Имитационное моделирование.

Имитационное моделирование (ситуационное моделирование) - метод, позволяющий строить модели , описывающие процессы так, как они проходили бы в действительности. Такую модель можно «проиграть» во времени как для одного испытания, так и заданного их множества. При этом результаты будут определяться случайным характером процессов. По этим данным можно получить достаточно устойчивую статистику .

Имитационное моделирование - это метод исследования, при котором изучаемая система заменяется моделью, с достаточной точностью описывающей реальную систему, с которой проводятся эксперименты с целью получения информации об этой системе. Экспериментирование с моделью называют имитацией (имитация - это постижение сути явления, не прибегая к экспериментам на реальном объекте).

Имитационное моделирование - это частный случай математического моделирования . Существует класс объектов, для которых по различным причинам не разработаны аналитические модели, либо не разработаны методы решения полученной модели. В этом случае аналитическая модель заменяется имитатором или имитационной моделью.

Имитационным моделированием иногда называют получение частных численных решений сформулированной задачи на основе аналитических решений или с помощью численных методов .

Имитационная модель - логико-математическое описание объекта, которое может быть использовано для экспериментирования на компьютере в целях проектирования, анализа и оценки функционирования объекта.

Энциклопедичный YouTube

    1 / 3

    ✪ Моделирование систем. Лекция 8. Имитационное моделирование систем

    ✪ Вебинар: Имитационное моделирование бизнес процессов

    ✪ Применение Имитационного Моделирования в Логистике.

    Субтитры

Применение имитационного моделирования

К имитационному моделированию прибегают, когда:

  • дорого или невозможно экспериментировать на реальном объекте;
  • невозможно построить аналитическую модель: в системе есть время, причинные связи, последствие, нелинейности, стохастические (случайные) переменные;
  • необходимо сымитировать поведение системы во времени.

Цель имитационного моделирования состоит в воспроизведении поведения исследуемой системы на основе результатов анализа наиболее существенных взаимосвязей между её элементами или другими словами - разработке симулятора (англ. simulation modeling ) исследуемой предметной области для проведения различных экспериментов.

Виды имитационного моделирования

  • Агентное моделирование - относительно новое (1990-е-2000-е гг.) направление в имитационном моделировании, которое используется для исследования децентрализованных систем, динамика функционирования которых определяется не глобальными правилами и законами (как в других парадигмах моделирования), а наоборот, когда эти глобальные правила и законы являются результатом индивидуальной активности членов группы. Цель агентных моделей - получить представление об этих глобальных правилах, общем поведении системы, исходя из предположений об индивидуальном, частном поведении её отдельных активных объектов и взаимодействии этих объектов в системе. Агент - некая сущность, обладающая активностью, автономным поведением, может принимать решения в соответствии с некоторым набором правил, взаимодействовать с окружением, а также самостоятельно изменяться.
  • Дискретно-событийное моделирование - подход к моделированию, предлагающий абстрагироваться от непрерывной природы событий и рассматривать только основные события моделируемой системы, такие, как: «ожидание», «обработка заказа», «движение с грузом», «разгрузка» и другие. Дискретно-событийное моделирование наиболее развито и имеет огромную сферу приложений - от логистики и систем массового обслуживания до транспортных и производственных систем. Этот вид моделирования наиболее подходит для моделирования производственных процессов. Основан Джеффри Гордоном в 1960-х годах.
  • Системная динамика - парадигма моделирования, где для исследуемой системы строятся графические диаграммы причинных связей и глобальных влияний одних параметров на другие во времени, а затем созданная на основе этих диаграмм модель имитируется на компьютере. По сути, такой вид моделирования более всех других парадигм помогает понять суть происходящего выявления причинно-следственных связей между объектами и явлениями. С помощью системной динамики строят модели бизнес-процессов, развития города, модели производства, динамики популяции, экологии и развития эпидемии. Метод основан Джеем Форрестером в 1950 годах.

Области применения

  • Динамика населения
  • ИТ-инфраструктура
  • Математическое моделирование исторических процессов
  • Пешеходная динамика
  • Рынок и конкуренция
  • Сервисные центры
  • Цепочки поставок
  • Уличное движение
  • Экономика здравоохранения

Имитационное моделирование

Моделирование

Моделирование является общепризнанным средством познания действи­тельности. Этот процесс состоит из двух больших этапов: разработки модели и анализа разработанной модели. Моделирование позволяет исследовать суть сложных процессов и явлений с помощью экспериментов не с реаль­ной системой, а с ее моделью. Известно, что для принятия разумного реше­ния по организации работы системы не обязательно знание всех характери­стик системы, всегда достаточен анализ ее упрошенного, приближенного представления.

В области создания новых систем моделирование является средством иссле­дования важных характеристик будущей системы на самых ранних стадиях ее разработки. С помощью моделирования возможно исследовать узкие мес­та будущей системы, оценить производительность, стоимость, пропускную способность - все главные ее характеристики еще до того, как система бу­дет создана. С помощью моделей разрабатываются оптимальные операци­онные планы и расписания функционирования существующих сложных систем. В организационных системах имитационное моделирование стано­вится основным инструментом сравнения различных вариантов управляю­щих решений и поиска наиболее эффективного из них как для решений внутри цеха, организации, фирмы, так и на макроэкономическом уровне.

Модели сложных систем строятся в виде программ, выполняемых на ком­пьютере. Компьютерное моделирование существует почти 50 лет, оно воз­никло с появлением первых компьютеров. С тех пор сложились две пере­крывающиеся области компьютерного моделирования, которые можно охарактеризовать как математическое моделирование и имитационное моделирование.

Математическое моделирование связано, в основном, с разработкой математи­ческих моделей физических явлений, с созданием и обоснованием численных методов. Существует академическая трактовка моделирования как области вычислительной математики, которая является традиционной для активности прикладных математиков. В России сложилась сильная школа в этой области: НИИ Математического Моделирования РАН - головная организация, Науч­ный Совет РАН по проблеме "Математическое моделирование", издается журнал "Математическое моделирование" (www . imamod . ru ).

Имитационное моделирование - это разработка и выполнение на компьютере программной системы, отражающей поведение и структуру моделируемого объекта. Компьютерный эксперимент с моделью состоит в выполнении на компьютере данной программы с разными значениями параметров (исход­ных данных) и анализе результатов этих выполнений.

Проблемы разработки имитационных моделей

Имитационное моделирование - очень обширная область. Можно по-разному подходить к классификации решаемых в ней задач. В соответствии с одной из классификаций эта область насчитывает в настоящее время че­тыре основных направления:

    моделирование динамических систем,

    дискретно-событийное моделирование,

    системная динамика

    агентное моделирование.

В каждом из этих направлений развиваются свои инструментальные средст­ва, упрощающие разработку моделей и их анализ. Данные направления (кроме агентного моделирования) базируются на концепциях и парадигмах, которые появились и были зафиксированы в инструментальных пакетах мо­делирования несколько десятилетий назад и с тех пор не менялись.

Моделирование динамических систем

Направлено на исследова­ние сложных объектов, поведение которых описывается системами алгебро-дифференциальных уравнений. Инженерным подходом к моделированию таких объектов 40 лет назад была сборка блок-схем из решающих блоков аналоговых компьютеров: интеграторов, усилителей и сумматоров, токи и напряжения в которых представляли переменные и параметры моделируе­мой системы. Этот подход и сейчас является основным в моделировании динамических систем, только решающие блоки являются не аппаратными, а программными. Он реализован, например, в инструментальной среде Simulink .

Дискретно-событийное моделирование

В нем рассматриваются системы с дискретными со­бытиями. Для создания имитационной модели такой системы моделируемая система приводится к потоку заявок, которые обрабатываются активными приборами. Например, для моделирования процесса обслуживания физических лиц в банке физические лица представляются в виде потока заявок, а работники банка, обслуживающие их представляются активными приборами. Идеология дискретно-событийного моделирования была сформулирована более 40 лет назад и реализована в среде моделирования GPSS , которая с некоторыми модификациями до сих пор используется для обучения имитационному моделированию.

Системная динамика .

Системная динамика – это направление в изучении сложных систем, исследующее ихповедениево времени и в зависимости от структуры элементов системы и взаимодействия между ними. В том числе: причинно-следственных связей, петельобратных связей, задержек реакции, влияния среды и других. Основоположником системной динамики является американский ученый Джей Форрестер. Дж. Форрестер применил принципы обратной связи, существующей в системах автоматического регулирования, для демонстрации того, что динамика функционирования сложных систем, в первую очередь производственных и социальных, существенно зависит от структуры связей и временных задержек в принятии решений и действиях, которые имеются в системе. В 1958 году он предложил использовать для компьютерного моделирования сложных систем потоковые диаграммы, отра­жающих причинно-следственные связи в сложной системе,

В настоящее время системная динамика превратилась в зрелую науку. Общество системной динамики (The- System Dynamics Society, www.systemdynamics.org) является официальным форумом системных анали­тиков во всем мире. Ежеквартально выходит журнал System Dynamics Review, ежегодно созываются несколько международных конференций по этим проблемам. Системная динамика как методология и инструмент ис­следования сложных экономических и социальных процессов изучается во многих бизнес-школах по всему миру..

Агентное моделирование

Агентное моделирование (agent-based model (ABM)) - метод имитационного моделирования, исследующий поведение децентрализованныхагентови то, как такое поведение определяет поведение всей системы в целом. В отличие отсистемной динамикианалитик определяет поведение агентов на индивидуальном уровне, а глобальное поведение возникает как результат деятельности множества агентов (моделирование «снизу вверх»).

Агентное моделирование включает в себя элементы теории игр, сложных систем, мультиагентных систем и эволюционного программирования, методы Монте-Карло, использует случайные числа.

Существует множество определений понятия агента. Общим во всех этих определениях является то, что агент - это некоторая сущность, которая обладает активностью, автономным поведением, может принимать решения в соответствии с некоторым набором правил, может взаимодействовать с окружением и другими агентами, а также может изменяться (эволюциони­ровать). Многоагентные (или просто агентные) модели используются для исследования децентрализованных систем, динамика функционирования которых определяется не глобальными правилами и законами, а наоборот, эти глобальные правила и законы являются результатом индивидуальной активности членов группы. Цель агентных моделей - получить представле­ние об этих глобальных правилах, общем поведении системы, исходя из предположений об индивидуальном, частном поведении ее отдельных ак­тивных объектов и взаимодействии этих объектов в системе.

При создании агентной модели логика поведения агентов и их взаимодейст­вие не всегда могут быть выражены чисто графическими средствами, здесь часто приходится использовать программный код. Для агентного моделирования используются пакеты Swarm и RePast. Примером агентной модели является модель развития города.

В современном мире информационных технологий десятилетие сравнимо с веком прогресса в традиционных технологиях, Но в имитационном моделировании почти без изменения применяются идеи и решения 60-х годов прошлого века. На базе этих идей еще в прошлом веке были разработаны программные средства, которые с незначительными изменениями применяются до сих пор. Разработка имитационных модели с использованием этих программ является весьма сложной и трудоемкой задачей, доступной только высококвалифицированным специалистам и требующей больших временных затрат. Один из разработчиков имитационных моделей Роберт. Шеннон писал: «разработка даже простых моделей требует 5-6 человеко-месяцев и стоит по­рядка 30 ООО долларов, а сложных - на два порядка больше». Иными слова­ми, трудоемкость построения сложной имитационной модели традицион­ными методами оценивается в сотню человеко-лет.

Имитационное моделирование традицион­ными методами реально используется уз­ким кругом профессионалов, которые должны иметь не только глубокие знания в той прикладной области, для которой строится модель, но также глубокие знания в программировании, теории вероятностей и статистике.

Кроме того, проблемы анализа современных реальных систем часто требуют разработки моделей, не укладывающихся в рамки одной единственной парадигмы моделирова­ния. Например, при моделировании системы с преобладающим дискретным типом событий может потребоваться введение переменных, описывающих непрерывные характеристики среды. В парадигму блочной модели потоков данных совершенно не вписываются дискретно-событийные системы, В системно-динамической модели часто возникает не­обходимость учета дискретных событий или моделирования индивидуаль­ных свойств объектов из разнородных групп. Поэтому использование указанных выше программных средств не отвечает современным требованиям,.

AnyLogic - инструмент имитационного моделирования нового поколения

AnyLogic - программное обеспечениедляимитационного моделированиянового поколения, разработанороссийскойкомпанией The AnyLogic Company (бывшая «Экс Джей Текнолоджис»,-англ.XJ Technologies). Этот инструмент существенно упрощает разработку моделей и их анализ.

Пакет AnyLogic создан с использованием последних достижений информационных технологий: объектно-ориентированный подход, элементы стандарта UML,языка программирования Java, и т.д. Первая версия пакета (Anylogic 4.0) была выпущена в 2000г. К настоящему времени выпущена версия Anylogic 6.9.

Пакет поддерживает все известные методы имитационного моделирования:

    Моделирование динамических систем

    системная динамика;

    дискретно-событийное моделирование;

    агентное моделирование.

Рост произво­дительности компьютеров и достижения в информационных технологиях, использованные в AnyLogic, сделали возможным реализацию агентных мо­делей, содержащих десятки и даже сотни тысяч активных агентов

С помощью AnyLogic стало возможным разрабатывать модели в следующих областях:

    производство;

    логистика и цепочки поставок;

    рынок и конкуренция;

    бизнес-процессы и сфера обслуживания;

    здравоохранение и фармацевтика;

    управление активами и проектами;

    телекоммуникации и информационные системы;

    социальные и экологические системы;

    пешеходная динамика;

Введение

Имитационное моделирование (simulation) является одним из мощнейших методов анализа экономических систем.

В общем случае, под имитацией понимают процесс проведения на ЭВМ экспериментов с математическими моделями сложных систем реального мира.

Цели проведения подобных экспериментов могут быть самыми различными - от выявления свойств и закономерностей исследуемой системы, до решения конкретных практических задач. С развитием средств вычислительной техники и программного обеспечения, спектр применения имитации в сфере экономики существенно расширился. В настоящее время ее используют как для решения задач внутрифирменного управления, так и для моделирования управления на макроэкономическом уровне. Рассмотрим основные преимущества применения имитационного моделирования в процессе решения задач финансового анализа.

Как следует из определения, имитация - это компьютерный эксперимент. Единственное отличие подобного эксперимента от реального состоит в том, что он проводится с моделью системы, а не с самой системой. Однако проведение реальных экспериментов с экономическими системами, по крайней мере, неразумно, требует значительных затрат и вряд ли осуществимо на практике. Таким образом, имитация является единственным способом исследования систем без осуществления реальных экспериментов.

Часто практически невыполним или требует значительных затрат сбор необходимой информации для принятия решений. Например, при оценке риска инвестиционных проектов, как правило, используют прогнозные данные об объемах продаж, затратах, ценах и т.д.

Однако чтобы адекватно оценить риск необходимо иметь достаточное количество информации для формулировки правдоподобных гипотез о вероятностных распределениях ключевых параметров проекта. В подобных случаях отсутствующие фактические данные заменяются величинами, полученными в процессе имитационного эксперимента (т.е. сгенерированными компьютером).

При решении многих задач финансового анализа используются модели, содержащие случайные величины, поведение которых не поддается управлению со стороны лиц, принимающих решения. Такие модели называют стохастическими. Применение имитации позволяет сделать выводы о возможных результатах, основанные на вероятностных распределениях случайных факторов (величин). Стохастическую имитацию часто называют методом Монте-Карло. Существуют и другие преимущества имитации.

Мы же рассмотрим технологию применения имитационного моделирования для анализа рисков инвестиционных проектов в среде MS Excel.

Имитационное моделирование

Имитационное моделирование (ситуационное моделирование) -- метод, позволяющий строить модели, описывающие процессы так, как они проходили бы в действительности. Такую модель можно "проиграть" во времени как для одного испытания, так и заданного их множества. При этом результаты будут определяться случайным характером процессов. По этим данным можно получить достаточно устойчивую статистику.

Имитационное моделирование -- это метод исследования, при котором изучаемая система заменяется моделью, с достаточной точностью описывающей реальную систему, с которой проводятся эксперименты с целью получения информации об этой системе. Экспериментирование с моделью называют имитацией (имитация -- это постижение сути явления, не прибегая к экспериментам на реальном объекте).

Имитационное моделирование -- это частный случай математического моделирования. Существует класс объектов, для которых по различным причинам не разработаны аналитические модели, либо не разработаны методы решения полученной модели. В этом случае аналитическая модель заменяется имитатором или имитационной моделью.

Имитационным моделированием иногда называют получение частных численных решений сформулированной задачи на основе аналитических решений или с помощью численных методов.

Имитационная модель -- логико-математическое описание объекта, которое может быть использовано для экспериментирования на компьютере в целях проектирования, анализа и оценки функционирования объекта.

К имитационному моделированию прибегают, когда:

· дорого или невозможно экспериментировать на реальном объекте;

· невозможно построить аналитическую модель: в системе есть время, причинные связи, последствие, нелинейности, стохастические (случайные) переменные;

· необходимо сымитировать поведение системы во времени.

Цель имитационного моделирования состоит в воспроизведении поведения исследуемой системы на основе результатов анализа наиболее существенных взаимосвязей между ее элементами или другими словами -- разработке симулятора (англ. simulation modeling) исследуемой предметной области для проведения различных экспериментов.

Имитационное моделирование позволяет имитировать поведение системы во времени. Причём плюсом является то, что временем в модели можно управлять: замедлять в случае с быстропротекающими процессами и ускорять для моделирования систем с медленной изменчивостью. Можно имитировать поведение тех объектов, реальные эксперименты с которыми дороги, невозможны или опасны. С наступлением эпохи персональных компьютеров производство сложных и уникальных изделий, как правило, сопровождается компьютерным трёхмерным имитационным моделированием. Эта точная и относительно быстрая технология позволяет накопить все необходимые знания, оборудование и полуфабрикаты для будущего изделия до начала производства. Компьютерное 3D моделирование теперь не редкость даже для небольших компаний.

Имитация, как метод решения нетривиальных задач, получила начальное развитие в связи с созданием ЭВМ в 1950-х--1960-х годах.

Можно выделить две разновидности имитации:

· Метод Монте-Карло (метод статистических испытаний);

· Метод имитационного моделирования (статистическое моделирование).

Виды имитационного моделирования:

· Агентное моделирование -- относительно новое (1990-е-2000-е гг.) направление в имитационном моделировании, которое используется для исследования децентрализованных систем, динамика функционирования которых определяется не глобальными правилами и законами (как в других парадигмах моделирования), а наоборот, когда эти глобальные правила и законы являются результатом индивидуальной активности членов группы. Цель агентных моделей -- получить представление об этих глобальных правилах, общем поведении системы, исходя из предположений об индивидуальном, частном поведении её отдельных активных объектов и взаимодействии этих объектов в системе. Агент -- некая сущность, обладающая активностью, автономным поведением, может принимать решения в соответствии с некоторым набором правил, взаимодействовать с окружением, а также самостоятельно изменяться.

· Дискретно-событийное моделирование -- подход к моделированию, предлагающий абстрагироваться от непрерывной природы событий и рассматривать только основные события моделируемой системы, такие как: "ожидание", "обработка заказа", "движение с грузом", "разгрузка" и другие. Дискретно-событийное моделирование наиболее развито и имеет огромную сферу приложений -- от логистики и систем массового обслуживания до транспортных и производственных систем. Этот вид моделирования наиболее подходит для моделирования производственных процессов. Основан Джеффри Гордоном в 1960-х годах.

· Системная динамика -- парадигма моделирования, где для исследуемой системы строятся графические диаграммы причинных связей и глобальных влияний одних параметров на другие во времени, а затем созданная на основе этих диаграмм модель имитируется на компьютере. По сути, такой вид моделирования более всех других парадигм помогает понять суть происходящего выявления причинно-следственных связей между объектами и явлениями. С помощью системной динамики строят модели бизнес-процессов, развития города, модели производства, динамики популяции, экологии и развития эпидемии. Метод основан Джеем Форрестером в 1950 годах.

При имитационном моделировании результат нельзя заранее вычислить или предсказать. Поэтому для предсказания поведения сложной системы (электроэнергетической, СЭС крупного производственного объекта и т.п.) необходим эксперимент, имитация на модели при заданных исходных данных.

Имитационное моделирование сложных систем используется при решении следующих задач.

    Если не существует законченной постановки задачи исследования и идёт процесс познания объекта моделирования.

    Если аналитические методы имеются, но математические процедуры столь сложны и трудоемки, что имитационное моделирование даёт более простой способ решения задачи.

    Когда кроме оценки параметров сложных систем желательно осуществить наблюдение за поведением их компонент в течение определённого периода.

    Когда имитационное моделирование является единственным способом исследования сложной системы из-за невозможности наблюдения явлений в реальных условиях.

    Когда необходимо контролировать протекание процессов в сложной системе путём ускорения или замедления явлений в ходе имитации.

    При подготовке специалистов и освоении новой техники.

    Когда изучаются новые ситуации в сложных системах, о которых мало известно или ничего неизвестно.

    Тогда особое значение имеет последовательность событий в проектируемой сложной системе и модель используется для предсказания «узких мест» функционирования системы.

Создание имитационной модели сложной системы начинается с постановки задачи. Но часто заказчик формулирует задачу недостаточно чётко. Поэтому работа обычно начинается с поискового изучения системы. Это порождает новую информацию, касающуюся ограничений, задач и возможных альтернативных вариантов. В результате возникают следующие этапы:

Составление содержательного описания системы;

Выбор показателей качества;

Определение управляющих переменных;

Детализация описания режимов функционирования.

Основу имитационного моделирования составляет метод статистического моделирования (метод Монте-Карло). Это численный метод решения математических задач при помощи моделирования случайных величин. Датой рождения этого метода принято считать 1949 г. Создатели его – американские математики Л. Нейман и С. Улам. Первые статьи о методе Монте-Карло у нас были опубликованы в 1955 г. Однако до появления ЭВМ этот метод не мог найти сколько-нибудь широкого применения, ибо моделировать случайные величины вручную – очень трудоемкая работа. Название метода происходит от города Монте-Карло в княжестве Монако, знаменитого своими игорными домами. Дело в том, что одним из простейших механических приборов для получения случайных величин является рулетка.

Рассмотрим классический пример. Нужно вычислить площадь произвольной плоской фигуры . Граница ее может быть криволинейной, заданной графически или аналитически, состоящей из нескольких кусков. Пусть это будет фигура рис. 3.20. Допустим, что вся фигура расположена внутри единичного квадрата. Выберем в квадрате
случайных точек. Обозначим через
число точек, попавших внутрь фигуры. Геометрически очевидно, что площадьприближённо равна отношению
. Чем больше
, тем больше точность оценки.

Рис.3.20. Иллюстрация примера

В нашем примере
,
(внутри). Отсюда
. Истинная площадь может быть легко подсчитана и составляет 0,25.

Метод Монте-Карло имеет две особенности.

Первая особенность – простота вычислительного алгоритма. В программе для вычислений необходимо предусмотреть, что для осуществления одного случайного события надо выбрать случайную точку и проверить, принадлежит ли она . Затем это испытание повторяется
раз, причем каждый опыт не зависит от остальных, а результаты всех опытов усредняются. Поэтому метод и называют – метод статистических испытаний.

Вторая особенность метода: ошибка вычислений, как правило, пропорциональна

,

где
– некоторая постоянная;
– число испытаний.

Из этой формулы видно, что для того, чтобы уменьшить ошибку в 10 раз (иначе говоря, чтобы получить в ответе еще один верный десятичный знак), нужно увеличить
(объём испытаний) в 100 раз.

Замечание. Метод вычисления справедлив только тогда, когда случайные точки будут не просто случайными, а еще и равномерно распределёнными.

Использование имитационного моделирования (в том числе метода Монте-Карло и его модификаций) для расчёта надёжности сложных технических систем основано на том, что процесс их функционирования представляется математической вероятностной моделью, отражающей в реальном масштабе времени все события (отказы, восстановления), происходящие в системе.

С помощью такой модели на ЭВМ многократно моделируется процесс функционирования системы и по полученным результатам определяются искомые статистические характеристики этого процесса, являющиеся показателями надёжности. Применение методов имитационного моделирования позволяет учитывать зависимые отказы, произвольные законы распределения случайных величин и другие факторы, влияющие на надёжность.

Однако эти методы, как и любые другие численные методы, дают лишь частное решение поставленной задачи, соответствующее конкретным (частным) исходным данным, не позволяя получить показатели надёжности в функции времени. Поэтому для проведения всестороннего анализа надёжности приходится многократно моделировать процесс функционирования системы с разными исходными данными.

В нашем случае это, прежде всего, различная структура электрической системы, различные значения вероятностей отказа и длительностей безотказной работы, которые могут изменяться в процессе эксплуатации системы, и другие показатели функционирования.

Процесс функционирования электрической системы (или электротехнической установки) представляется как поток случайных событий – изменений состояния, происходящих в случайные моменты времени. Изменение состояний ЭЭС вызывается отказами и восстановлениями составляющих ее элементов .

Рассмотрим схематическое изображение процесса функционирования ЭЭС, состоящей из элементов (рис. 3.21), где приняты следующие обозначения:

–момент -го отказа-го элемента;

–момент -го восстановления-го элемента;

–интервал времени безотказной работы -го элемента после
-го восстановления;

–продолжительность восстановления -го элемента после-го отказа;

i -е состояние ЭЭС в момент времени .

Величины , связаны между собой соотношениями:

(3.20)

Отказы и восстановления происходят в случайные моменты времени. Поэтому интервалы иможно рассматривать как реализации непрерывных случайных величин:– наработок между отказами,– времени восстановления-го элемента.

Поток событий
описывается моментами их наступления
.

Моделирование процесса функционирования состоит в том, что моделируются моменты изменения состояния ЭЭС в соответствии с заданными законами распределения наработок между отказами и времени восстановления составляющих элементов на интервале времени Т (между ППР).

Возможны два подхода к моделированию функционирования ЭЭС.

При первом подходе необходимо сначала для каждого -гo элемента системы
определить, в соответствии с заданными законами распределения наработок между отказами и временами восстановления, интервалы времени
и
и вычислить по формулам (3.20) моменты его отказов и восстановлений, которые могут произойти за весь исследуемый периодфункционирования ЭЭС. После этого можно расположить моменты отказов и восстановлений элементов, являющиеся моментами изменения состояний ЭЭС, в порядке их возрастания, как показано на рис.3.21.

Рис.3.21. Состояния ЭЭС

Затем следует анализ полученных путем моделирования состояний А i системы на принадлежность их к области работоспособных или неработоспособных состояний. При таком подходе в памяти ЭВМ необходимо фиксировать все моменты отказов и восстановлений всех элементов ЭЭС.

Более удобным является второй подход , при котором для всех элементов сначала моделируются только моменты первого их отказа. По минимальному из них формируется первый переход ЭЭС в другое состояние (из А 0 в А i ) и одновременно проверяется принадлежность полученного состояния к области работоспособных или неработоспособных состояний.

Затем моделируется и фиксируется момент времени восстановления и следующего отказа того элемента, который вызвал изменение предыдущего состояния ЭЭС. Снова определяется наименьший из моментов времени первых отказов и этого второго отказа элементов, формируется и анализируется второе состояние ЭЭС – и т.д.

Такой подход к моделированию в большей мере соответствует процессу функционирования реальной ЭЭС, так как позволяет учесть зависимые события. При первом подходе обязательно предполагается независимость функционирования элементов ЭЭС. Время счёта показателей надёжности методом имитационного моделирования зависит от полного числа опытов
, числа рассматриваемых состояний ЭЭС, числа элементов в ней. Итак, если сформированное состояние окажется состоянием отказа ЭЭС, то фиксируется момент отказа ЭЭС и вычисляетсяинтервал времени безотказной работы ЭЭС от момента восстановления после предыдущего отказа. Анализ сформированных состояний производится на протяжении всего рассматриваемого интервала времениТ .

Программа расчёта показателей надёжности состоит из главной части и отдельных логически самостоятельных блоков-подпрограмм. В главной части в соответствии с общей логической последовательностью расчёта происходят обращения к подпрограммам специального назначения, расчёт показателей надёжности по известным формулам и выдача результатов расчёта на печать.

Рассмотрим упрощенную блок-схему, демонстрирующую последовательность работы по расчёту показателей надёжности ЭЭС методом имитационного моделирования (рис. 3.22).

Подпрограммы специального назначения осуществляют: ввод исходной информации; моделирование моментов отказов и восстановлений элементов в соответствии с законами распределения их наработки и времени воcстановления; определение минимальных значений моментов отказов и моментов восстановлений элементов и идентификацию элементов, ответственных за эти значения; моделирование процесса функционирования ЭЭС на интервале и анализ сформированных состояний.

При таком построении программы можно, не затрагивая общую логику программы, вносить необходимые изменения и дополнения, связанные, например, с изменением возможных законов распределения наработки и времени восстановления элементов.

Рис.3.22 . Блок-схема алгоритма расчёта показателей надежности методом имитационного моделирования


Введение

Одна из важных особенностей АСУ – принципиальная невозможность проведения реальных экспериментов до завершения проекта. Возможным выходом является использование имитационных моделей. Однако их разработка и использование чрезвычайно сложны, возникают затруднения в достаточно точном определении степени адекватности моделируемому процессу. Поэтому важно принять решение – какую создать модель.

Другой важный аспект – использование имитационных моделей в процессе эксплуатации АСУ для принятия решений. Такие модели создаются в процессе проектирования, чтобы их можно было непрерывно модернизировать и корректировать в соответствии с изменяющимися условиями работы пользователя.

Эти же модели могут быть использованы для обучения персонала перед вводом АСУ в эксплуатацию и для проведения деловых игр.

Вид модели производственного процесса зависит в значительной степени от того, является ли он дискретным или непрерывным. В дискретных моделях переменные изменяются дискретно в определенные моменты имитационного времени. Время может приниматься как непрерывным, так и дискретным в зависимости от того, могут ли дискретные изменения переменных происходить в любой момент имитационного времени или только в определенные моменты. В непрерывных моделях переменные процесса являются непрерывными, а время может быть как непрерывным, так и дискретным в зависимости от того, являются непрерывные переменные доступными в любой момент имитационного времени или только в определенные моменты. В обоих случаях в модели предусматривают блок задания времени, который имитирует продвижение модельного времени, обычно ускоренного относительно реального.

Разработка имитационной модели и проведение моделирующих экспериментов в общем случае могут быть представлены в виде нескольких основных этапов, приведенных на рис. 1.


Компонента модели, отображающая определенный элемент моделируемой системы, описывает набором характеристик количественного или логического типа. В зависимости от длительности существования различают компоненты условно-постоянные и временные. Условно-постоянные компоненты существуют в течение всего времени эксперимента с моделью, а временные – генерируются и уничтожаются в ходе эксперимента. Компоненты имитационной модели делят на классы, внутри которых они имеют одинаковый набор характеристик, но отличаются их значениями.

Состояние компоненты определяется значениями ее характеристик в данный момент модельного времени, а совокупность значений характеристик всех компонент определяет состояние модели в целом.

Изменение значений характеристик, являющееся результатом отображения в модели взаимодействия между элементами моделируемой системы, приводит к изменению состояния модели. Характеристика, значение которой в ходе моделирующего эксперимента изменяется, является переменной, в противном случае это параметр. Значения дискретных переменных не изменяются в течение интервала времени между двумя последовательными особыми состояниями и меняются скачком при переходе от одного состояния к другому.

Моделирующий алгоритм представляет собой описание функциональных взаимодействий между компонентами модели. Для его составления процесс функционирования моделируемой системы разбивается на ряд последовательных событий, каждое из которых отражает изменение состояния системы в результате взаимодействия ее элементов или воздействия на системы внешней среды в виде входных сигналов. Особые состояния возникают в определенные моменты времени, которые планируются заранее, либо определяются в ходе эксперимента с моделью. Наступление событий в модели планируется путем составления расписания событий по временам их свершения либо проводится анализ, выявляющий достижение переменными характеристиками установленных значений.

Для этой цели наиболее удобно использовать СИВС. Представленные на них материальные и информационные потоки легко анализировать для выявления особых состояний. Такими состояниями являются отражаемые на СИВС моменты окончания обработки изделия на каждом рабочем месте или его транспортировки; приема и выдачи на постоянное или временное хранение; сборки деталей в узлы, узлов в изделие и т.п. Для дискретного производства изменение характеристик между особыми состояниями можно также считать дискретным, имея в виду переход условным скачком от исходного материала к заготовке, от заготовки к полуфабрикату, от полуфабриката к детали и т.д.

Таким образом, каждая производственная операция рассматривается как оператор, изменяющий значение характеристик изделия. Для простых моделей последовательность состояний можно принимать детерминированной. Лучше отражают действительность случайные последовательности, которые можно формализовать в виде случайных приращений времени, имеющих заданное распределение, либо случайного потока однородных событий, аналогично потокам заявок в теории массового, обслуживания. Аналогичным образом можно проанализировать и выявить с помощью СИВС особые состояния при движении и обработке информации.

На рис. 2 представлена структура обобщенной имитационной модели.

При моделировании непрерывных производственных процессов по принципу ∆t датчик временных интервалов выдает тактовые импульсы для работы моделирующего алгоритма. Блоки случайных и управляющих воздействий, а также начальных условий служат для ручного ввода условий проведения очередного модельного эксперимента.

Комплекс имитационных функциональных программ по каждому моделируемому объекту определяет условное распределение вероятностей состояний объекта к окончанию каждого момента ДЛ При случайном выборе одного из возможных состояний это осуществляется функциональной подпрограммой; при выборе экспериментатором – программой, заложенной в блоке управляющих воздействий, или, при желании осуществлять этот выбор вручную на каждом такте, вводом новых начальных условий исходя из текущего состояния, определяемого с помощью блока индикации.

Функциональная программа определяет параметры технологической установки на каждом такте в зависимости от заданных начальных условий – характеристик сырья, заданного режима, свойств и условий работы установки. Из модели технологической части программным путем могут быть добавлены соотношения весового и объемного баланса.

Координацию и взаимодействие всех блоков и программ осуществляет программа-диспетчер.

При моделировании дискретных процессов, при котором обычно используют принцип особых состояний, структура имитационной модели изменяется незначительно. Вместо датчика временных интервалов вводится блок, определяющий наличие особого состояния и выдающий команду на переход к следующему. Функциональная программа имитирует на каждом переходе одну операцию на каждом рабочем месте. Характеристики таких операций могут быть детерминированными во времени, например при работе станка-автомата, либо случайными с заданными распределениями. Кроме времени могут имитироваться и другие характеристики – наличие или отсутствие брака, отнесение к некоторому сорту или классу и т.п. Аналогично имитируются сборочные операции, с той разницей, что на каждой операции изменяются не характеристики обрабатываемого материала, а вместо одних наименований – детали, узлы – появляются другие – узлы, изделия – с новыми характеристиками. Однако принципиально операции сборки имитируются аналогично операциям обработки – определяются случайные или детерминированные затраты времени на операцию, значения физических и производственных характеристик.

Для имитации сложных производственных систем требуется создание логико-математической модели исследуемой системы, позволяющей проведение с нею экспериментов на ЭВМ. Модель реализуют в виде комплекса программ, написанных на одном из универсальных языков программирования высокого уровня либо на специальном языке моделирования. С развитием имитационного моделирования появились системы и языки, сочетающие возможности имитации как непрерывных, так и дискретных систем, что позволяет моделировать сложные системы типа предприятий и производственных объединений.

При построении модели, прежде всего, следует определить ее назначение. В модели должны быть отражены все существенные с точки зрения цели ее построения функции моделируемого объекта и в то же время в ней не должно быть ничего лишнего, иначе она будет слишком громоздкой и мало эффективной.

Основным назначением моделей предприятий и объединений является их исследование с целью совершенствования системы управления либо обучения и повышения квалификации управленческого персонала. При этом моделируется не само производство, а отображение производственного процесса в системе управления.

Для построения модели используется укрупненная СИВС. Методом единичной нити выявляют те функции и задачи, в результате которых может быть получен искомый результат в соответствии с назначением модели. На основании логико-функционального анализа строят структурную схему модели. Построение структурной схемы позволяет выделить ряд самостоятельных моделей, входящих в виде составных частей в модель предприятия. На рис. 3 приведен пример построения структурной схемы моделирования финансово-экономических показателей предприятия. Модель учитывает как внешние факторы – спрос на продукцию, план поставок, так и внутренние – затраты на производство, существующие и планируемые производственные возможности.


Некоторые из моделей являются детерминированными – расчет планируемого полного дохода по номенклатуре и количествам в соответствии с планом производства при известных ценах и стоимости упаковки. Модель плана производства является оптимизационной, настраиваемой на один из возможных критериев – максимизацию дохода или использования производственных мощностей; наиболее полное удовлетворение спроса; минимизацию потерь поставляемых материалов и комплектующих изделий и пр. В свою очередь модели спроса на продукцию, планируемых производственных мощностей и плана поставок являются вероятностными с различными законами распределения.

Взаимосвязь между моделями, координация их работы и связь с пользователями осуществляется с помощью специальной программы, которая на рис. 3 не показана. Эффективная работа пользователей с моделью достигается в режиме диалога.

Построение структурной схемы модели не формализовано и во многом зависит от опыта и интуиции ее разработчика. Здесь важно соблюдать общее правило – лучше на первых этапах составления схемы включить в нее большее число элементов с последующим их постепенным сокращением, чем начать с некоторых, кажущихся основными, блоков, намереваясь в последующем их дополнять и детализировать.

После построения схемы, обсуждения ее с заказчиком и корректировки переходят к построению отдельных моделей. Необходимая для этого информация содержится в системных спецификациях – перечень и характеристики задач, необходимые для их решения исходные данные и выходные результаты и т д. Если системные спецификации не составлялись, эти сведения берут из материалов обследования, а иногда прибегают к дополнительным обследованиям.

Важнейшими условиями эффективного использования моделей являются проверка их адекватности и достоверность исходных данных. Если проверка адекватности осуществляется известными методами, то достоверность имеет некоторые особенности. Они заключаются в том, что во многих случаях исследование модели и работу с нею лучше проводить не с реальными данными, а со специально подготовленным их набором. При подготовке набора данных руководствуются целью использования модели, выделяя ту ситуацию, которую хотят промоделировать и исследовать.



Поделиться