электропередачи переменного тока // Электротехника. – 2004. – № 8. – С. 30–36.
2. Лазарев Г. Л. Высоковольтные преобразователи для частотно-регулируемого электропривода. Построение различных систем // Новости ЭлектроТехники. – 2005. – № 2(32).
3. Кумаков Ю.А. Инверторы напряжения со ступенчатой модуляцией и активная фильтрация высших гармоник // Новости ЭлектроТехники. – 2005. – № 6(36).
4. Кумаков Ю.А. Инвертор напряжения с мультиуровневой модуляцией: Патент РФ на полезную модель: МПК8 Н 02 М 7/48 / Автор и заявитель Кумаков Ю.А.; заявка № 2006114517/17 от 27.04.2006.
5. Импульсные стабилизаторы // Электроника и микросхемотехника [Электронный ресурс]: Интернет-учебник / Винницкий гос. тех. ун-т, институт АЭКСУ, каф. МПА; под ред. к.т.н. Ю.В. Шабатуры. – http://faksu.vstu.vinnica.ua/SiteNEV/rus/erectronic_inter/ew2/ch2-3/12_4.htm.
6. Зиновьев Г.С. Основы силовой электроники: Учебник. – Новосибирск: Изд-во НГТУ, 2000. – Ч. 2 – С. 9–31.

Регулировать напряжение питания мощных потребителей удобно с помощью регуляторов с широтно-импульсной модуляцией. Преимущество таких регуляторов заключается в том, что выходной транзистор работает в ключевом режиме, а значить имеет два состояния - открытое или закрытое. Известно, что наибольший нагрев транзистора происходит в полуоткрытом состоянии, что приводит к необходимости устанавливать его на радиатор большой площади и спасать его от перегрева.

Предлагаю простую схему ШИМ регулятора. Питается устройство от источника постоянного напряжения 12В. При указанном экземпляре транзистора, выдерживает ток до 10А.

Рассмотрим работу устройства: На транзисторах VT1 и VT2 собран мультивибратор с регулируемой скважностью импульсов. Частота следования импульсов около 7кГц. С коллектора транзистора VT2 импульсы поступают на ключевой транзистор VT3, который управляет нагрузкой. Скважность регулируется переменным резистором R4. При крайнем левом положении движка этого резистора, см. верхнюю диаграмму, импульсы на выходе устройства узкие, что свидетельствует о минимальной выходной мощности регулятора. При крайнем правом положении, см. нижнюю диаграмму, импульсы широкие, регулятор работает на полную мощность.


Диаграмма работы ШИМ в КТ1

С помощью данного регулятора можно управлять бытовыми лампами накаливания на 12 В, двигателем постоянного тока с изолированным корпусом. В случае применения регулятора в автомобиле, где минус соединён с корпусом, подключение следует выполнять через p-n-p транзистор, как показано на рисунке.
Детали: В генераторе могут работать практически любые низкочастотные транзисторы, например КТ315, КТ3102. Ключевой транзистор IRF3205, IRF9530. Транзистор p-n-p П210 заменим на КТ825, при этом нагрузку можно подключать на ток до 20А!

И в заключении следует сказать, что данный регулятор работает в моей машине с двигателем обогрева салона уже более двух лет.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
VT1, VT2 Биполярный транзистор

KTC3198

2 В блокнот
VT3 Полевой транзистор N302AP 1 В блокнот
C1 Электролитический конденсатор 220мкФ 16В 1 В блокнот
C2, C3 Конденсатор 4700 пФ 2 В блокнот
R1, R6 Резистор

4.7 кОм

2 В блокнот
R2 Резистор

2.2 кОм

1 В блокнот
R3 Резистор

27 кОм

1 В блокнот
R4 Переменный резистор 150 кОм 1 В блокнот
R5 Резистор

При работе с множеством различных технологий часто стоит вопрос: как управлять мощностью, которая доступна? Что делать, если её необходимо понизить или повысить? Ответом на эти вопросы служит ШИМ-регулятор. Что он собой представляет? Где применяется? И как самому собрать такой прибор?

Что такое широтно-импульсная модуляция?

Без выяснения значения этого термина продолжать не имеет смысла. Итак, широтно-импульсная модуляция — это процесс управления мощностью, которая подводится к нагрузке, осуществляемая путём видоизменения скважности импульсов, которая делается при постоянной частоте. Существует несколько типов широтно-импульсной модуляции:

1. Аналоговый.

2. Цифровой.

3. Двоичный (двухуровневый).

4. Троичный (трехуровневый).

Что такое ШИМ-регулятор?

Теперь, когда мы знаем, что такое широтно-импульсная модуляция, можно поговорить и о главной теме статьи. Используется ШИМ-регулятор для того, чтобы регулировать напряжение питания и для недопущения мощных инерционных нагрузок в авто- и мототехнике. Это может звучать слишком сложно и лучше всего пояснить на примере. Допустим, необходимо сделать, чтобы лампы освещения салона меняли свою яркость не сразу, а постепенно. Это же относится к габаритным огням, автомобильным фарам или вентиляторам. Воплотить такое желание можно путём установки транзисторного регулятора напряжения (параметрический или компенсационный). Но при большом токе на нём будет выделяться чрезвычайно большая мощность и потребуется установка дополнительных больших радиаторов или дополнение в виде системы принудительного охлаждения с использованием маленького вентилятора, снятого с компьютерного устройства. Как видите, данный путь влечёт за собой много последствий, которые необходимо будет преодолеть.

Настоящим спасением из данной ситуации стал ШИМ-регулятор, который работает на мощных полевых силовых транзисторах. Они могут коммутировать большие токи (которые достигают 160 Ампер) при напряжении всего в 12-15В на затворе. Следует отметить, что сопротивление у открытого транзистора довольное мало, и благодаря этому можно заметно снизить уровень рассеиваемой мощности. Чтобы создать свой собственный ШИМ-регулятор, понадобится схема управления, которая сможет обеспечить разность напряжения между истоком и затвором в границах 12-15В. Если этого не получится достичь, то сопротивление канала будет сильно увеличиваться и значительно возрастёт рассеиваемая мощность. А это, в свою очередь, может привести к тому, что транзистор перегреется и выйдет из строя.

Выпускается целый ряд микросхем для ШИМ-регуляторов, которые смогут выдержать повышение входного напряжения до уровня 25-30В, при том, что питание будет всего 7-14В. Это позволит включать выходной транзистор в схеме вместе с общим стоком. Это, в свою очередь, необходимо для подключения нагрузки с общим минусом. В качестве примеров можно привести такие образцы: L9610, L9611, U6080B ... U6084B. Большинство нагрузок не потребляет ток больше 10 ампер, поэтому они не могут вызвать просадку напряжения. И как результат - использовать можно и простые схемы без доработки в виде дополнительного узла, который будет повышать напряжение. И именно такие образцы ШИМ-регуляторов и будут рассмотрены в статье. Они могут быть построены на основе несимметрического или ждущего мультивибратора. Стоит поговорить про ШИМ-регулятор оборотов двигателя. Об этом далее.

Схема №1

Эта схема ШИМ-регулятора собиралась на инверторах КМОП-микросхемы. Она является генератором прямоугольных импульсов, который действует на 2-х логических элементах. Благодаря диодам здесь отдельно изменяется постоянная времени разряда и заряда частотозадающего конденсатора. Это позволяет менять скважность, которую имеют выходные импульсы, и как результат - значение эффективного напряжения, которое есть на нагрузке. В данной схеме возможно использование любых инвертирующих КМОП-элементов, а также ИЛИ-НЕ и И. В качестве примеров подойдут К176ПУ2, К561ЛН1, К561ЛА7, К561ЛЕ5. Можно использовать и другие виды, но перед этим придётся хорошо подумать о том, как правильно сгруппировать их входы, чтобы они могли выполнять возложенный функционал. Преимущества схемы - доступность и простота элементов. Недостатки - сложность (практически невозможность) доработки и несовершенство относительно изменения диапазона выходного напряжения.

Схема №2

Обладает лучшими характеристиками, нежели первый образец, но сложнее в выполнении. Может регулировать эффективное напряжение на нагрузке в диапазоне 0-12В, до которого изменяется с начального значения 8-12В. Максимальный ток зависит от типа полевого транзистора и может достигать значительных значений. Учитывая, что выходное напряжение является пропорциональным входному управляющему, данную схему можно использовать как часть системы регулирования (для поддержки уровня температуры).

Причины распространения

Чем привлекает автолюбителей ШИМ-регулятор? Следует отметить стремление к увеличению КПД, когда проводится построение вторичных для электронной аппаратуры. Благодаря данному свойству можно данную технологию найти также при изготовлении компьютерных мониторов, дисплеев в телефонах, ноутбуках, планшетах и подобной техники, а не только в автомобилях. Также следует отметить значительную дешевизну, которой отличается данная технология при своём использовании. Также, если решите не покупать, а собирать ШИМ-регулятор собственноручно, то можно сэкономить деньги при усовершенствовании своего собственного автомобиля.

Заключение

Что ж, вы теперь знаете, что собой представляет ШИМ-регулятор мощности, как он работает, и даже можете сами собрать подобные устройства. Поэтому, если есть желание поэкспериментировать с возможностями своего автомобиля, можно сказать по этому поводу только одно - делайте. Причем можете не просто воспользоваться представленными здесь схемами, но и существенно доработать их при наличии соответствующих знаний и опыта. Но даже если всё не получится с первого раза, то вы сможете получить очень ценную вещь - опыт. Кто знает, где он может в следующий раз пригодиться и насколько важным будет его наличие.



Поделиться