И тепловых электростанциях в процессе. Как работает тепловая электростанция (ТЭЦ)? Обозначения на схеме ТЭС

На рис. 1 представлена классификация тепловых электрических станций на органическом топливе.

Рис. 1.

Тепловой электрической станцией называется комплекс оборудования и устройств, преобразующих энергию топлива в электрическую и (в общем случае) тепловую энергию.

Тепловые электростанции характеризуются большим разнообразием и их можно классифицировать по различным признакам.

По назначению и виду отпускаемой энергии электростанции разделяются на районные и промышленные.

Районные электростанции - это самостоятельные электростанции общего пользования, которые обслуживают все виды потребителей района (промышленные предприятия, транспорт, население и т.д.). Районные конденсационные электростанции, вырабатывающие в основном электроэнергию, часто сохраняют за собой историческое название - ГРЭС (государственные районные электростанции). Районные электростанции, вырабатывающие электрическую и тепловую энергию (в виде пара или горячей воды), называются теплоэлектроцентралями (ТЭЦ). Как правило, ГРЭС и районные ТЭЦ имеют мощность более 1 млн кВт.

Промышленные электростанции - это электростанции, обслуживающие тепловой и электрической энергией конкретные производственные предприятия или их комплекс, например завод по производству химической продукции. Промышленные электростанции входят в состав тех промышленных предприятий, которые они обслуживают. Их мощность определяется потребностями промышленных предприятий в тепловой и электрической энергии и, как правило, она существенно меньше, чем районных ТЭС. Часто промышленные электростанции работают на общую электрическую сеть, но не подчиняются диспетчеру энергосистемы.

По виду используемого топлива тепловые электростанции разделяются на электростанции, работающие на органическом топливе и ядерном горючем.

За конденсационными электростанциями, работающими на органическом топливе, во времена, когда еще не было атомных электростанций (АЭС), исторически сложилось название тепловых (ТЭС - тепловая электрическая станция). Именно в таком смысле ниже будет употребляться этот термин, хотя и ТЭЦ, и АЭС, и газотурбинные электростанции (ГТЭС), и парогазовые электростанции (ПГЭС) также являются тепловыми электростанциями, работающими на принципе преобразования тепловой энергии в электрическую.

В качестве органического топлива для ТЭС используют газообразное, жидкое и твердое топливо. Большинство ТЭС России, особенно в европейской части, в качестве основного топлива потребляют природный газ, а в качестве резервного топлива - мазут, используя последний ввиду его высокой стоимости только в крайних случаях; такие ТЭС называют газомазутными. Во многих регионах, в основном в азиатской части России, основным топливом является энергетический уголь - низкокалорийный уголь или отходы добычи высококалорийного каменного угля (антрацитовый штыб - АШ). Поскольку перед сжиганием такие угли размалываются в специальных мельницах до пылевидного состояния, то такие ТЭС называют пылеугольными.

По типу теплосиловых установок, используемых на ТЭС для преобразования тепловой энергии в механическую энергию вращения роторов турбоагрегатов, различают паротурбинные, газотурбинные и парогазовые электростанции.

Основой паротурбинных электростанций являются паротурбинные установки (ПТУ), которые для преобразования тепловой энергии в механическую используют самую сложную, самую мощную и чрезвычайно совершенную энергетическую машину - паровую турбину. ПТУ - основной элемент ТЭС, ТЭЦ и АЭС.

ПТУ, имеющие в качестве привода электрогенераторов конденсационные турбины и не использующие тепло отработавшего пара для снабжения тепловой энергией внешних потребителей, называются конденсационными электростанциями. ПТУ оснащённые теплофикационными турбинами и отдающие тепло отработавшего пара промышленным или коммунально-бытовым потребителям, называют теплоэлектроцентралями (ТЭЦ).

Газотурбинные тепловые электростанции (ГТЭС) оснащаются газотурбинными установками (ГТУ), работающими на газообразном или, в крайнем случае, жидком (дизельном) топливе. Поскольку температура газов за ГТУ достаточно высока, то их можно использовать для отпуска тепловой энергии внешнему потребителю. Такие электростанции называют ГТУ-ТЭЦ. В настоящее время в России функционирует одна ГТЭС (ГРЭС-3 им. Классона, г. Электрогорск Московской обл.) мощностью 600 МВт и одна ГТУ-ТЭЦ (в г. Электросталь Московской обл.).

Традиционная современная газотурбинная установка (ГТУ) - это совокупность воздушного компрессора, камеры сгорания и газовой турбины, а также вспомогательных систем, обеспечивающих ее работу. Совокупность ГТУ и электрического генератора называют газотурбинным агрегатом.

Парогазовые тепловые электростанции комплектуются парогазовыми установками (ПГУ), представляющими комбинацию ГТУ и ПТУ, что позволяет обеспечить высокую экономичность. ПГУ-ТЭС могут выполняться конденсационными (ПГУ-КЭС) и с отпуском тепловой энергии (ПГУ-ТЭЦ). В настоящее время в России работает четыре новых ПГУ-ТЭЦ (Северо-Западная ТЭЦ Санкт-Петербурга, Калининградская, ТЭЦ-27 ОАО «Мосэнерго» и Сочинская), построена также теплофикационная ПГУ на Тюменской ТЭЦ. В 2007 г. введена в эксплуатацию Ивановская ПГУ-КЭС.

Блочные ТЭС состоят из отдельных, как правило, однотипных энергетических установок - энергоблоков. В энергоблоке каждый котел подает пар только для своей турбины, из которой он возвращается после конденсации только в свой котел. По блочной схеме строят все мощные ГРЭС и ТЭЦ, которые имеют так называемый промежуточный перегрев пара. Работа котлов и турбин на ТЭС с поперечными связями обеспечивается по другому: все котлы ТЭС подают пар в один общий паропровод (коллектор) и от него питаются все паровые турбины ТЭС. По такой схеме строятся КЭС без промежуточного перегрева и почти все ТЭЦ на докритические начальные параметры пара.

По уровню начального давления различают ТЭС докритического давления, сверхкритического давления (СКД) и суперсверхкритических параметров (ССКП).

Критическое давление - это 22,1 МПа (225,6 ат). В российской теплоэнергетике начальные параметры стандартизованы: ТЭС и ТЭЦ строятся на докритическое давление 8,8 и 12,8 МПа (90 и 130 ат), и на СКД - 23,5 МПа (240 ат). ТЭС на сверхкритические параметры по техническим причинам выполняется с промежуточным перегревом и по блочной схеме. К суперсверхкритическим параметрам условно относят давление более 24 МПа (вплоть до 35 МПа) и температуру более 5600С (вплоть до 6200С), использование которых требует новых материалов и новых конструкций оборудования. Часто ТЭС или ТЭЦ на разный уровень параметров строят в несколько этапов - очередями, параметры которых повышаются с вводом каждой новой очереди.

Что такое и каковы же принципы работы ТЭС? Общее определение таких объектов звучит примерно следующим образом - это энергетические установки, которые занимаются переработкой природной энергии в электрическую. Для этих целей также используется топливо природного происхождения.

Принцип работы ТЭС. Краткое описание

На сегодняшний день наибольшее распространение получили именно На таких объектах сжигается которое выделяет тепловую энергию. Задача ТЭС - использовать эту энергию, чтобы получить электрическую.

Принцип работы ТЭС - это выработка не только но и производство тепловой энергии, которая также поставляется потребителям в виде горячей воды, к примеру. Кроме того, эти объекты энергетики вырабатывают около 76% всей электроэнергии. Такое широкое распространение обусловлено тем, что доступность органического топлива для работы станции довольно велико. Второй причиной стало то, что транспортировка топлива от места его добычи к самой станции - это довольно простая и налаженная операция. Принцип работы ТЭС построен так, что имеется возможность использовать отработавшее тепло рабочего тела для вторичной поставки его потребителю.

Разделение станций по типу

Стоит отметить, что тепловые станции могут делиться на типы в зависимости от того, какой именно они производят. Если принцип работы ТЭС заключается лишь в производстве электрической энергии (то есть тепловая энергия не поставляет потребителю), то ее называют конденсационной (КЭС).

Объекты, предназначенные для производства электрической энергии, для отпуска пара, а также поставки горячей воды потребителю, имеют вместо конденсационных турбин паровые. Также в таких элементах станции имеется промежуточный отбор пара или же устройство противодавления. Главным преимуществом и принципом работы ТЭС (ТЭЦ) такого типа стало то, что отработанный пар также используется в качестве источника тепла и поставляется потребителям. Таким образом, удается сократить потерю тепла и количество охлаждающей воды.

Основные принципы работы ТЭС

Прежде чем перейти к рассмотрению самого принципа работы, необходимо понять, о какой именно станции идет речь. Стандартное устройство таких объектов включает в себя такую систему, как промежуточный перегрев пара. Она необходима потому, что тепловая экономичность схемы с наличием промежуточного перегрева, будет выше, чем в системе, где она отсутствует. Если говорить простыми словами, принцип работы ТЭС, имеющей такую схему, будет гораздо эффективнее при одних и тех же начальных и конечных заданных параметрах, чем без нее. Из всего этого можно сделать вывод, что основа работы станции - это органическое топливо и нагретый воздух.

Схема работы

Принцип работы ТЭС построен следующим образом. Топливный материал, а также окислитель, роль которого чаще всего берет на себя подогретый воздух, непрерывным потоком подаются в топку котла. В роли топлива могут выступать такие вещества, как уголь, нефть, мазут, газ, сланцы, торф. Если говорить о наиболее распространенном топливе на территории Российской Федерации, то это угольная пыль. Далее принцип работы ТЭС строится таким образом, что тепло, которое образуется за счет сжигания топлива, нагревает воду, находящуюся в паровом котле. В результате нагрева происходит преобразование жидкости в насыщенный пар, который по пароотводу поступает в паровую турбину. Основное предназначение этого устройства на станции заключается в том, чтобы преобразовать энергию поступившего пара, в механическую.

Все элементы турбины, способные двигаться, тесно связываются с валом, вследствие чего они вращаются, как единый механизм. Чтобы заставить вращаться вал, в паровой турбине осуществляется передача кинетической энергии пара ротору.

Механическая часть работы станции

Устройство и принцип работы ТЭС в ее механической части связан с работой ротора. Пар, который поступает из турбины, имеет очень высокое давление и температуру. Из-за этого создается высокая внутренняя энергия пара, которая и поступает из котла в сопла турбины. Струи пара, проходя через сопло непрерывным потоком, с высокой скоростью, которая чаще всего даже выше звуковой, воздействуют на рабочие лопатки турбины. Эти элементы жестко закреплены на диске, который, в свою очередь, тесно связан с валом. В этот момент времени происходит преобразование механической энергии пара в механическую энергию турбин ротора. Если говорить точнее о принципе работы ТЭС, то механическое воздействие влияет на ротор турбогенератора. Это из-за того, что вал обычного ротора и генератора тесно связываются между собой. А далее происходит довольно известный, простой и понятный процесс преобразования механической энергии в электрическую в таком устройстве, как генератор.

Движение пара после ротора

После того как водяной пар проходит турбину, его давление и температура значительно опускаются, и он поступает в следующую часть станции - конденсатор. Внутри этого элемента происходит обратное превращение пара в жидкость. Для выполнения этой задачи внутри конденсатора имеется охлаждающая вода, которая поступает туда посредством труб, проходящих внутри стен устройства. После обратного преобразования пара в воду, она откачивается конденсатным насосом и поступает в следующий отсек - деаэратор. Также важно отметить, что откачиваемая вода, проходит сквозь регенеративные подогреватели.

Основная задача деаэратора - это удаление газов из поступающей воды. Одновременно с операцией очистки, осуществляется и подогрев жидкости так же, как и в регенеративных подогревателях. Для этой цели используется тепло пара, которое отбирается из того, что следует в турбину. Основное предназначение операции деаэрации состоит в том, чтобы понизить содержание кислорода и углекислого газа в жидкости до допустимых значений. Это помогает снизить скорость влияние коррозии на тракты, по которым идет поставка воды и пара.

Станции на угле

Наблюдается высокая зависимость принципа работы ТЭС от вида топлива, которое используется. С технологической точки зрения наиболее сложным в реализации веществом является уголь. Несмотря на это, сырье является основным источником питания на таких объектах, число которых примерно 30% от общей доли станций. К тому же планируется увеличивать количество таких объектов. Также стоит отметить, что количество функциональных отсеков, необходимых для работы станции, гораздо больше, чем у других видов.

Как работают ТЭС на угольном топливе

Для того чтобы станция работала непрерывно, по железнодорожным путям постоянно привозят уголь, который разгружается при помощи специальных разгрузочных устройств. Далее имеются такие элементы, как по которым разгруженный уголь подается на склад. Далее топливо поступает в дробильную установку. При необходимости есть возможность миновать процесс поставки угля на склад, и передавать его сразу к дробилкам с разгрузочных устройств. После прохождения этого этапа раздробленное сырье поступает в бункер сырого угля. Следующий шаг - это поставка материала через питатели в пылеугольные мельницы. Далее угольная пыль, используя пневматический способ транспортировки, подается в бункер угольной пыли. Проходя этот путь, вещество минует такие элементы, как сепаратор и циклон, а из бункера уже поступает через питатели непосредственно к горелкам. Воздух, проходящий сквозь циклон, засасывается мельничным вентилятором, после чего подается в топочную камеру котла.

Далее движение газа выглядит примерно следующим образом. Летучее вещество, образовавшееся в камере топочного котла, проходит последовательно такие устройства, как газоходы котельной установки, далее, если используется система промежуточного перегрева пара, газ подается в первичный и вторичный пароперегреватель. В этом отсеке, а также в водяном экономайзере газ отдает свое тепло на разогрев рабочего тела. Далее установлен элемент, называющийся воздухоперегревателем. Здесь тепловая энергия газа используется для подогрева поступающего воздуха. После прохождения всех этих элементов, летучее вещество переходит в золоуловитель, где очищается от золы. После этого дымовые насосы вытягивают газ наружу и выбрасывают его в атмосферу, использую для этого газовую трубу.

ТЭС и АЭС

Довольно часто возникает вопрос о том, что общего между тепловыми и и есть ли сходство в принципах работы ТЭС и АЭС.

Если говорить об их сходстве, то их несколько. Во-первых, обе они построены таким образом, что для своей работы используют природный ресурс, являющийся ископаемым и иссекаемым. Кроме этого, можно отметить, что оба объекта направлены на то, чтобы вырабатывать не только электрическую энергию, но и тепловую. Сходства в принципах работы также заключаются и в том, что ТЭС и АЭС имеют турбины и парогенераторы, участвующие в процессе работы. Далее имеются лишь некоторые отличие. К ним можно отнести то, что, к примеру, стоимость строительства и электроэнергии, полученной от ТЭС гораздо ниже, чем от АЭС. Но, с другой стороны, атомные станции не загрязняют атмосферу до тех пор, пока отходы утилизируются правильным образом и не происходит аварий. В то время как ТЭС из-за своего принципа работы постоянно выбрасывают в атмосферу вредные вещества.

Здесь кроется и главное отличие в работе АЭС и ТЭС. Если в тепловых объектах тепловая энергия от сжигания топлива передается чаще всего воде или преобразуется в пар, то на атомных станциях энергию берут от деления атомов урана. Полученная энергия расходится для нагрева самых разных веществ и вода здесь используется довольно редко. К тому же все вещества находятся в закрытых герметичных контурах.

Теплофикация

На некоторых ТЭС в их схемах может быть предусмотрена такая система, которая занимается теплофикацией самой электростанции, а также прилегающего поселка, если таковой имеется. К сетевым подогревателям этой установки, пар отбирается от турбины, а также имеется специальная линия для отвода конденсата. Вода подводится и отводится по специальной системе трубопровода. Та электрическая энергия, которая будет вырабатываться таким образом, отводится от электрического генератора и передается потребителю, проходя через повышающие трансформаторы.

Основное оборудование

Если говорить об основных элементах, эксплуатирующихся на тепловых электрических станциях, то это котельные, а также турбинные установки в паре с электрическим генератором и конденсатором. Основным отличием основного оборудования от дополнительного стало то, что оно имеет стандартные параметры по своей мощности, производительности, по параметрам пара, а также по напряжению и силе тока и т. д. Также можно отметить, что тип и количество основных элементов выбираются в зависимости от того, какую мощность необходимо получить от одной ТЭС, а также от режима ее эксплуатации. Анимация принципа работы ТЭС может помочь разобраться в этом вопросе более детально.

Электрической станцией называется энергетическая установка, служащая для преобразования природной энергии в электрическую. Наиболее распространены тепловые электрические станции (ТЭС), использующие тепловую энергию, выделяемую при сжигании органического топлива (твердого, жидкого и газообразного).

На тепловых электростанциях вырабатывается около 76% электроэнергии, производимой на нашей планете. Это обусловлено наличием органического топлива почти во всех районах нашей планеты; возможностью транспорта органического топлива с места добычи на электростанцию, размещаемую близ потребителей энергии; техническим прогрессом на тепловых электростанциях, обеспечивающим сооружение ТЭС большой мощностью; возможностью использования отработавшего тепла рабочего тела и отпуска потребителям, кроме электрической, также и тепловой энергии (с паром или горячей водой) и т.п.

Высокий технический уровень энергетики может быть обеспечен только при гармоничной структуре генерирующих мощностей: в энергосистеме должны быть и АЭС, вырабатывающие дешевую электроэнергию, но имеющие серьезные ограничения по диапазону и скорости изменения нагрузки, и ТЭЦ, отпускающие тепло и электроэнергию, количество которой зависит от потребностей в тепле, и мощные паротурбинные энергоблоки, работающие на тяжелых топливах, и мобильные автономные ГТУ, покрывающие кратковременные пики нагрузки.

1.1 Типы тэс и их особенности.

На рис. 1 представлена классификация тепловых электрических станций на органическом топливе.

Рис.1. Типы тепловых электростанций на органическом топливе.

Рис.2 Принципиальная тепловая схема ТЭС

1 – паровой котёл; 2 – турбина; 3 – электрогенератор; 4 – конденсатор; 5 – конденсатный насос; 6 – подогреватели низкого давления; 7 – деаэратор; 8 – питательный насос; 9 – подогреватели высокого давления; 10 – дренажный насос.

Тепловой электрической станцией называется комплекс оборудования и устройств, преобразующих энергию топлива в электрическую и (в общем случае) тепловую энергию.

Тепловые электростанции характеризуются большим разнообразием и их можно классифицировать по различным признакам.

По назначению и виду отпускаемой энергии электростанции разделяются на районные и промышленные.

Районные электростанции – это самостоятельные электростанции общего пользования, которые обслуживают все виды потребителей района (промышленные предприятия, транспорт, население и т.д.). Районные конденсационные электростанции, вырабатывающие в основном электроэнергию, часто сохраняют за собой историческое название – ГРЭС (государственные районные электростанции). Районные электростанции, вырабатывающие электрическую и тепловую энергию (в виде пара или горячей воды), называются теплоэлектроцентралями (ТЭЦ). Как правило, ГРЭС и районные ТЭЦ имеют мощность более 1 млн кВт.

Промышленные электростанции – это электростанции, обслуживающие тепловой и электрической энергией конкретные производственные предприятия или их комплекс, например завод по производству химической продукции. Промышленные электростанции входят в состав тех промышленных предприятий, которые они обслуживают. Их мощность определяется потребностями промышленных предприятий в тепловой и электрической энергии и, как правило, она существенно меньше, чем районных ТЭС. Часто промышленные электростанции работают на общую электрическую сеть, но не подчиняются диспетчеру энергосистемы.

По виду используемого топлива тепловые электростанции разделяются на электростанции, работающие на органическом топливе и ядерном горючем.

За конденсационными электростанциями, работающими на органическом топливе, во времена, когда еще не было атомных электростанций (АЭС), исторически сложилось название тепловых (ТЭС – тепловая электрическая станция). Именно в таком смысле ниже будет употребляться этот термин, хотя и ТЭЦ, и АЭС, и газотурбинные электростанции (ГТЭС), и парогазовые электростанции (ПГЭС) также являются тепловыми электростанциями, работающими на принципе преобразования тепловой энергии в электрическую.

В качестве органического топлива для ТЭС используют газообразное, жидкое и твердое топливо. Большинство ТЭС России, особенно в европейской части, в качестве основного топлива потребляют природный газ, а в качестве резервного топлива – мазут, используя последний ввиду его высокой стоимости только в крайних случаях; такие ТЭС называют газомазутными. Во многих регионах, в основном в азиатской части России, основным топливом является энергетический уголь – низкокалорийный уголь или отходы добычи высококалорийного каменного угля (антрацитовый штыб - АШ). Поскольку перед сжиганием такие угли размалываются в специальных мельницах до пылевидного состояния, то такие ТЭС называют пылеугольными.

По типу теплосиловых установок, используемых на ТЭС для преобразования тепловой энергии в механическую энергию вращения роторов турбоагрегатов, различают паротурбинные, газотурбинные и парогазовые электростанции.

Основой паротурбинных электростанций являются паротурбинные установки (ПТУ), которые для преобразования тепловой энергии в механическую используют самую сложную, самую мощную и чрезвычайно совершенную энергетическую машину – паровую турбину. ПТУ – основной элемент ТЭС, ТЭЦ и АЭС.

ПТУ, имеющие в качестве привода электрогенераторов конденсационные турбины и не использующие тепло отработавшего пара для снабжения тепловой энергией внешних потребителей, называются конденсационными электростанциями. ПТУ оснащённые теплофикационными турбинами и отдающие тепло отработавшего пара промышленным или коммунально-бытовым потребителям, называют теплоэлектроцентралями (ТЭЦ).

Газотурбинные тепловые электростанции (ГТЭС) оснащаются газотурбинными установками (ГТУ), работающими на газообразном или, в крайнем случае, жидком (дизельном) топливе. Поскольку температура газов за ГТУ достаточно высока, то их можно использовать для отпуска тепловой энергии внешнему потребителю. Такие электростанции называют ГТУ-ТЭЦ. В настоящее время в России функционирует одна ГТЭС (ГРЭС-3 им. Классона, г. Электрогорск Московской обл.) мощностью 600 МВт и одна ГТУ-ТЭЦ (в г. Электросталь Московской обл.).

Традиционная современная газотурбинная установка (ГТУ) – это совокупность воздушного компрессора, камеры сгорания и газовой турбины, а также вспомогательных систем, обеспечивающих ее работу. Совокупность ГТУ и электрического генератора называют газотурбинным агрегатом.

Парогазовые тепловые электростанции комплектуются парогазовыми установками (ПГУ), представляющими комбинацию ГТУ и ПТУ, что позволяет обеспечить высокую экономичность. ПГУ-ТЭС могут выполняться конденсационными (ПГУ-КЭС) и с отпуском тепловой энергии (ПГУ-ТЭЦ). В настоящее время в России работает четыре новых ПГУ-ТЭЦ (Северо-Западная ТЭЦ Санкт-Петербурга, Калининградская, ТЭЦ-27 ОАО «Мосэнерго» и Сочинская), построена также теплофикационная ПГУ на Тюменской ТЭЦ. В 2007 г. введена в эксплуатацию Ивановская ПГУ-КЭС.

Блочные ТЭС состоят из отдельных, как правило, однотипных энергетических установок – энергоблоков. В энергоблоке каждый котел подает пар только для своей турбины, из которой он возвращается после конденсации только в свой котел. По блочной схеме строят все мощные ГРЭС и ТЭЦ, которые имеют так называемый промежуточный перегрев пара. Работа котлов и турбин на ТЭС с поперечными связями обеспечивается по другому: все котлы ТЭС подают пар в один общий паропровод (коллектор) и от него питаются все паровые турбины ТЭС. По такой схеме строятся КЭС без промежуточного перегрева и почти все ТЭЦ на докритические начальные параметры пара.

По уровню начального давления различают ТЭС докритического давления, сверхкритического давления (СКД) и суперсверхкритических параметров (ССКП).

Критическое давление – это 22,1 МПа (225,6 ат). В российской теплоэнергетике начальные параметры стандартизованы: ТЭС и ТЭЦ строятся на докритическое давление 8,8 и 12,8 МПа (90 и 130 ат), и на СКД – 23,5 МПа (240 ат). ТЭС на сверхкритические параметры по техническим причинам вполняется с промежуточным перегревом и по блочной схеме. К суперсверхкритическим параметрам условно относят давление более 24 МПа (вплоть до 35 МПа) и температуру более 5600С (вплоть до 6200С), использование которых требует новых материалов и новых конструкций оборудования. Часто ТЭС или ТЭЦ на разный уровень параметров строят в несколько этапов – очередями, параметры которых повышаются с вводом каждой новой очереди.

В соответствии с технологическим процессом производства электрической и тепловой энергии на тепловых электростанциях (ТЭС) и общими требованиями управления организационная структура ТЭС состоит из производственных подразделений (цех, лаборатория, производственно-технические службы) и функциональных отделов.
Принципиальная схема управления электростанций при цеховой структуре показана на рис. 11.1.
По участию в технологическом процессе производства энергии различают цеха основного и вспомогательного производств.
К цехам основного производства относят цеха, которые по своей организации и технологическому процессу непосредственно участвуют в производстве электрической и тепловой энергии.
Цехами вспомогательного производства энергетических предприятий являются цеха, которые непосредственно не связаны с производством электрической и тепловой энергии, а лишь обслуживают цеха основного производства, создавая им необходимые условия для нормальной работы, например, осуществляя ремонт оборудования или снабжая материалами, инструментом, запасными частями, водой, транспортом и т.д. Сюда же относятся услуги лабораторий, проектно-конструкторских отделов и т.п.

К цехам основного производства на тепловых электростанциях относятся:
. топливно-транспортный цех: подача твердого топлива и его подготовка, железнодорожный и автомобильный транспорт, разгрузочные эстакады и склады топлива;
. химический цех в составе химической водоочистки и химической лаборатории, выполняющий производственные функции по химводоподготовке и химводоочистке и контролирующий качество топлива, воды, пара, масла и золы;
. котельный цех: подача жидкого и газового топлива, пылеприготовление, котельная и золоудаление;
. турбинный цех: турбинные установки, теплофикационное отделение, центральная насосная и водное хозяйство;
. электрический цех: все электрическое оборудование станции, электротехническая лаборатория, электроремонтная и трансформаторная мастерские, масляное хозяйство и связь.
К цехам вспомогательного производства на электростанциях относятся:
. механический цех: общестанционные мастерские, системы отопления производственных и служебных помещений, водопровод и канализация;
. ремонтно-строительный цех (РСЦ): надзор за производственными и служебными зданиями, ремонтирует их, а также содержит в надлежащем состоянии дороги и всю территорию станции;
. цех (или лаборатория) тепловой автоматики и измерений (ТАИ);
. электроремонтная мастерская (ЭРМ).
Производственная структура тепловой электростанции может быть упрощена с учетом ее мощности, количества основного оборудования, а также ее технологических особенностей, например, возможно объединение котельного и турбинного цехов. На ТЭС малой мощности, а также на ТЭС, работающих на жидком или газообразном топливе, получила широкое распространена производственная структура с двумя цехами - теплосиловым и электрическим.
Производственно-технический отдел (ПТО) электростанции разрабатывает режимы работы оборудования электростанции, эксплуатации- онные нормы и режимные карты. Он разрабатывает совместно с планово- экономическим отделом проекты планов выработки энергии и планы технико-экономических показателей на планируемый период по станции в целом и по отдельным цехам. ПТО организует технический учет работы оборудования, ведет учет расхода топлива, воды, пара, электроэнергии на собственные нужды, составляет необходимую техническую отчетность, обрабатывает первичную техническую документацию. ПТО анализирует выполнение установленных режимов и технических норм работы оборудования, разрабатывает мероприятия по экономии топлива (на ТЭС).
Производственно-технический отдел составляет общестанционный график ремонтов оборудования, участвует в приемке оборудования из ремонта, контролирует выполнение графика ремонтов, разрабатывает заявки электростанции на материалы, запасные части и оборудование, контролирует соблюдение установленных норм расхода материалов, обеспечивает внедрение передовых методов ремонта.
В состав аппарата электростанции входит группа инспекторов, контролирующая соблюдение на предприятии Правил технической эксплуатации и Правил техники безопасности.
Планово-экономический отдел (ПЭО) разрабатывает перспективные и текущие планы работы электростанции и ее цехов, осуществляет контроль за ходом выполнения плановых показателей.
Отдел персонала и социальных отношения решает под руководством директора комплекс задач по организации управления персоналом.
Отдел материально-технического снабжения (ОМТС) обеспечивает снабжение электростанции материалами, инструментами и запасными частями, заключает договора на материально-техническое снабжение и реализует их.
Отдел капитального строительства осуществляет организацию капитального строительства на электростанции.
Бухгалтерия ведет учет хозяйственной деятельности электростанции, осуществляет контроль за правильным расходованием средств и соблюдением финансовой дисциплины, составляет бухгалтерские отчеты и балансы.
Каждый цех электростанции возглавляется начальником, являющимся единоличным руководителем цеха и организующим его работу по выполнению плановых заданий.
Отдельные участки цеха возглавляются мастерами, которые отвечают за работу на своем участке.
Руководство оперативным персоналом на электростанции осуществляет начальник смены, во время своей смены непосредственно руководящий всем режимом работы электростанции и оперативными действиями ее персонала. В административно-техническом отношении дежурный инженер подчинен главному инженеру и свою работу проводит по его указаниям. В то же время начальник смены станции оперативно подчинен дежурному диспетчеру энергосистемы, который по режиму станции, ее нагрузке, схеме соединений отдает распоряжения помимо главного инженера. В аналогичном подчинении находятся и начальники смен цехов: в оперативном отношении они подчинены начальнику смены станции, а в административно-техническом - своему единоначальнику. Двойное подчинение дежурного персонала на энергетических предприятиях является одной из характерных их особенностей и обусловлено рассмотренными выше технологическими особенностями энергетического производства.
Организационные структуры электростанций в связи с реформированием электроэнергетики претерпевают изменения. В территориальных объединениях электростанций сосредотачиваются функции управления персоналом, финансами, снабжением, функции планирования, капитального строительства, рядом технических вопросов.

Основной структурной единицей на большинстве электростан­ций является цех . На тепловых станциях различают цеха основно­го, вспомогательного производства и непромышленных хозяйств.

· Цеха основного производства производят продукцию, для выпуска которой создано предприятие. На тепловых станциях основными являются цеха, в которых протекают производственные процессы по превращению химической энергии топлива в тепловую и элек­трическую энергию.

· Цеха вспомогательного производства промышленных предприя­тий, в том числе и электростанций, непосредственно не связаны с изготовлением основной продукции предприятия: они обслу­живают основное производство, способствуют выпуску продук­ции и обеспечивают основному производству необходимые усло­вия для нормальной работы. Эти цеха осуществляют ремонт обо­рудования, снабжение материалами, инструментом, приспособ­лениями, запасными частями, водой (промышленной), различ­ными видами энергии, транспортом и т. п.

· Непромышленными являются хозяйства, продукция и услуги которых не относятся к основной деятельности предприятия. В их функции входит обеспечение и обслуживание бытовых нужд пер­сонала предприятия (жилищные хозяйства, детские учреждения и т.п.).

Производственные структуры тепловой станции определяются соотношением мощности основных агрегатов (турбоагрегатов, па­ровых котлов, трансформаторов) и технологическими связями между ними. Решающим при определении структуры управления является соотношение мощностей и связи между турбинами и котельными агрегатами. На существующих электростанциях сред­ней и малой мощности однородные агрегаты соединяются между собой трубопроводами для пара и воды (пар из котлов собирается в общих сборных магистралях, из которых он распределяется между отдельными котлами). Такую технологическую схему называют централизованной . Широко применяют также секционную схему, при которой турбина с одним или двумя обеспечивающими ее паром котлами, образует секцию электростанции.

  • При таких схемах оборудование распределяется по цехам, объе­диняющим однородное оборудование: в котельном цехе - котель­ные агрегаты со вспомогательным оборудованием; турбинном - турбоагрегаты со вспомогательным оборудованием и т.д. По этому принципу на крупных тепловых электростанциях организуются сле­дующие цеха и лаборатории: топливно-транспортный, котельный, турбинный, электрический (с электротехнической лабораторией), цех (лаборатория) автоматики и теплового контроля, химический (с химической лабораторией), механический (при выполнении ремонта самой электростанцией этот цех становится ремонтно-механическим), ремонтно-строительный.

В настоящее время из-за особенностей технологического про­цесса производства энергии станций с агрегатами мощностью 200...800 МВт и выше применяют блочную схему связей оборудо­вания. На блочных электростанциях турбина, генератор, котел (или два котла) со вспомогательным оборудованием образуют блок; тру­бопроводов, связывающих агрегаты, для пара и воды между блока­ми, нет, резервные котлоагрегаты на электростанциях не устанав­ливаются. Изменение технологической схемы электростанции при­водит к необходимости реорганизации производственной структу­ры управления, в которой основным первичным производствен­ным подразделением является блок.

· Для станций блочного типа наиболее рациональной структурой управления является бесцехо­вая (функциональная) с организацией службы эксплуатации и служ­бы ремонта, возглавляемых начальниками служб - заместителями главного инженера станции. Функциональные отделы подчиняют­ся непосредственно директору станции, а функциональные служ­бы и лаборатории - главному инженеру станции.

· На крупных станциях блочного типа используется промежу­точная структура управления - блочно-цеховая . Котельный и тур­бинный цеха объединяют в один и организуют следующие цеха: топливно-транспортный, химический, тепловой автоматики и измерений, централизованного ремонта и др. При работе станции на газе топливно-транспортный цех не организуется.

Организационно-производственная структура гидроэлектростанций

На ГЭС имеет место как управление отдельными ГЭС, так и ее объединениями, расположенными на одной реке (кана­ле) или просто в каком-либо административном или хозяйствен­ном районе; такие объединения называются каскадными (рис. 23.2).

Организационная структура управления ГЭС:

а - 1-я и 2-я группы; 1 - директор ГЭС; 2 - зам. директора по административ­но-хозяйственной деятельности; 3 - зам. директора по капитальному строитель­ству; 4 - отдел кадров; 5 - главный инженер; 6 - бухгалтерия; 7 - плановый отдел; 8 - отдел гражданской обороны; 2.1 - транспортный участок; 2.2 - отдел материально-технического обеспечения; 2.3 - административно-хозяй­ственный отдел; 2.4 - жилищно-коммунальный отдел; 2.5 - охрана ГЭС; 5.1 - зам. гл. инженера по оперативной работе; 5.2 - начальник электроцеха; 5.3 - начальник турбинного цеха; 5.4 - начальник гидроцеха; 5.5 - производственно-технический отдел; 5.6 - служба связи; 5.7 - инженер по эксплуатации и техни­ке безопасности; 5.2.1 - электротехническая лаборатория; б - 3-я и 4-я группы; 1 - отдел материально-технического снабжения; 2 - производственно-техни­ческий отдел (ПТО); 3 - бухгалтерия; 4 - гидротехнический цех; 5 - элект­ромашинный цех

Организационная структура управления каскадом ГЭС: а - вариант 1; 1 - начальник электроцеха каскада; 2 - начальник турбинного цеха каскада; 3 - начальник гидроцеха каскада; 4 - начальник ПТО; 5 - на­чальник ГЭС-1; 6 - начальник ГЭС-2; 7 - начальник ГЭС-3; 8 - служба связи; 9 - местная служба релейной защиты и автоматики; 10 - инженер-инс­пектор по эксплуатации и технике безопасности; 5.1, 6.1, 7.1 - производствен­ный персонал соответственно ГЭС-1, 2, 3; б - вариант 2; 1 - директор каска­да; 2 - административные подразделения каскада; 3 - главный инженер; 3.1, 3.2, 3.3 - начальник соответственно ГЭС-1, 2, 3; 3.1.1, 3.2.1, 3.3.1 - произ­водственные подразделения, включая оперативный персонал соответственно ГЭС-1, 2, 3

В зависимости от мощности ГЭС и каскадов ГЭС, МВт, по струк­туре управления принято рассматривать шесть групп и столько же каскадов ГЭС:

  • В первых четырех группах применяется в основном цеховая организационная структура управления . На ГЭС и ее каскадах 1-й и 2-й групп предусматриваются, как правило, электрический, тур­бинный и гидротехнический цеха; 3-й и 4-й групп - электротур­бинный и гидротехнический;
  • На ГЭС малой мощности (5-я группа ) при­меняют бесцеховые структуры управления с организацией соот­ветствующих участков;
  • На ГЭС и каскадах мощностью до 25 МВт (6-я группа ) - только оперативно-ремонтный персонал .

При организации каскада ГЭС одна из станций каскада, как правило, наибольшая по мощности, выбирается базовой, на кото­рой размещаются управление каскадом, его отделы и службы, цеха, основные центральные склады и мастерские. При цеховой структу­ре управления каждый цех обслуживает оборудование и сооруже­ния всех ГЭС, входящих в каскад, а персонал находится или на базовой ГЭС, или распределен по станциям каскада. В случаях когда ГЭС каскада расположены на значительном расстоянии друг от друга и соответственно от базовой, необходимо назначать ответ­ственных за работу ГЭС, входящей в каскад.

При объединении в каскад больших по мощности ГЭС целесо­образна централизация только управленческих функций (руководство каскадом, бухгалтерия, снабжение и т.п.). На каждой ГЭС организуются цеха, проводящие полное эксплуатационное и ре­монтное обслуживание. При проведении крупных ремонтных ра­бот, например при капитальном ремонте агрегатов, часть рабочих соответствующего цеха с одной или нескольких ГЭС передается на ту станцию, где это необходимо.

Таким образом, рациональная структура управления в каждом случае принимается исходя из конкретных условий образования каскада. При большом числе ГЭС, входящих в каскад, использу­ется предварительное укрупнение станций, наиболее близко рас­положенных друг к другу, возглавляемых начальником группы ГЭС. Каждая группа самостоятельно ведет эксплуатационное обслужи­вание, включая текущий ремонт оборудования и сооружений.



Поделиться