Экстремальное управление проектами. Системы экстремального управления

Область применения XPM не ограничивается разработкой программного обеспечения. Экстремальный проектный менеджмент будет эффективен для опытных команд, которые реализуют инновационные проекты, стартапы, работают в хаотичных, непредсказуемых условиях.

Что такое Extreme Project Management?

Концепция XPM была разработана в 2004 году. Но считать его единственным разработчиком было бы несправедливо. Дуг вдохновился рядом методик других авторов:

  • моделью радикального проектного менеджмента Роба Томсета ,
  • APM Джима Хайсмита ,
  • концепцией экстремального программирования Кента Бэка .

В основу Extreme Project Management ДеКарло вложил теорию хаоса и сложные адаптивные системы.

Теория хаоса — математическая область, посвящённая описанию и изучению поведения нелинейных динамических систем, которые в определенных условиях подвержены так называемому динамическому хаосу.
Сложная адаптивная система — система из множества взаимодействующих компонентов, которая отвечает ряду условий (фрактальное строение, способность к адаптивной активности и т.д.). В качестве примеров САС можно привести город, экосистемы, фондовый рынок.

Дуг сравнивает экстремальный проектный менеджмент с джазом.

Хоть джаз и может звучать хаотично, у него есть своя структура, благодаря которой музыканты имеют возможность импровизировать и создавать настоящие шедевры.

Вместо того, чтобы идти по проторенной дорожке, в Extreme Project Management проектные менеджеры обсуждают лучшую альтернативу с клиентом, экспериментируют, изучают результаты и используют эти знания в следующем проектном цикле.


Одно из свойств некоторых хаотичных систем,
которые являются объектами рассмотрения теории хаоса — «эффект бабочки»,
ставший популярным после «И грянул гром» Рэя Брэдбери

Брайан Вэрнхем, автор книги « », выделил пять шагов, по которым должна следовать команда, работающая по методике экстремального проектного менеджмента, для успешного завершения проекта:

  1. Увидеть — четко обозначьте видение проекта перед началом экстремального проектного менеджмента
  2. Творить — вовлекайте команду в креативный мыслительный процесс и мозговой штурм для создания и отбора идей по достижению установившегося видения проекта
  3. Обновить — стимулируйте команду проверить свои идеи через внедрение инновационных решений
  4. Переоценить — при приближении цикла разработки к концу команда должна сделать переоценку своей работы
  5. Распространить — после прохождения обучения важно распространить знания и применить их к будущим этапам проекта, а также к новым проектам в целом.

Так как во главе угла Extreme Project Management стоят люди, то это определяет и специфику измерения успеха XPM-проекта:

  • пользователи удовлетворены прогрессом и промежуточными доставками — есть ощущение того, что проект движется в верном направлении, несмотря на окружающую нестабильность.
  • пользователи довольны конечной доставкой.
  • члены команды довольны качеством своей жизни во время работы над проектом. Если спросить их, хотели бы они поработать над похожим проектом, большая часть ответит "да«.

Плюсы и минусы XPM

Среди основных преимуществ методологии нужно отметить такие:

  • целостность — несмотря на то, что Extreme Project Management включает самые разные методы, инструменты и шаблоны, они имеют смысл только при применению ко всему проекту в целом. Вы как проектный менеджер можете видеть весь проект как единую систему без необходимости анализировать отдельные её части
  • человеко-ориентированность — в XPM акцент делается на динамике проекта. Он позволяет заинтересованным сторонам взаимодействовать и общаться, и в итоге — удовлетворять потребности клиента
  • фокус на бизнес — как только будет достигнут результат, у вас будет четкое видение того, как проект может принести пользу вашему клиенту. Команда постоянно сосредоточена на ранней и частой доставке продукта
  • гуманизм — один из принципов Extreme Project Management. Заключается в учёте качества жизни вовлеченных в проект людей. Будучи неотъемлемой частью проекта, увлечение работой и корпоративный дух сильно влияют на бизнес, поэтому во время работы над проектом важно физическое и моральное состояние команды
  • реальность в качестве основы — экстремальный проектный менеджмент позволяет работать в непредсказуемой, хаотичной среде. Вы не можете изменить реальность для приспособления к проекту. Происходит обратное: вы адаптируете проект под внешние факторы.

Не обошлось и без минусов. К ним можно причислить:

  • неопределённость — эта особенность отсекает большой сектор проектов, начиная с имеющих критическую опасность (военные объекты, атомные станции, приложения интернет-банкинга и т.п.), заканчивая тендерными проектами со строго оговоренным бюджетом, сроками и другими свойствами проекта;
  • высокие требования к опыту и квалификации проектной команды — необходимо постоянно приспосабливаться к изменениям в проектной среде, наладить эффективную коммуникацию друг с другом, стейкхолдерами и проектным менеджером, и работать короткими итерациями (последнее актуально для IT-сферы);
  • необходимость сменить образ мышления — в отличие от традиционного проектного менеджмента, в котором работа над проектом идёт по привычным этапам, согласно утвержденному плану и ролям, в XPM команде нужно перестроиться и быть готовым к невозможности полного контроля над проектом;
  • невозможность долгосрочного планирования — вчерашний план по актуальности будет не свежее новостей за прошлый месяц. Для корректной работы команды по достижению цели проекта нужно проявить качества гибкости и самоорганизации.


  1. проект создаётся в динамичной среде — происходит постоянная смена обстоятельств, скорости, требований;
  2. возможно применение метода проб и ошибок в работе над проектом;
  3. над проектом работает опытная команда — в отличие от традиционного проектного менеджмента, во главе угла стоят люди, а не процессы;
  4. разрабатываете приложение — за жизненный цикл разработки программное обеспечение в большинстве случаев успевает сменить функционал или расширить список доступных платформ. Чем больше пользователей пользуются ПО, тем больше изменений может быть внесено, для чего и отлично подходит экстремальный проектный менеджмент
  5. это мета-проект — то есть который делится на много мелких проектов. XPM в этом случае поможет справиться с задержкой в старте работы;
  6. владелец бизнеса готов участвовать в работе над проектом от начала до конца. Должны быть налажены связи «проектный-менеджер — бизнесмен»,
    «проектный-менеджер — стейкхолдер»,
    "менеджер проекта — владелец бизнеса — стейкхолдер«.
Стейкхолдеры — люди и организации, которые так или иначе оказывают влияние на проект. Сюда относятся и активно вовлеченные в него (проектная команда, спонсор), и те, кто будут пользоваться результатами проекта (заказчик), и люди, которые могут влиять на проект, хотя и не участвуют в нём (акционеры, компании-партнёры).

Экстремальный проектный менеджмент требует быстрой адаптации команды к необычным, постоянно меняющимся условиям, в которых предстоит работать. Поэтому можно выделить несколько ключевых правил, которые обязательны для эффективного использования Extreme Project Management:

  1. условия, в которых выполняется проект, хаотичные и непредсказуемые;
  2. команда должна уметь работать в условиях неопределенности;
  3. полный контроль над проектами в рамках XPM невозможен;
  4. изменения неизбежны;
  5. гибкость и открытость — важные характеристики для проектной команды.


Наочный пример отличия классического проектного менеджмента от экстремального . В первом достигается запланированный результат, во втором — желаемый.

eXtreme Project Management:
Using Leadership, Principles, and Tools to Deliver Value in the Face of Volatility Дуг ДеКарло

№ 1 для всех, кто хочет освоить Extreme Project Management. На основе опыта работы с более чем 250 проектными командами автор написал подробный справочник по экстремальному проектному менеджменту. О книге восторженно отзываются проектные менеджеры крупнейших международных организаций: Management Solutions Group, Inc., Zero Boundary Inc., Guru Unlimited и т.д.

Effective Project Management: Traditional, Adaptive, Extreme,
Third Edition Роберт К. Высоцкий

Прочитав который можно составить представление не только об экстремальном проектном менеджменте, но и адаптивном. Из интересного — в конце каждой главы даются вопросы для упорядочивания поданного материала, который насыщен реальными кейсами проектов из разных сфер.

Radical Project Management Роб Томсетт

В экстремальный проектный менеджмент представлен от «А» до «Я», разобран каждый инструмент и техника, с помощью которых внедряется Extreme Project Management. Максимум практической информации с разбором кейсов.

Architectural Practices: Extreme Project Management for Architects

Не книга, а , но не включить его в подборку нельзя из-за уникальности. Это емкий ресурс по использованию XPM в архитектуре и строительстве. К сожалению, автор сайта больше его не обновляет, но в качестве шпаргалки страница годится до сих пор.

Вердикт

искусством и наукой о содействии и управлении потоком мыслей, эмоций и действий таким образом, чтобы получать максимальные результаты в сложных и нестабильных условиях.

Причины успеха XPM среди остальных методик менеджмента лежат в трех плоскостях:

  1. Extreme Project Management делает возможным непрерывную самокоррекцию и самосовершенствование в режиме реального времени;
  2. XPM фокусируется на определении и следовании миссии проекта , прививая уверенность стейкхолдерам и проектной команде;
  3. человеко-ориентированность , гуманизм и приоритет людей над процессами как ключевые особенности методологии.

Адаптивные и экстремальные системы управления

Необходимость в адаптивных (приспособляемых) системах управления возникает в связи с усложнением задач управления при отсутствии практической возможности подробного изучения и описания процессов, протекающих в объектах управления при наличии изменяющихся внешних возмущений. Эффект адаптации достигается за счет того, что часть функций по получению, обработке и анализу процессов в объекте управления выполняется в процессе эксплуатации системы. Такое разделение функций способствует более полному использованию информации о протекающих процессах при формировании сигналов управления и позволяет существенно снизить влияния неопределенности на качество управления. Тем самым, адаптивное управление необходимо в тех случаях, когда влияние неопределенности или «неполноты» априорной информации о работе системы становится существенным для обеспечения заданного качества процессов управления. В настоящее время существует следующая классификация адаптивных систем: самонастраивающиеся системы, системы с адаптацией в особых фазовых состояниях и обучающиеся системы.

Класс самонастраивающихся (экстремальных) систем автоматического управления имеет широкое распространение в виду достаточно простой технической реализации. Этот класс систем связан с тем, что ряд объектов управления или технологических процессов обладают экстремальными зависимостями (минимум или максимум) рабочего параметра от управляющих воздействий. К ним относятся мощные электродвигатели постоянного тока, технологические процессы в химической промышленности, различные типы топок, реактивные двигатели самолетов и т. д. Рассмотрим процессы, протекающие в топке при сжигании топлива. При недостаточной подаче воздуха топливо в топке сгорает не полностью и количество выделяемого тепла уменьшается. При избыточной подаче воздуха часть тепла уносится вместе с воздухом. И только при определенном соотношении между количества воздуха и тепла достигается максимальная температура в топке. В турбореактивном двигателе самолета изменением расхода топлива можно добиться получения максимального давления воздуха за компрессором, а следовательно, и максимальной тяги двигателя. При малом и большом расходах топлива давление воздуха за компрессором и тяга падает. Кроме того необходимо отметить, то обстоятельство, что экстремальные точки объектов управления являются «плавающими» во времени и в пространстве.

В общем случае мы можем утверждать о том, что существует экстремум, а при каких значениях управляющего воздействия он достигается – априори неизвестно. В этих условиях система автоматического управления в процессе эксплуатации должна формировать управляющее воздействие, приводящее объект в экстремальное положение, и удерживать его в этом состоянии в условиях возмущений и «плавающего» характера экстремальных точек. Управляющее устройство при этом является экстремальным регулятором.

По способу получения информации о ткущем состоянии объекта экстремальные системы являются беспоисковыми и поисковыми. В беспоисковых системах наилучшее управление определяется в результате использования аналитических зависимостей между желаемым значением рабочего параметра и параметрами регулятора. В поисковых системах, которые являются медленнодействующими, нахождение экстремума может быть выполнено различными способами. Наибольшее распространение получил метод синхронного детектирования, который сводится к оценке производной dy/du, где y – регулируемый (рабочий) параметр объекта управления, u – управляющее воздействие. Структурная схема, иллюстрирующая способ синхронного детектирования представлена на рис. 6.1.

Рис. 6.1 Структура синхронного детектирования

На вход объекта управления, который обладает экстремальной зависимостью y(u), совместно с управляющим воздействием U подается незначительное возмущение в виде регулярного периодического сигнала f(t) = gsinwt, где g больше нуля и достаточно мало. На выходе объекта управления получим y = y(u + gsinwt). Полученное значение y умножается на сигнал f(t). В результате сигнал А примет значение

А =yf(t) = y(u+gsinwt)gsinwt.

Предполагая, что зависимость y(u) является достаточно гладкой функцией, ее можно разложить в степенной ряд и с достаточной степенью точности ограничится первыми членами разложения

Y(u+gsinwt)=y(u)+gsinwt(dy/du) + 0.5g 2 sin 2 wt(d 2 y/du 2) + ….. .

Т. к. значение g мало, то можно пренебречь членами высшего порядка и в результате получим

Y(u + gsinwt) » y(u) + gsinwt(dy/du).

Тогда, в результате перемножения сигнал А примет значение

А = y(u)sinwt + g 2 sin 2 wt(dy/du).

На выходе фильтра низких частот Ф получим сигнал В

.

Если постоянная времени фильтра Т достаточно велика, то получим

.

Следовательно, сигнал В на выходе фильтра пропорционален производной dy/du

Настройка (экстремальное управление)

Экстремальное управление получило такое название от специфической цели этого управления. Задача экстремального управления заключается в достижении экстремальной цели, т. е. в экстремизации (минимизации или максимизации) некоторого показателя объекта, значение которого зависит от управляемых и неуправляемых параметров объекта. К экстремальному управлению приводит очень распространенная операция настройки.

Всякая настройка заключается в построении такой системы действий, которые обеспечивают наилучший режим работы настраиваемого объекта. Для этого необходимо уметь различать состояния объекта и квалифицировать эти состояния так, чтобы знать, какое из двух состояний следует считать «лучше» другого. Это означает, что в процессе настройки должна быть определена мера качества настройки.

Например, при настройке технологического процесса показателем его качества может служить число бракованных деталей в партии; в этом случае задача настройки процесса заключается в том, чтобы минимизировать брак. Однако далеко не все экстремальные объекты допускают столь простое количественное представление показателя качества настройки. Так, например, при настройке радиоприемников или телевизоров такими мерами качества настройки могут служить качество звучания и качество

изображения принимаемой передачи. Здесь уже довольно сложно определить показатель качества настройки в количественной форме. Однако, как будет показано ниже, для решения задач экстремального управления часто важно знать не абсолютное значение показателя качества, а знак его приращения в процессе управления. Это означает, что для управления достаточно знать, увеличился или уменьшился показатель качества. В случае настройки радиоаппаратуры человек довольно хорошо решает эту задачу, если речь идет о качестве звучания или изображения.

Рис. 1.3.1.

Таким образом, в дальнейшем предполагается, что всегда существует такой алгоритм переработки информации настраиваемого объекта, который позволяет количественно определись качество настройки этого объекта (или знак изменения этого качества в процессе управления). Качество настройки измеряется числом Q , которое зависит от состояния управляемых параметров объекта:

. (1.3.1)

Целью настройки является экстремизация этого показателя, т. е. решение задачи

где буквой S обозначена область допустимого изменения управляемых параметров.

На рис. 1.3.1 показана блок-схема экстремального объекта. Он образуется из собственно объекта настройки с управляемыми входами и наблюдаемыми выходами, которые несут информацию о состоянии объекта, и преобразователя, который на основе полученных сведений образует скалярный показатель качества объекта.

Примером экстремального объекта может служить радиоприемник в процессе поиска станции. Если слышимость станции уменьшается (как говорят, станция «уплывает»), то для получения наилучшего звучания передачи, т. е. для настройки приемника, необходимо подстроить контур. Управление настройкой в данном случае заключается в определении направления вращения рукоятки настройки. Уровень слышимости станции здесь является показателем качества настройки. Он не несет необходимой

Рис. 1.3.2.

информации об управлении, т. е. не указывает, в каком направлении следует вращать рукоятку настройки. Поэтому для получения необходимой информации вводится поиск -- пробное движение рукоятки настройки в произвольном направлении, что дает дополнительную и необходимую информацию для настройки. После этого уже можно точно сказать, в каком направлении следует крутить рукоятку: если слышимость уменьшилась, нужно крутить в обратном направлении, если уже увеличилась, следует вращать ручку настройки туда же до максимума слышимости. Такой простейший алгоритм поиска, применяемый при настройки радиоприемника, который является типичным примером экстремального объекта.

Таким образом, объекты экстремального управления отличаются недостаточностью информации на выходе объекта, наличием своеобразного информационного «голода». Для получения необходимой информации в процессе управления экстремальными объектами необходимо ввести поиск в виде специально организованных пробных шагов. Процесс поиска отличает настройку и экстремальное управление от всех других видов управления.

В качестве более «серьезного» примера однопараметрического экстремального объекта рассмотрим задачу об оптимальном демпфировании следящей системы второго порядка (рис. 1,3.2). На вход этой следящей системы подается задающее возмущение у* (t), определяющее состояние выхода у (t). Относительно характера поведения у* (t) ничего не известно. Более того, статистические свойства возмущения у* (t) могут изменяться непредвиденным образом.

Рис. 1.3.3.

Задача настройки заключается в выборе такого демпфирования о которое делает эту следящую систему оптимальной в смысле минимума функционала:

Величина Q является оценкой дисперсии невязки о(t)=y(t)-y*(t) на базе Т . Очевидно, что при настройке следящей системы следует добиваться минимизации величины Q.

Здесь в качестве объекта настройки выступает указанная следящая система, выходной информацией для определения качества работы объекта являются его вход и выход, а преобразователь образует показатель качества по формуле (1.3.3). Полученный экстремальный объект имеет характеристику, показанную на рис. 1.3.3. Характер зависимости Q (о ) выражает тот очевидный факт, что малое демпфирование столь же плохо, как и слишком большое. Как видно, характеристика (1.3.3) имеет ярко выраженный экстремальный характер с минимумом, соответствующим оптимальному демпфированию о *. Кроме того, характеристика зависит от свойств возмущения у* (t). Следовательно, оптимальное состояние о*, минимизирующее Q (о ), также зависит от характера задающего возмущения y*(t) и изменяется вместе с ним. Это и заставляет обратиться к созданию специальных систем автоматической настройки, поддерживающих объект в настроенном (экстремальном) состоянии независимо от свойств возмущений. Эта автоматические приборы, решающие задачу настройки, носят название экстремальных регуляторов или оптимизаторов (т. е. приборов для оптимизации объекта).

Отличительной особенностью экстремальных объектов является немонотонность (экстремальность) характеристики, что приводит к невозможности воспользоваться методом регулирования в целях управления подобными объектами. Действительно, наблюдая выходное значение Q объекта в рассмотренном выше примере (см. рис. 1.3.3), нельзя построить управление, т. е. определить, в каком направлении следует изменить управляемый параметр о. Эта неопределенность связана, прежде всего, с возможностью двух ситуаций и, выход из которых к цели о* производится прямо противоположным образом (в первом случае следует увеличивать о, а во втором -- уменьшать). Прежде чем управлять таким объектом, необходимо получить дополнительную информацию -- в данном примере эта информация заключается в определении, на какой ветви характеристики находится объект. Для этого, например, достаточно определить значение показателя качества в соседней точке о + ? о, где? о -- достаточно малое отклонение.

Следует отметить, что автоматизация процесса настройки оправдана лишь в том случае, если экстремальная характеристика объекта изменяется во времени, т. е. при блуждании экстремального состояния. Если же характеристика объекта не изменяется, то процесс поиска экстремума имеет однократный характер и, следовательно, не нуждается в автоматизации (достаточно стабилизировать объект в однажды определенном экстремальном состоянии).

На рис. 1.3.4 для иллюстрации показана блок-схема экстремального управления демпфированием следящей системы, отслеживающей положение цели у (t), характер поведения которой изменяется.

Рис. 1.3.4.

Здесь экстремальный регулятор решает задачу настройки, т. е. поддерживает такое значение демпфирования о , которое минимизирует показатель качества следящей системы.

Исторически первыми адаптивными системами были системы экстремального регулирования (СЭР). В § 7.1 этой главы вводятся понятия экстремального управления и изучаются физические принципы построения таких систем; § 7.2 посвящен общим алгоритмам адаптивного управления, основанным на методе градиента.

Получены условия сходцмости процесса поиска экстремума.

В § 7.3 процесс поиска экстремума усложнен случайными внешними воздействиями. Получены дополнительные условия, накладываемые на параметры алгоритма управления, при которых обеспечивается отыскание экстремума.

§ 7.1. Принципы экстремального регулирования

Понятие экстремального управления. Характерным для многих объектов и процессов в ряде отраслей промышленности является наличие экстремума выходных характеристик. Такие объекты называются экстремальными. Их примерами могут служить различные топки, двигатели внутреннего сгорания, выпарные аппараты в химической промышленности, отсадочные и флотационные машины в обогатительной промышленности. Анализ технологических процессов показывает, что экстремальную статическую характеристику можно ожидать там, где одновременно протекает несколько процессов, ведущих к противоположным результатам. Например, температура топки определяется количеством сжигаемого топлива, а также температурой и количеством подаваемого воздуха. При малом количестве воздуха (при малой скорости воздуха, продуваемого через топку) топливо сгорает не полностью и, следовательно, выделяется меньше теплоты. При избытке воздуха (при большой скорости воздуха, продуваемого через топку) топливо сгорает полностью, но значительное количество теплоты расходуется на нагрев избытка воздуха и уносится из топки проточным течением воздуха. При некотором соотношении количества топлива и скорости воздуха температура свода печи будет максимальной. Уравнение для температуры топки имеет вид

(7.1.1)

где - скорость продуваемого через топку воздуха; - неопределенный параметр, зависящий от количества и качества топлива (он зависит от времени, так как в процессе горения изменяется количество и качество топлива).

Экстремальные характеристики топки приведены на рис. 7.1.1. Задача экстремального управления температурой топки состоит в определении закона изменения во времени скорости воздуха через топку, при котором температура топки имеет наибольшее значение.

На рис. 7.1.1 указаны значения , при которых достигается максимальное значение температуры в условиях «дрейфа» характеристики топки, вызванного изменением параметра .

В общем случае уравнение безынерционного экстремального объекта регулирования нетрудно получить из (1.1.1), если положить и разрешить полученное равенство , где пока полагаем ) относительно переменной . Тогда получим, опуская индекс у ,

Функция J обладает тем свойством, что для каждого фиксированного набора чисел существует набор , при котором достигает минимума или максимума. Это означает в случае минимума, что

Далее для простоты полагаем, что для любого набора ось набор единственный (функция имеет только одну точку экстремума-минимума). Как и ранее будем полагать, что весь интервал функционирования объекта можно разбить на подынтервалы в течение которых неопределенные параметры являются постоянными.

Безынерционность объекта позволяет упростить структуру адаптивного регулятора, сведя ее лишь к адаптору. Математически это означает, что . Другими словами, управляющее воздействие формируется как настраиваемые параметры (из условия ), поэтому они называются иногда управляющими параметрами.

Таким образом, уравнение экстремального объекта принимает вид

где - управляющие настраиваемые параметры.

Объекты экстремального управления (экстремальные объекты) можно классифицировать по различным признакам. Среди этих признаков можно выделить следующие: 1) число управляющих (оптимизирующих) параметров; 2) число экстремумов характеристики () объекта; 3) объем априорной информации об объекте: 4) инерционность объекта.

Рассмотрим каждый из этих признаков. Если число управляющих параметров , то экстремальный объект называется однопараметрическим, а если , то многопараметрическим. Топка, рассмотренная в предыдущем разделе, является однопараметрическим экстремальным объектом. Уравнение однопараметрического объекта имеет вид

(7.1.4)

Пример 7.1.1 (многопараметрический объект). При обработке результатов аэрофотосъемки широко применяется автоматическая система совмещения изображений. Суть этой системы сводится к следующему. Известно, что световой поток через совмещаемые изображения имеет экстремальный характер, при этом максимум потока достигается при совмещении (совпадении) изображений. Положение изображения определяется двумя декартовыми координатами и углом поворота (рис 7.1.2).

Таким образом, световой поток через совмещаемые изображения, измеряемый фотоэлементами, зависит от трех управляющих параметров . Задача совмещения заключается в определении таких их значений, при которых ток фотоэлемента максимален. Объект этой системы является трехпараметрическим.

Второй признак классификации позволяет различить многоэкстремальные объекты управления. Говоря об объеме информации об объекте, далее будем полагать, что объект (7.1.3) одноэкстремальный, а характеристика - непрерывная и непрерывно-дифференцируемая функция своих аргументов. Инерционностью экстремального объекта часто пренебрегают, поскольку главным в системах экстремального регулирования (СЭР) является «отслеживание» дрейфа экстремума статической характеристики объекта.

Назначением экстремальной системы является автоматическое отыскание регулирующих (управляющих) воздействий, соответствующих оптимальному (экстремальному) значению показателя качества при неконтролируемом изменении характеристик системы и внешних условий, влияющих на положение экстремальной точки показателя качества.

Рис. 12.2. Общая схема экстремальной системы О - объект; ЧЭ - чувствительный элемент; УФ - устройство формирования показателя качества; ИЭ - исполнительный элемент; УАП - устройство автоматического поиска экстремума; ЭР - экстремальный регулятор

В экстремальной системе соответствующая перестройка входных воздействий производится путем анализа результатов пробных движений (колебаний), в процессе которых изучается тенденция изменения показателя качества системы. Можно говорить, что в экстремальной системе существует своеобразная обратная связь по показателю качества. На рис. 12.2 представлена принципиальная схема экстремальной системы. Особенностью ее является наличие устройства автоматического поиска экстремума УАП, которое производит анализ показателя качества и через исполнительный элемент ИЭ подает на вход объекта управляющее воздействие такое, чтобы характеристика получила экстремальное значение

В экстремальной системе устройство поиска экстремума выполняет роль анализатора и синтезатора.

Экстремальный регулятор целесообразно использовать только тогда, когда функция характеризующая показатель качества, является «плавающей» (рис. 12.3), т. е. как сама величина так и

соответствующее ей значение существенно меняются неконтролируемым образом.

Обычно показатель качества зависит от нескольких регулирующих воздействий, т. е. В точке экстремума

где - базисные векторы.

Рис. 12.3. Экстремальные характеристики

Таким образом, экстремальная система должна обеспечить движение рабочей точки по поверхности в пространстве до точки, где Для осуществления такого движения необходимо, во-первых, определить градиент и, во-вторых, в соответствии со значением градиента организовать движение к точке экстремума.

Рис. 12.4. Синхронное детектирование

Первая задача - определение градиента - может решаться несколькими способами, наиболее распространенными из которых являются способы синхронного детектирования, непосредственного измерения производной и запоминания и удержания экстремума.

Способ синхронного детектирования основан на том (рис. 12.4), что для ориентации рабочей точки относительно экстремума

показателя качества к основным медленно меняющимся входным сигналам добавляются малые гармонические (обычно периодические) составляющие. Синхронные детекторы выполняют операцию умножения функции на соответствующие гармонические составляющие и операцию усреднения во времени этих произведений. В результате на выходах синхронных детекторов получаются величины, пропорциональные с точностью до малых высших порядков составляющим градиента в точке

Действительно, разложим функцию в окрестности точки в ряд Тейлора:

После умножения выражения (12.1) на и усреднения получим

Если учесть, что при медленном изменении справедливы соотношения:

то выражение (12.2) можно привести к виду

где погрешность, имеющая больший, чем первое слагаемое, порядок малости.

В результате на выходах синхронных детекторов получаются сигналы

Способ непосредственного измерения производной предполагает дифференцирование функции по времени. Для производной, имеем

Допустим, что имеется возможность задавать поочередно величины }

Поделиться