Электронные пучки. Электронно-лучевая трубка

Электронным лучом (пучком) называют острофокусный поток ускоренных электронов. Поток электронов, эмитированный катодом, ускоряется в вакууме разностью потенциалов между катодом и анодом, а затем фокусируется в пятно малых размеров (диаметр от сотых долей до нескольких миллиметров).

При торможении ускоренных электронов вблизи поверхности металлического тела их кинетическая энергия превращается в тепловую. Чем больше плотность мощности в месте торможения пучка, тем достигается больший локальный разогрев. По концентрации мощности электронный пучок уступает лишь лучу оптического квантового генератора (табл. 2-2).

Открытие термоэлектронной эмиссии, использование магнитных и электростатических аксиально-симметричных полей для фокусировки электронных пучков, развитие вакуумной техники - основные вехи на пути развития электроннолучевой сварки. Промышленное применение электроннолучевой сварки началось в конце 50-х годов нашего столетия.

В зависимости от ускоряющего напряжения и свойств металла электроны могут проникать в вещества на глубину нескольких десятков микрометров. Электрон испытывает многократные столкновения и теряет энергию, причем меняются скорость и направление его движения. Угол вероятного отклонения электрона после соударения возрастает с уменьшением скорости электрона, в результате на конечном участке пути электрон растрачивает основную часть своей энергии. Таким образом, электронный нагрев происходит в самом веществе в отличие от обычных, широко

применяемых в сварке источников 1ейлоты, нагревающих поверхности металла. Наиболее интенсивное тепловыделение наблюдается на глубине пробега электрона.

Сварочная ванна испытывает реактивное воздействие испаряемого металла, теплового и рентгеновского излучения, воздействие потока электронов, а также давление отдачи вторичных и тепловых электронов. Сила давления испаряемого металла составляет основную часть общего силового воздействия на ванну, ее величина может достигать нескольких граммов.

Электронный луч с требуемыми свойствами формируется в электронной пушке. Для фокусировки электронного луча значительной мощности в пятно возможно меньшего сечения сводят к минимуму влияние погрешностей электронной оптики, взаимного отталкивания электронов в пучке, тепловых скоростей электронов, рассеивания электронов на молекулах остаточных и выделяющихся в процессе сварки газов и паров. Добиваются сохранения высокой удельной мощности пучка на большом расстоянии от пушки.

В каждой электроннолучевой пушке указанные условия формирования сварочных электронных пучков обеспечиваются в различной степени в зависимости от предъявляемых к ней требований. В первых пушках для электроннолучевой сварки пучок электронов формировался только с помощью прикатодного электрода, без применения дополнительных фокусирующих систем (рис. 2-12, а). Анодом пушки являлось само изделие. Такая одно-каскадная электростатическая система фокусировки не может обеспечить формирования интенсивного электронного пучка с высокой плотностью энергии. Поэтому с ее помощью возможно соединение металлов сравнительно небольшой толщины (1-2 мм). Близость прожектора в зоне сварки повышает опасность электрических пробоев. Технологические и электроннооптические характеристики пушки с однокаскадной электростатической фокусировкой повышаются при введении в конструкцию ускоряющего электрода, имеющего потенциал изделия (рис. 2-12, б). При этом уменьшается возможность электрических пробоев и разрядов, а для питания пушки можно использовать даже невыпрямленное ускоряющее напряжение.

Наиболее широко для формирования сварочных пучков электронов применяется комбинированная электростатическая и электромагнитная фокусировка. В пушках с комбинированной фокусировкой пучка прожектор, состоящий из катода, прикатодного электрода и ускоряющего электрода-анода, формирует сходящийся пучок электронов. Минимальное сечение пучка проектируется (обычно с уменьшением) на свариваемое изделие с помощью электромагнитной фокусирующей системы (рис. 2-12, в).

Сварочные пушки можно разделить по величине ускоряющего напряжения на три основных класса: 1 - низковольтные

2 - с промежуточным ускоряющим

И 3 - высоковольтные (UycK ~

80-^200 кВ). Мощность пучков лежит в пределах 0,3-100 кВт. Пучки электронов, эмитированные термокатодами, формируются в высоком вакууме (10~4-10~5 мм рт. ст.). В газоразрядных пушках и пушках с холодным катодом вакуум составляет 10" х- ю- мм рт. ст.

Основными требованиями к пучку электронов являются достаточно большая плотность энергии в пятне нагрева wn и малый угол сходимости ах пучка на изделии. Эти требования удовлетворяются в большей мере при высокой энергии электронов:

где 1п - ток пучка.

В то же время защита обслуживающего персонала от рентгеновского излучения, возникающего при торможении электронов на изделии, усложняется с ростом энергии электронов. Сложнее становятся сама пушка и ее источник питания.

Особенности образования отверстий при электронно-лучевой обработке:

Термическая размерная обработка, как правило, предназначена для изменения химического состава или структуры обрабатываемого материала, получения отверстий заданного диаметра или пазов заданной ширины, глубины и профиля сечения.

Результат размерной обработки зависит от поведения материала при повышении температуры. В результате термической размерной обработки происходят следующие явления:

фазовые превращения в твердом состоянии, появляющиеся, например, при закалке соответствующих сталей;

сублимация - удаление материала при выполнении отверстий, пазов, резании, гравировании алмаза, графита, кварцевого стекла;

разложение твердого материала на летучие компоненты и унос мате-риала при резании синтетических материалов, керамики, бумаги;

разложение с образованием, по крайней мере, одного твердого компонента и удаление материала при резании, сверлении, гравировании арсенида галлия, фосфида галлия;

плавление материалов при микросварке металлов, полировании ме-таллов и полупроводниковых материалов (кремний, германий), нанесении рисок оплавлением (кремний, германий, керамика, ферриты), легировании полупроводников путем вплавления лигатур при изготовлении полупроводниковых приборов и интегральных микросхем;

испарение - удаление материала при сверлении, резании, гравировании металлов, диэлектриков, синтетических материалов.

Обрабатываемость материала в основном зависит от его теплофизи-ческих свойств и удельной мощности пучка электронов. Чтобы избежать избытка жидкой фазы, добиться максимальной производительности за счет реализации резононсных режимов нагрева, обработку ведут в импульсных режимах.При этом возможны следующие технические варианты обработки: моноимпульсная, многоимпульсная, с быстрым отклонением луча.

Выброс жидкой фазы при обработке. Экспериментальные данные различ-ных исследователей по измерению удельной работы разрушения показывают, что практически для всех металлов больше энергии плавления, но меньше энергии превращения в пар.

В продуктах выброса находится значительное количество жидкой фазы. Затраты введенной энергии, приводящие к удалению вещества при обработке и при сварке с «кинжальным» проплавлением, например, сталей только на 10-20 % превышают затраты на плавление. Это приводит к малому различию в энергетических балансах процессов получения отверстий и проплавления и существенно упрощает их тепловые расчеты.

Причины преждевременного вскипания вещества, приводящего к выносу жидкой фазы в основном можно свести к двум моментам:

Вскипанию за счет гетерогенных центров зарождения паровой фазы,

Вследствие перегрева. В первом случае факторами, облегчающими вскипание, являются: пузырьки растворенного в металле газа, объем которого может превышать объем основного металла в десятки и даже сотни раз; неидеальность контактов; локальные пульсации температуры, например вследствие неоднородности временной структуры импульса энергии, приводящие к генерации внутрь материала волн сжатия и разрежения как и при ультразвуковых колебаниях.

Объяснить причины вскипания при перегреве затруднительно из-за сложности физики процесса. Перегрев может возникать вследствие того, что нагрев и плавление металла в зоне действия луча происходят в условиях сжатия материала давлением отдачи паров. Так как разгрузка в распла-вленном объеме после прекращения действия импульса энергии проис-ходит за время 10~ 3 -10~ 4 с, т. е. со скоростью распространения волн напряжения (скоростью звука), то металл практически мгновенно заметно перегревается, что равносильно быстрому избыточному тепловыделе-нию в локальном объеме.

Согласно другой точке зрения, перегрев связан с наличием в зоне дей-ствия луча двух слоев с разным характерным временем изменения темпе-ратуры. Если при колебаниях интенсивности нагрева внутренние слои жидкой фазы попадают в условия перегрева, то происходит вскипание, так как, одновременно является временем релаксации давления отдачи.

Вскипание и вынос жидкой фазы могут быть связаны с периодическими (вследствие экранировки) колебаниями давления отдачи паров при поверхностном испарении, которые приводят к генерации в жидком объеме металла механических колебаний, стимулирующих рост равновесных пузырьков растворенного газа.

Сварка электронным лучом

Электронно-лучевая сварка (ЭЛС) основана на использовании для нагрева энергии электронного луча.

Сущность данного процесса состоит в использовании кинетической энергии электронов, движущихся в высоком вакууме с большой скоростью. При бомбардировке электронами поверхности металла подавляющая часть кинетической энергии электронов превращается в теплоту, которая используется для расплавления металла.

Для сварки необходимо получить свободные электроны, сконцентрировать их и сообщить им большую скорость с целью увеличения их энергии, которая должна превратиться в теплоту при торможении в свариваемом металле.Получение свободных электронов достигается применением раскаленного металлического катода, эмитирующего (испускающего) электроны. Ускорение электронов обеспечивается электрическим полем с высокой разностью потенциалов между катодом и анодом. Фокусировка - концентрация электронов - достигается использованием кольцевых магнитных полей. Резкое торможение электронного потока происходит автоматически при внедрении электронов в металл. Электронный луч, используемый для сварки, создается в специальном приборе - электронной пушке.

Электронная пушка представляет собой устройство, с помощью которого получают узкие электронные пучки с большой плотностью энергии (см. рис.2).

Рис. 2. Схема устройства электронно-лучевой пушки.

(1), Пушка имеет катод (1), который размещен внутри прикатодного электрода (2). На некотором удалении от катода находится ускоряющий электрод - анод (3) с отверстием.

Прикатодный и ускоряющий электроды имеют форму, обеспечивающую такое строение электрического поля между ними, которое фокусирует электроны в пучок с диаметром, равным диаметру отверстия в аноде. Положительный потенциал ускоряющего электрода может достигать нескольких десятков тысяч вольт, поэтому электроды, эмитированные катодом, на пути к аноду приобретают значительную скорость и, соответственно, кинетическую энергию. После ускоряющего электрода электроны движутся равномерно. Питание пушки электрической энергией осуществляется от высоковольтного источника постоянного тока. Электроны имеют одинаковый заряд, поэтому они отталкиваются друг от друга, вследствие чего диаметр пучка увеличивается, а плотность энергии в пучке уменьшается.

Для увеличения плотности энергии в луче после выхода электродов из анода электроны фокусируются магнитным полем в специальной магнитной линзе (4). Сфокусированные в плотный пучок летящие электроны ударяются с большой скоростью о поверхность изделия (6), при этом кинетическая энергия электронов, вследствие торможения в веществе, превращается в теплоту, нагревая металл до высоких температур.

Для перемещения луча по свариваемому изделию на пути электронов помещают магнитную отклоняющую систему (5), позволяющую направлять электронный луч точно по сварочному стыку.

Для обеспечения беспрепятственного движения электронов от катода к аноду и далее к изделию, для тепловой и химической изоляции катода, а также для предотвращения возможности дугового разряда между электродами в установке создается высокий вакуум не ниже 1,3 . 10~ 2 Па (1 . 10 -4 мм рт. ст.), обеспечиваемый вакуумной системой установки.

Работа, затраченная электрическим полем на перемещение заряда из одной точки в другую, равна произведению величины заряда на разность потенциалов между этими двумя точками. Эта работа затрачивается на сообщение электрону кинетической энергии.

Таким образом энергия электронов может достигать больших значений и зависит от разности потенциалов разгоняющего поля; в настоящее время эксплуатируются электронно-лучевые установки с ускоряющим напряжением в электронно-лучевой пушке до 200 кВ.

Физическая картина внешних явлений, сопровождающих действие электронов на металл, состоит из рентгеновского излучения, теплоизлучеия, возникновения отраженных, вторичных электронов, испарения металла в виде атомов и ионов металла. Схема данных явлений изображена на рис.3.

Вторичные электроны делятся на три группы: упруго отраженные электроны, энергия которых примерно равна падающим; электроны, отраженные в результате неупругого соударения и имеющие более или менее большие потери; собственно вторичные электроны, энергия которых не превышает 50 эВ.

Рис.3 Фйзическая картина явлений, сопровождающих проникновение электронов в веществе:

1 - атомы металла,

3 - пучок электронов,

4 -рентгеновское излучение,

5 - отраженные и вторичные электроны,

6 - тепловое и световое излучение

Характерные значения параметров сварочных электронных лучей:

Минимальный радиус пучков 0,1... 1 мм;

Электронный пучок –это направленный поток электронов. Можно, например, получить электронный пучок из электронной лампы. Для этого необходимо сделать в аноде отверстие. Часть электронов ускоренных электрическим полем будут попадать в это отверстие и создавать за анодом электронный пучок. Причем мы сожжем даже управлять количеством электронов в этом пучке. Для этого надо будет поставить между катодом и анодом дополнительный электрод, потенциал которого мы будем изменять.

Основные свойства электронного пучка

  • При попадании пучка электронов на поверхность какого-либо тела, он будет вызывать нагревание этого тела.Это свойство электронных пучков широко используется для электронной плавки сверхчистых металлов.
  • Получение рентгеновского излучения, которое будет возникать приторможении быстрых электронов. Это свойство широко используется в рентгеновских трубах и аппаратах, сделанных на их основе.
  • При попадании пучка электронов на некоторые вещества, например, стекло, они начинают светиться. Этиматериалы получили название люминофоров.
  • Электронные пучки будут отклоняться электрическим полем. Если, например, мы пустим пучок электронов между пластинами конденсатора, электроны будут отклоняться от отрицательно заряженной пластины.
  • Электронный пучок отклоняется под действием магнитного поля. Если пустить пучок электронов над северным полюсом магнита, то он отклонится в левую сторону, а если над южным – в правую сторону. Именно поэтому полярное сияние можно наблюдать толькоу полюсов Земли.

Последние три свойства электронного пучка нашли применение в электронно-лучевой трубке.

Электронно-лучевая трубка

Общий вид и устройство электронно-лучевой трубки представлены на следующем рисунке:

картинка

В узком краю ЭЛТ расположена электронная пушка. Она состоит из катода и анода и является источником пучка электронов. В электронной пушке пучок электронов разгоняется до нужной скорости. Помимо этого, в электронной трубке пучок электронов фокусируется таким образом, чтобы площадь его поперечного сечения была почти точечных размеров.

После того, как пучок вылетает из электронной пушки он последовательно проходит через две пары управляющих пластин. Они способствуют изменению направления пучка. Если на них нет разности потенциалов, то пучок будет направлен в середину экрана. Если мы подадим напряжение на вертикально расположенные пластины, пучок сместится в горизонтальном направлении на некоторый угол. Если мы подадим напряжение на горизонтально расположенные пластины, соответственно, пучок сместится в вертикальном направлении. Таким образом, используя две пары пластин, мы можем добиться смещение луча в любую точку экрана.

· Электронные пучки. Под электронными пучками понимают направленные потоки электронов, поперечные размеры которых значительно меньше их длины. Электронные пучки впервые были обнаружены в газовомразряде, происходящем при пониженном давлении.

При тлеющем разряде положительными ионами с катода выбивается большое число электронов. Если разряд происходит в трубке при очень больших разрежениях, то средняя длина свободного пробега электронов увеличивается и катодное темное пространство расширяется. Электроны, выбитые с катода положительными ионами, движутся почти без столкновений и образуют катодные лучи. Эти лучираспространяются нормально к поверхности катода. Если в аноде электронной лампы сделать отверстие, то часть электронов, ускоренных электрическим полем, пролетит в отверстие, образуя за анодом электронный пучок.

· Свойства и применение электронных пучков. Электронные пучки вызывают свечение(флуоресценцию) некоторых веществ. К ним относятся стекло, сульфиды цинка, кадмия и др. Эти вещества называются люминофо-рами. Это свойство электронных пучков применяется в вакуумной электро-нике – свечение экранов телевизоров, осциллографов, электронно-оптических преобразователей и др. Попадая на тела, электронные пучки вызывают их нагревание. Это свойство пользуется для сварки сверхчистых металлов в вакууме.

Электронные пучки отклоняются в электрическом и магнитном полях. Возможность управления электронным пучком с помощью электрического и магнитного поля и свечение экранов, покрытых люминофором под действием электронных пучков, используют в электронно-лучевых трубках.

· Электронно-лучевая трубка. Устройство электронно-лучевой трубки показано на рис. 12.4.1. Она представляет собой стеклянный вакуумный баллон L , в котором находится «электронная пушка», состоящая из накаленного катода К , эмитирующего электроны, и анода с диафрагмой (чаще нескольких анодов, расположенныхдруг за другом) D 1 , D 2 . Между катодом и анодом создают разность потенциалов U , позволяющую разогнать электроны до большой скорости и получить узкий пучок. В месте попадания электронного пучка на экран Е , покрытый флуоресцирующим составом, возникает яркая светящаяся точка.

Управление пучком электронов производится двумя парами пластин С 1 и С 2 расположенных перпендикулярно друг другу. Поле пластин С 1 смещает луч в горизонтальном направлении, поле пластин С 2 - в вертикальном. На пластины С 1 и С 2 можно подавать либо постоянное, либо переменное напря­жение. В зависимости от этого светящееся пятно на экране будет либо оставаться на месте, либо перемещаться, образуя прямую, синусоиду и т. д. На этом свойстве основано устройство осциллографа. В более сложных случаях на экране можно получить чередование темных и светлых пятен, которые дают изображение предметов. Такое явление мы наблюдаем в электронно-лучевой трубке телевизора.

Вопросы для повторения:

1. В чем состоит ионизация газа и рекомбинация ионов в газе?

2. Что такое газовый разряд?

3. В чем заключается разница между самостоятельным и несамостоя-тельным газовыми разрядами?

4. Что представляют собой дуговой и тлеющий разряды?

5. Что такое плазма? Какими свойствами она обладает?

6. Что такое диод, как он устроен и почему может работать выпрямителем переменного тока?

7. Что такое электронные пучки, какими свойствами обладают, где применяются?

8. Приведите примеры применения тлеющего разряда в технике.

9. Приведите примеры практического применения плазмы.

10. Опишите механизм образования электронно-ионных лавин.

Резюме:

В процессе изучения темы мы ознакомились со свойствами газовых разрядов и протеканием электрического тока в газах и вакууме.

Приложение

Приложение N 1.

Распределение электронов и дырок описывается функцией Ферми–Дирака.

,

где f Ф-Д (Е ) – вероятность того, что энергетическое состояние занято и может колебаться от 0 до 1 ,

E F – уровень Ферми, часто называемый энергией Ферми или электрохи-мическим потенциалом.


Согласно принципу Паули каждое квантовое состояние может быть заня-то только одним электро-ном. При большем их числе, при абсолютном нуле температур все состояния ниже E F заполнены:

f Ф-Д (Е ) = 1 , а выше E F – свободны от электронов и f Ф-Д (Е ) = 0 . Так как при Т = 0ºК электроны проводимости обладают ненулевой энергией, но распределены по всем разрешенным состояниям от 0 до E F (эВ) то

.

Уровень Ферми в собственном полупроводнике определяется уравнением:

Плотность состояний g(E)

Число состояний на единичный энергетический интервал в единице объема полупроводника как функция энергии.

В двух прилегающих друг к другу фазах электронное равновесие до-стигается при равенстве уровней Ферми. -

Приложение N 2.

Для определения вида функции φ(х) мы воспользовались известным из электростатики уравнением Пуассона, связывающим потенциал поля U(x) с объемной плотностью ρ(х) неподвижных зарядов, создающих это поле.

Это уравнение имеет вид:

принимаем ρ(х) = qNd


Глоссарий

Аморфные вещества С термодинамической точки зрения аморфное ТТ находится в метастабильном состоянии и со временем должно закристаллизоваться. Аморфные вещества ведут себя как жидкости с аномально высокой вязкостью. К ним относятся стекла, пластмассы и смолы, При повышении температуры они постепенно размягчаются и приобретают способность течь, как жидкости [§1.1].
Анизотропия Неодинаковость свойств кристалла в разных направлениях, которая является результатом его симметрии и внутреннего строения[§1.1].
Акцепторные уровни Примеси, захватывающие электроны из валентной зоны полупровод-ника, называют акцепторными акцепторными уровнями. Полупроводники, содержащие такие примеси, называются дырочными полупроводниками, или полупроводниками p -типа;часто их называютакцепторными полупроводниками . [§ 3.6.1].
Адсорбционный слой См. [§ 4.2.2].
Барьерная емкость При обратном напряжении, приложенном к p -n переходу, носители заря-дов обоих знаков находятся по обе стороны перехода, а в области самого перехода их очень мало. Таким образом, в режиме обратного напряжения p -n переход представляет собой емкость. Эту емкость называют барьерной (С б) . [§ 8.5].
Ван-дер-ваальсовские связи Силы взаимодействия в таких кристаллах определяются наличием у молекул естественных или индуцированных электрических моментов [§ 1.3].
Валентная зона При сближении атомов на растояние примерно 10 –8 см.,будет происходить перекрытие волновых функций атомарных электронов. Благодаря этому энергетический уровень валентных электронов превращается в зону.Эта зона носит название валентной [§ 2.1].
Водородная связь В кристаллах с водородными связями каждый атом водорода связан силами притяжения одновременно с двумя другими атомами. Водородная связь вместе с электростатическим притяжением дипольных моментов молекул воды определяет свойства воды и льда[§1.1].
Вольтамперная характеристика p-n перехода См. [§8.4].
Время жизни носителей Среднее время существования носителей заряда в полупроводнике обычно называют временем жизни носителей [ § 3.8].
Вырожденный газ В вырожденном газе в формировании электропроводности могут участвовать не все свобод-ные электроны, а лишь те из них, которые располагаются непосредственно у уровня Ферми.[§ 5.2.2].
Генерация носителей заряда Генерация носителей заряда (образование свободных электронов и дырок) происходит при воздействии теплового хаотического воздействия атомов кристаллической решетки (тепловая генерация), при воздействии поглощенных полупроводником квантов света (световая генерация) и других энергетических факторов [§ 3.4].
Гетеропереход Гетеропереходом называют переход, образующийся на границе контакта двух полупроводников с различной шириной запрещенной зоны. [§ 9.3].
Дефекты в кристалле Нрушения периодичности решетки, которые не сводятся к тепловым движениям, называются дефектами [§ 1.7].
Дефекты по Шоттки В реальных кристаллах некоторые узлы кри-сталлической решетки, в которых должны находиться атомы, оказываются незанятыми [§ 1.7].
Дефекты по Френкелю Они возникают в том случае, когда атом покидает свое место в узле кристаллической решетки и размещается в междоузлии в окружении атомов, расположенных на своих законных местах [§ 1.7].
Дислокации Этот вид дефектов возникает в случае, когда между атомными плоскостями вклинивается неполная дополнительная атомная плоскость [§ 1.7].
Дырка Вакантное место в ковалентной связи получило название дырки. Незавершенная связь будет иметь избыточный положительный заряд равный по величине заряду электрона [§ 3.2].
Донорные уровни Примеси, являющиеся источником электронов проводимости, называютсядонорами , а энергетические уровни этих примесей – донорными уровнями. Полупроводники, содержащие донорную примесь, называются электронными полупроводниками, или полупроводниками п -типа;часто их называют такжедонорными полупроводниками [§3.6.1].
Дрейфовый ток Ток, обусловленный внешним электрическим полем, получил название дрейфового тока. [ § 3.8].
Диффузионный ток Ток, возникающий в результате диффузии носителей из области, где их концентрация повышена, в направлении области с более низкой концентрацией, называется диффузионным бездрейфовым током . [ § 3.8].
Диффузионная длина Среднее расстояние, которое проходят за время жизни носители, называют диффузионной длиной носителей заряда. .
Двойной электрический слой Совокупность положительных ионов у поверхности металла и электронов, появляющихся над поверхностью, называется двойным элект-рическим слоем. .
Запрещенная зона Зоны дозволенных энергий отделены друг от друга интервалом, называемым запрещенной зоной или энергетической щелью [§ 2.1].
Зона проводимости Если же в самой верхней занятой, но не полной зоне, имеются свободные энергетические уровни, на которые могут переходить электроны, то они образуют так называемую зону проводимости [§ 2.1].
Ионные кристаллы Ионные кристаллы (NaСl, KC1 и др.) характерны тем, что силы притяжения, действующие между ионами - электростатические. [§1.1].
Индексы Миллеры В ристаллографии принято пользоваться для обозначения плоскостей особыми индексами Миллера. [ § 1.6].
Инжекционный лазер См.[§10.6].
Инверсия населенностей Инверсия населенностей – соотношение между населенностями разных энергетических уровней атомов или молекул вещества, при котором число частиц на верхнем из данной пары уровней больше, чем на нижнем. [§10.5].
Кристалл Кристалл, представляет собой совокупность атомов, упорядоченно расположенных в пространстве и удерживаемых около положения равновесия силами взаимодействия. Структурными единицами ТТ служат атомы, молекулы или ионы. Термодинамически устойчивыми ТТ являются кристаллические, так как они обладают минимальной внутренней энергией, с повышением температуры, по достижении определенной температуры, называемой температурой плавления, они скачкомпереходят в жидкое состояние. Кристалл имеет прерывистую периодическую структуру. [§1.1].
Ковалентный кристалл В ковалентных кристаллах (алмаз, Ge, Si и др.) валентные электроны соседних атомов обобществлены, поэтому ковалентный кристалл можно рассматривать как одну огромную молекулу [§1.1].
Класс симметрии В кристаллографии показано, что существуют всего 32 возможные комбинации элементов симметрии. Каждая из таких возможных комбинаций называется классом симметрии. В природе существуют только кристаллы, относящиеся к одному из 32 классов симметрии [§ 1.3].
Коэффициент Холла См.[§ 6.1.1].
Контактная разность потенциалов См. [§ 7.1.1].
Когерентность Когерентность – согласованное протекание во времени нескольких колебательных или волновых процессов. Т.е. если разность фаз двух колебаний остается постоянной во времени, или же два идеальных монохроматических колебания имеют одну и ту же частоту, то такие колебания называются когерентными. [§10.5].
Лазеры Вынужденное когерентное излучение называют стимулированным или индуцированным, а излучатели таких волн получили название лазеров (от английского Light Amplification by Stimulated Emission of Radiation – усиление света за счет индуцированного излучения). [§10.4].
Металлическая связь В металлических кристаллах связь (металлическая связь) обуслов-лена коллективным взаимодействием подвижных электронов с остовом кристаллической решетки. Для переходных металлов характерна также ковалентная связь, осуществляемая электронами незаполненных внутренних оболочек [§1.1].
Молекулярные кристаллы В молекулярных кристаллах молекулы связаны между собой относительно слабыми электростатическими силами (ван-дер-ваальсовы силы) обусловленными динамической поляризацией молекул [§1.1].
Неравновесная концентрация Если с помощью какого либо внешнего воздействия динамическое равновесие концентраций электронов и дырок в полупроводнике нарушено, то появляется дополнительная неравновесная концентрация носителей заряда. [§3.8].
Невырожденный газ В случае невырожденного газа плотность заполнения зоны проводи-мости электронами на столько небольшая, что они практически никогда не встречаются так близко, что бы их поведение могло ограничиваться принци-пом Паули.[§ 5.2.1, § 5.2.2].
Несамостоятельный газовый разряд Процесс протекания тока через газ называют газовым разрядом. Ток в газе, возникающий при наличии внешнего ионизатора, называется несамостоятельным газовым разрядом.
Ось симметрии Если кристалл обладает осью симметрии (поворотной осью), то он может быть совмещен сам с собой, т.е. приведен в положение неотличимое от исходного, путем поворота на некоторый угол вокруг этой оси. В зависимости от симметрии кристалла величина угла поворота, необходимого для совмещения кристалла с самим собой, может составлять 360, 180, 120, 90, 60 градусов. (2п / п, где n = 1, 2, 3, 4 или 6) [§ 1.3].
Основные носители Электроны, составляющие подавляющее большинство носителей заряда в полупроводниках п -типа, называют основными носителями заряда, а дырки – неосновными.. И на оборот, дырки составляющие подавляющее большинство носителей заряда в полупроводниках p -типа, называют основными носителями заряда, а электроны– неосновными. [§ 3.6.2, § 3.6.3].
Омический переход Контакт, электрическое сопротивление которого мало и не зависит от направления тока в заданном рабочем диапазоне токов. [§9.3.3].
Период трансляции Трансляция а представлена вектором, имеющим определенное направление и численное значение, равное а, называемое периодом трансляции [§1.3].
Плоскость симметрии Если одна половина кристалла совмещается с другой при отражении в некоторой плоскости, как в зеркале, то такая плоскость называется плоскостью симметрии [§ 1.3].
Поворотно-зеркальная ось К этому элементу симметрии приводит одновременное применение двух операций: поворота вокруг оси и зеркального отражения в плоскости, перпендикулярной оси [§ 1.3].
Полупроводники Полупроводники, широкий класс веществ с электронным механизмом электропроводности, по её удельному значению sзанимающих про-межуточное положение между металлами (s ~ 10 4 -10 6 Ом -1 см -1) и хорошими диэлектриками (s ~ 10 -12 -10 -11 Ом -1 см -1) (интервалы значений sуказаны при комнатной температуре) [§ 3.1].
Примесный полупроводник Полупроводник, имеющий примеси, называется примесным, а его электропроводность обусловленную наличием в кристалле примесей-примесной [§ 3.6.1].
Полупроводник n-типа См. Донорные уровни. [§ 3.6.1].
Полупроводник p-типа См. Акцепторные уровни [§ 3.6.1].[ § 3.6.3].
Примесная проводимость Проводимость, вызванная присутствием в кристалле полупроводника примесей из атомов с иной валентностью, называется примесной [§ 3.6.2].
Переход Шоттки Выпрямляющий контакт металл – полупро-водник п -типа называют переходом Шоттки. Важнейшей особенностью перехода Шоттки по сравнению с р-п переходом является отсутствие инжекции неосновных носителей заряда . [§9.1].
Поверхностные явления в полупроводниках Физические явления, возникающие у поверхности полупроводникового кристалла вызванные нарушением распределения потенциала кристаллической решетки полупроводника вследствие его обрыва у поверхности; наличием нескомпенсированных валентных связей у поверхностных атомов; искажением потенциала решетки из-за поверхностных атомов; искажением потенциала решетки из-за возможных поверхностных дефектов структуры кристалла. [§9.2].
Поверхностный потенциал Если принять потенциал в объеме полупроводника равным нулю, то потенциал поверхности будет отличен от нуля из-за наличия зарядов между объемом и поверхностью. Разность потен-циалов между поверхностью и объемом называют поверхностным потенциалом [§9.2].
Пробой Туннельный -основан на изученном нами туннельном эффекте – когда электроны проходят через потенциальный барьер р-п- перехода, не изменяя своей энергии.
Лавинный -Механизм лавинного пробоя подобен механизму ударной ионизации в газах. Под действием сильного электрического поля электроны могут освободиться из ковалентных связей и получить энергию, достаточную для преодоления потенциального барьера в р-п- переходе. Двигаясь с большой скоростью в области р-п- перехода они сталкиваются с нейтральными атомами и ионизируют их.
Тепловой -Электрический и тепловой пробой во многих случаях происходят одновременно. Во время электрического пробоя полупроводник разогревается и затем происходит тепловой пробой. Тепловая генерация пар электрон –дырка приводит к увеличению концентрации неосновных носителей заряда и к росту обратного тока, а увеличение тока, приводит в свою очередь к дальнейшему повышению температуры. Процесс нарастает лавинообразно. При чрезмерном разогреве кристалла, р-п- переход необратимовыходит из строя.
Работа выхода Работой выхода называется работа по перемещению электрона из проводника в окружающее пространство равна произведению заряда электрона е на пройденную разность потенциалов φ 0 .[§ 4.2.1].
Рекомбинация носителей заряда Процесс превращения свободного электрона в связанный электрон и исчезновение пары носителей заряда (электрон-дырка) носит название рекомбинации.
Силы взаимодействия Природа сил взаимодействия между атомами в кристаллах хорошо известна. Это – электрические силы отталкивания и притяжения по-ложительно и отрицательно заряженных частиц, имеющихся в каждом атоме. [§1.1].
Сингония В кристаллографии принято объединять 32 класса симметрии в 7 систем симметрии или 7 сингоний, которые носят следующие названия в порядке возрастания симметрии триклинная система, включающая два класса симметрии, тригональная система, объединяющая семь классов, моноклинная система, куда входят три класса, гексагональная система - пять классов, ромбическая, также с тремя классами, тетрагональная система с семью классами, кубическая система [§ 1.3]. [§ 1.3].
Собственный полупроводник Полупроводник будет являться собственным, если влияние примесей на его свойства пренебрежимо мало. В нем свободные носители заряда возникают только за счет разрыва валентных связей [§ 3.2].
Стимулированное излучение Может воз-никнуть процесс, при котором все возбужденные атомы излучают почти одновременно, взаимосвязано и так, что генерируемые фотоны абсолютно неотличимы от тех, которые эту генерацию вызвали. Такое вынужденное когерентное излучение называют стимулированным или индуцированным [§10.4.].
Термопара См.[§11.2.1].
Термоэлемент См. [§ 11.2.2].
Термоэлектрические явления См. [§10.1.1].
Трансляция Кристалл имеет прерывистую периодическую структуру. С геомет-рической точки зрения такую структуру можно создать с помощью операции параллельного смещения, которая называется трансляцией [§1.3].
Твердое тело Твердым телом (ТТ) называют такое агрегатное состояние вещества, которое характеризуется постоянством формы рассматриваемой макро-системы и особым характером теплового движения атомов, составляющих макросистему. Различают кристаллические и аморфные ТТ. Термодинами-чески устойчивыми ТТ являются кристаллические, так как они обладают минимальной внутренней энергией[§1.1].
Трансляционная группа Положение любой точки в пространственной решетке определяться комбинацией перемещений ma+nb+pc. Комбинация трех векторов а,b,с называется трансляционной группой [§1.3].
Тепловой пробой p-n перехода Тепловой пробойp-nперехода происходит вследствие вырывания ва-лентных электронов из связей в атомах при тепловых колебаниях кристалли-ческой решетки. Тепловая генерация пар электрон-дырка приводит к увели-чению концентрации не-основных носителей заряда и к росту обратного тока. [§8.4].
Туннельный эффект Туннельный эффект заключается в том, что электроны проходят через потенциальный барьер p-n перехода, не изменяя своей энергии. [§8.6].
Фотопроводимость полупроводников Явлением фотопроводимости называется увеличение электропроводности полупроводника под воздействием электромагнитного излучения. [§ 10.1].
Фоторезистивный эффект Сущность этого явления состоит в том, что при поглощении квантов света с энергией достаточной для ионизации собственных атомов полупроводника или ионизации примесей, происходит увеличение концентрации носителей заряда. [§10.2].
Центр симметрии Если в кристалле существует точка, обладающая тем свойством, что при замене радиуса-вектора r , любой из частиц, составляющих кристалл на обратный ему вектор -r , кристалл переходит в состояние, неотличимое от исходного, то эта точка называется центром симметрии или центром инверсии [§ 1.3].
Экстракция носителей заряда Для неосновных носителей (дырок в n - области и электронов в р - области) потенциальный барьер в электронно-дырочном переходе отсутствует, и они будут втягиваться полем в области p-n перехода. Это явление называется экстракцией. [§ 8.2].
Элементарная ячейка Параллелепипед, построенный на трех элементарных трансляциях а, в, с, называется элементарным параллелепипедом или элементарной ячейкой.[ §1.3].
Элементы симметрии плоскость симметрии, ось симметрии, центр симметрии, зеркально-поворотная ось симметрии[ §1.3].
Электрохимический потенциал Энергия электрохимического потенциала – работа, которую необходимо затратить для изменения числа частиц в системе на единицу при условии постоянства объема и температуры [§ 3.3].
Электрический пробой p-n перехода Электрический пробой происходит в результате внутренней электростатической эмиссии (зинеровский пробой) и под действием ударной ионизации атомов полупроводника (лавинный пробой). [§ 8.4].
Электронная эмиссия См. [§ 4.2.2].
Электронно –дырочный переход (p-n переход). Переход между материалами с электропроводностью n- и p- типа носит название p-n перехода. [§ 7.2].
Электростатический домен См. Эффект Ганна [§ 5.6].
Энергия Ферми При температуре равной абсолютному нулю Т = 0 К энергия всей атомной системы, в том числе и электронного газа минимальна. Однако при этом наблюдается характерная ситуация, когда электроны, находящиеся на верхних энергетических уровнях, обладают еще достаточно большой энергией, которую они не могут сбросить и перейти на нижние уровни из-за запрета Паули. Энергия электронов, занимающих самый верхний из занятых уровней, обозначается ε макс и называется энергией Ферми [§ 2.1, § 3.3].
Эффективная масса Влияние на движение электрона в поле периодического кристаллического потенциала ионов и остальных электронов приводит к тому, что свойства носителей тока в кристалле (электронов проводимости и дырок) во многом отличается от свойств электронов в свободном пространстве. А их масса (эффективная масса) может сильно отличаться от массы свободного электрона и зависеть от направления движения [§ 3.5].
Эффект Ганна См.[§ 5.6].
Эффект Зиннера См.[§ 5.6].
Эффект Зеебека См. [§ 10.1.1].
Эффект Пельтье См. [§ 10.1.2].
Эффект Томсона См. [§ 10.1.3].
Эффект Холла Явление возникновения в полупроводнике с текущим по нему током поперечного электрического поля под действием магнитного поля называют эффектом Холла. [§ 6.1.1].
Эффект Штарка См.[§ 5.6].

Развитие электронной техники позволило получать мощные электронные пучки, энергия которых достаточна для осуществле­ния различных технологических процессов. Это послужило осно­ванием для создания целой технологической отрасли, получив­шей название «электронно-лучевая технология».

В настоящее время электронно-лучевая технология сформиро­валась как самостоятельное направление в области обработки
материалов, обладающее широкими технологическими возмож­ностями в самых различных областях науки и техники.

Электронный луч как технологический инструмент позволяет осуществлять нагрев, плавку и испарение практически всех материалов, сварку и размерную обработку, нанесение покрытий и запись информации. Такая универсальность электронного луча дает возможность использовать одно и то же оборудование для различных технологических целей и совмещать в одном цикле обработки различные технологические процессы.

ФОРМИРОВАНИЕ ЭЛЕКТРОННОГО ЛУЧА

Формирование электронного луча для технологических целей можно представить состоящим из следующих основных стадий:

1. Получение свободных электронов.

2. Ускорение электронов электростатическим или электромаг­нитным полем и формирование электронного пучка.

3. Изменение поперечного сечения электронного пучка (чаще всего для его «фокусировки» на обрабатываемой поверхности).

4. Отклонение электронного луча и обеспечение требуемой траектории перемещения точки его встречи с обрабатываемой поверхностью (фокального пятна).

5. Собственно взаимодействие электронного луча с обраба­тываемой поверхностью для осуществления требуемого техноло­гического процесса.

Для формирования электронного луча и управления им при­меняется ряд специальных устройств, называемых «электрон­ными пушками». Функциональная схема такого устройства при­ведена на рис. 3.1.

Источником электронов в электронных пушках обычно служит термоэмиссионный ка­тод 1, который выполняется из вольфрама, тантала или гекса - борида лантана, обладающих высокими эмиссионными ха­рактеристиками. В зависимости от материала катода его рабо­чая температура может дости­гать 2400...2800 К - Подогрев катода чаще всего осуществ­ляется при помощи накаливае­мого электрическим током эле­мента, причем в некоторых случаях сам этот элемент мо­жет выполнять функции катода (катод прямого накала).

На некотором расстоянии от катода находится анод 2,
выполненный в виде массивной детали с отверстием по оси. Меж­ду катодом и анодом от специального высоковольтного источника питания 3 прикладывается ускоряющее напряжение (30... 150 кВ), причем анод обычно соединяется с корпусом установки, а катод­ный узел крепится на высоковольтном изоляторе. Вследствие разности потенциалов между катодом и анодом электроны уско­ряются до значительных скоростей, большая часть их проходит через отверстие в аноде и затем продолжает в заанодном прост­ранстве движение по инерции. Этот движущийся электронный поток обладает еще сравнительно невысокими удельными энер­гетическими показателями и для формирования из него электрон­ного луча с необходимыми характеристиками обычно требуется дополнительная операция - фокусирование луча.

Следует отметить, что в рабочем пространстве электронной пушки необходим вакуум, так как при большом количестве моле­кул остаточных газов они препятствуют свободному прохожде­нию электронов из-за их взаимных столкновений. Кроме того, условия работы подогревного катода также требуют защиты его от взаимодействия с атмосферными газами. Рабочий вакуум в электронной пушке должен быть не хуже 1 10_3...1 10~4 Па. При уменьшении вакуума происходит пробой между катодом и анодом электронной пушки, что может привести к выходу из строя высоковольтного выпрямителя.

Для фокусирования электронного луча в электронной пушке обычно используется система диафрагм и магнитных линз. Маг­нитная линза 4 представляет собой соленоид с магнитопроводом, создающий специальной формы магнитное поле, которое при взаимодействии с электроном изменяет его траекторию и искрив­ляет ее в направлении к оси системы. При этом можно добиться «сходимости» электронов на достаточно малой площади поверх­ности и в фокусе электронный луч может обладать весьма высокой плотностью энергии, достигающей 5-Ю6 Вт/мм2. Такая плотность энергии достаточна для осуществления целого ряда технологических процессов, причем в результате изменения фоку­сировки она может быть плавно изменена до минимальных значений.

В конструкцию электронной пушки обычно входит также «отклоняющая система» 5, служащая для перемещения электрон­ного луча по обрабатываемой поверхности. Перемещение луча осуществляется вследствие его взаимодействия с поперечным магнитным полем, создаваемым отклоняющей системой. Обычно для этой цели электронная пушка имеет две пары отклоняющих катушек, обеспечивающих перемещение луча по двум взаимно перпендикулярным направлениям. При питании отклоняющих катушек током определенной частоты и амплитуды можно полу­чить практически любую траекторию перемещения электронного луча по обрабатываемой поверхности, что широко используется в электронно-лучевой технологии.

Электронная пушка обычно выполняется в виде одного функ­ционального блока, который или неподвижно крепится к ваку­умной камере 6, или перемещается внутри камеры при помощи специальных механизмов.

Обрабатываемое изделие 7 помещают в вакуумную камеру, снабженную загрузочными крышками и иллюминаторами для наблюдения за процессами обработки. При большой протяжен­ности зоны обработки изделие обычно перемещается или вра­щается в вакуумной камере при помощи специальных механиз­мов. Для малой обрабатываемой площади (обычно менее 10Х ХЮ мм) обычно достаточно перемещения луча, а изделие может оставаться неподвижным.

ОСНОВНЫЕ ФИЗИЧЕСКИЕ ХАРАКТЕРИСТИКИ

ЭЛЕКТРОННОГО ЛУЧА

Электрон как устойчивая материальная частица может быть сравнительно просто выделен различными физическими спосо­бами, что и обусловило его широкое использование в различных областях науки и техники.

Наиболее простой путь - нагрев твердых тел (чаще всего металлов), которые при этом начинают испускать термоэлек­троны.

Для сообщения электронам необходимой энергии и формиро­вания из них потока частиц, несущих определенную энергию, могут использоваться различные методы. Самый простой из них и наиболее распространенный в настоящее время - ускорение электронов электрическим полем, основанный на том, что на электрон в этом поле действует сила

TOC o "1-5" h z F = eE, (3.1)

где е - заряд электрона; Е - напряженность поля.

Если поместить электрон в поле, то при прохождении разнос­ти потенциалов U он приобретает энергию

Это приращение энергии электрона происходит вследствие увеличения кинетической энергии (скорости) его движения, в связи с чем

eU = mj^v2 - v%)/2, (3.3)

где те - масса электрона; v - конечная скорость электрона; Оо - начальная скорость электрона.

Принимая vo ~ 0, получим

eU - mev2/2, (3.4)

т. е. энергия электрона зависит от его массы и скорости его движения. В реальных условиях, когда масса электрона постоян­на, единственный путь увеличения его энергии - повышение ско­рости его движения, что и реализуется в электронной пушке.

Из формулы (3.4) можно получить выражение скорости дви­жения электрона прн прохождении разности потенциалов U:

и = л/(2е/те)и. (3.5)

Подставляя в это выражение значения заряда и массы элек­трона, можно получить расчетное соотношение напряжения и скорости электрона в виде

v = 5,93-105т/^ м/с. (3.6)

В реальных условиях значение U колеблется в пределах 15 ООО...200 ООО В, что позволяет разгонять электроны до значи­тельных скоростей.

Выбор ускоряющего напряжения при электронно-лучевой обработке в существенной мере зависит от назначения процесса. С одной стороны, чем выше это напряжение, тем большую энер­гию можно сообщить электронам и тем эффективнее будет воз­действие электронного луча на обрабатываемый материал. С другой стороны, повышение напряжения приводит к резкому повышению уровня рентгеновского излучения, сопутствующего электронно-лучевой обработке, усложнению и удорожанию обо­рудования и необходимости выполнения специальных требований техники безопасности. В связи с этим в электронно-лучевой

технологии в настоящее время применяется следующее разделе­ние электронно-лучевого оборудования по значению ускоряющего напряжения:

1. Низковольтные системы с ускоряющим напряжением

15 ООО...30 ООО В. Эти системы наиболее просты по конструкции и в эксплуатации и применяются в основном для операций, связанных с плавлением и сваркой различных материалов.

2. Системы с промежуточным ускоряющим напряжением (50 ООО...80 000 В) применяются в тех случаях, когда необходимо увеличить глубину проплавления обрабатываемого материала.

3. Высоковольтные системы с ускоряющим напряжением

100 000...200 000 В наиболее сложны в изготовлении и эксплуата­ции и применяются в тех случаях, когда необходимо проведение прецизионной размерной обработки и микросварки.

Важная положительная особенность электронного луча - возможность управления им при помощи электростатических и магнитных полей. Наибольшее распространение на практике

получили магнитные системы фокусировки и управления пере­мещением луча.

На движущийся электрон в магнитном поле действует сила

F = Bv sina, (3.7)

где В - магнитная индукция; v - скорость движения электрона; a-угол между направлением движения электрона и магнитной силовой линией поля.

Под действием этой силы электрон будет двигаться в магнит­ном поле по окружности, лежащей в плоскости, перпендикуляр­ной силовым линиям поля. Суммарная траектория движения электрона под действием магнитного поля и инерционных сил перемещения его с начальной скоростью представляет собой спираль, радиус которой зависит от начальной скорости элек­трона и напряженности магнитного поля.

Создавая при помощи специальной магнитной системы (маг­нитной лннзы) по оси электронного луча магнитное поле опреде­ленной формы, можно обеспечить сходимость траекторий элек­тронов в одной точке (фокусировку) и изменять ее в широких пределах. При этом изменяется концентрация энергии на обра­батываемом изделии, что представляет значительный интерес с технологической точки зрения.

Для перемещения электронного луча по обрабатываемой по­верхности обычно используют его взаимодействие со скрещен­ными поперечными магнитными полями, создаваемыми откло­няющей системой. Малая инерционность электронов позволяет обеспечить широкий диапазон скоростей перемещения электрон­ного луча по обрабатываемой поверхности при практически лю­бой форме траектории.

Необходимое условие существования электронного луча - создание вакуума на пути движения электронов, так как в про­тивном случае нз-за соударения с молекулами атмосферных га­зов электроны отдают им свою энергию и луч «рассеивается».

Средняя длина свободного пробега электрона в газе опреде­ляется выражением

К=/{лпг2), (3.8)

где п - концентрация газа на пути движения электронов; г - газокннетический радиус взаимодействия молекул газа.

Значення средней длины свободного пробега электрона в воз­духе (при 20°С) и в вакууме приведены ниже:

р, Па (мм рт. ст.) . . 1,01 -10*(760) 133(1) 1,33 (КГ2) 133-КГ2(1(Г4)

А, мм.......................... 3,5-КГ4 2,6-10-" 26,6 2660

Таким образом, исходя из конструктивных особенностей уста­новок, нижней допустимой границей давления (вакуума) для электронно-лучевых установок следует считать 1-Ю - Па. В реальных условиях давление стараются довести до 10_3... Ю-4 Па, так как при ухудшении вакуума в электронной пушке резко увеличивается число ионизированных электронами ионов остаточных газов и это может привести к пробою промежутка между анодом и катодом пушки.

Очевидно, что выводить электронный луч из вакуума в об­ласть с более высоким давлением имеет смысл только в том слу­чае, когда путь электронов в этой области предельно мал.

Такие электронные пушки с выводом луча в атмосферу иногда применяют для . Пушка при этом перемещается непосред­ственно по свариваемому изделию, причем ход луча в атмосфере составляет 0,1...0,3 мм. Применяемое при этом ускоряющее на­пряжение составляет 150...200 кВ, а в зону между пушкой и сва­риваемой поверхностью подают защитный газ (гелий или аргон).

ВЗАИМОДЕЙСТВИЕ ЭЛЕКТРОННОГО ЛУЧА

С ВЕЩЕСТВОМ

В результате встречи потока электронов с обрабатываемым веществом кинетическая энергия движущихся электронов при взаимодействии с атомами вещества превращается в другие виды энергии.

Мощность электронного пучка в месте встречи с обрабаты­ваемыми материалами

Р = ив1лц, (3.9)

где UB - ускоряющее напряжение; /л - ток луча; т] - эффектив­ный к. п. д. нагрева.

Удельная поверхностная мощность луча в зоне его воздей­ствия на вещество

где F - площадь сечения луча на поверхности вещества - одна из важнейших энергетических характеристик электронно-лучевых процессов и в значительной мере определяет возможности

электронно-лучевой технологии.

Максимальное значение р0 может достигать 106...108 Вт/мм2, что позволяет проводить размерную обработку материалов путем их локального испарения в месте воздействия луча на изделие. По мере уменьшения р0 (это сравнительно просто можно осу­ществить путем расфокусировки луча) возможно проведение

термических процессов плавки, сварки, нагрева в вакууме, а так­же нетермических процессов типа стерилизации, полимеризации и т. п.

Достигая обрабатываемой поверхности, электроны пучка внедряются в вещество, испытывая торможение и проходя при этом некоторый путь. Длина этого пути была изучена Шенландом и определяется по формуле

б = 2,1.10-“и7р> (3.11)

где р - плотность вещества.

Реальная глубина проникновения электрона в вещество в соответствии с формулой (3.11) обычно не превышает нескольких десятков микрометров, но учет ее весьма существен при учете взаимодействия электронов с веществом, особенно при больших значениях удельной мощности в пучке.

Проходя сквозь вещество, электроны взаимодействуют с крис­таллической структурой или отдельными частицами вещества. При этом вследствие обмена энергией увеличивается амплитуда колебаний составляющих вещество частиц, изменяются парамет­
ры его кристаллической решетки, повышается температура ве­щества. Достаточно большая энергия, сообщенная электронами атомам, может привести даже к разрыву связей между отдель­ными атомами.

Торможение электрона в веществе сопровождается кроме вы­деления тепловой энергии рядом различных побочных явлений и суммарное выделение энергии прн электронной бомбардировке поверхности расходуется на следующие основные процессы;

1. Собственно нагрев поверхности, используемый в технологи­ческих целях.

2. Тормозное рентгеновское излучение, возникающее при электронной бомбардировке материалов.

3. Вторичная электронная эмиссия, отражение электронов и термоэлектронная эмиссия с обрабатываемой проверхности.

4. Различные потери.

Нагрев обрабатываемого материала электронным лучом осу­ществляется в результате выделения энергии в поверхностных слоях вещества и дальнейшей теплопередачи ее во внутренние слои. Высокая интенсивность ввода энергии в вещество при электронно-лучевой обработке приводит к развитию значитель­ных поверхностных температур, уровень которых может превы­шать точку кипения даже самых тугоплавких материалов.

ПРИМЕНЕНИЕ ЭЛЕКТРОННО-ЛУЧЕВЫХ

ПРОЦЕССОВ ДЛЯ СВАРКИ

Электронно-лучевая сварка - одно из самых распространен­ных технологических применений электронного луча. Поскольку сварка - процесс, связанный с локальным плавлением и после­дующей кристаллизацией расплавленного металла, ширина зоны расплавленного металла имеет при сварке важное значение. Кристаллизация металла в сварочной ванне в значительной мере определяет свойства металла шва и изменение ширины зоны про­плавления при сварке становится важным фактором воздействия на свойства сварного соединения. Кроме того, от объема расплав­ленного металла зависят деформ ции и напряжения, возникающие после сварки в сварных конструкциях, что также требует регулирования объ­ема сварочной ванны.

Сварка электронным лучом позво­ляет путем фокусировки в широких пределах изменять ширину сварочной ванны. Как видно из рис. 3.2, а, б, прн относительно небольших удельных мощ­ностях электронного луча форма про­плавления имеет такой же характер, как для традиционных процессов газо­вой и дуговой сварки.

По мере увеличения удельной мощности электронного луча наряду с процессами плавления начинается интенсивное испаре­ние металла с поверхности сварочной ванны. Это приводит к деформации жидкого металла под действием реакции паров, углублению сварочной ванны и получению швов с глубоким про­плавлением (рис. 3.2, в). По чисто внешним признакам такое проплавление часто называют «кинжальным»; швы с кинжаль­ным проплавлением дают ряд преимуществ по сравнению со сварными швами традиционной формы.

Кинжальное проплавление дает возможность за один проход сварить без разделки кромок детали толщиной до І00 мм, в то время как при дуговой сварке для этой цели необходима раздел­ка кромок и несколько десятков проходов. Глубокое проплавле­ние позволяет получать сварные соединения принципиально но­вой формы, не доступные для других способов сварки плавле­нием.

Возможность получения при электронно-лучевой сварке ван­ны расплавленного металла малого объема резко снижает дефор­мации свариваемых изделий, что позволяет сваривать конструк­ции из уже окончательно обработанных деталей и узлов с мини­мальной последующей размерной обработкой или вовсе без нее. При этом возможна также сварка изделий в термообработанном состоянии (например, после закалки), так как зона разупрочне­ния получается достаточно малой, что не сказывается на общей работоспособности изделия в целом. По такому принципу свари­вают блоки шестерен коробок передач автомобилей и станков, шевронные шестерни силовых передач, что значительно снижает трудоемкость их изготовления.

При электронно-лучевой сварке возможно получение швов малых размеров и эти «прецизионные» швы широко используют­ся в конструкциях раличных радиоэлектронных схем и устройств, где часто процесс сварки приходится вести с применением микро­скопа.

Наконец, вакуум как защитная среда при сварке для целого ряда химически активных и тугоплавких металлов и сплавов обеспечивает значительно более высокие показатели свойств сварного шва, чем сварка в инертных газах (Аг и Не). Поэтому целый ряд сварных конструкций - из этих материалов (вольфрам, молибден, тантал, цирконий, титан и др.) изготовляют исклю­чительно при помощи электронно-лучевой сварки.



Поделиться