Использование возможностей 3д принтеров в медицине. Как развиваются технологии в России? Что нас ждет в ближайшем будущем

Медицинские 3D модели Технологии 3D печати позволяют врачам оперативно получать недорогие 3Д модели, для планирования операций. Данные Компьютерной или Магнитно-резонансной томографии в формате DICOM 3.0 могут быть преобразованы в точную модель органа пациента.


Где используются данная технология Ортопедия и челюстно-лицевая хирургия Университет Медицинского центра Нью Мехико Сеульский национальный университет Пластическая хирургия Фукусимский Медицинский Университет Клиника Олинда Производители имплантов ЕВI Synthes




Основные области применения Предоперационное планирование: Предварительное разработка и изменение формы импланта Выбор/расположение винтов Выбор инструмента для операций Изготовление индивидуального импланта для пациента Коммуникации между докторами Наглядный пример повреждений для пациента Обучение студентов


Предоперационное планирование 3D Модели позволяют смоделировать имплант до начала операций с пациентом Значительно снижает операционное время Снижает усталость операционной команды Ускоряет выздоровление пациента Уменьшает процедуры «переделки» Сводит к минимуму размер разрезов Кости лучше прилегают к пластинам Дает возможность повторений процедуры много раз.


Челюстно-лицевая хирургия 3D Модели используемые при лицевых травмах можно рассматривать раздельно и переделывать для анатомически правильного соответствия предварител ьно сформированных пластинок. Кость точно прилегает к импланту, обеспечивая совершенное соответствие.




Ортопедическая хирургия - реконструкция вертлужной впадины Предварительно сформированные пластины фиксации вертлужной впадины могут сократить время операции на 2 часа. Свести к минимуму размер разрезов (в некоторых случаях в 3-и раза) Док. Джодж Браун, заведующий, Отделение спинальной хирургии, Университет Нью- Мексико, Центр здравоохранения Этот случай – одно из наиболее полезных применений в области ортопедии. Реконструкция вертлужной впадины - одна из наиболее проблемных операций для хирургов-ортопедов.


Пред операционное планирование 3 D Модели используются для анализа переломов и определения точного местонахождения и траектории винтов выравнивания и пластин фиксации. Картинка показывает модель восстановления сложного, двустороннего перелома таза. Выбор и расположение болтов


Изготовление индивидуального имплантанта 3 D модели позволяют производителя м имплантатов производить и мплантаты быстро и эффективно для немедлен ного применения. Фактически 2 ведущих производителя Синсез и EBI используют 3D модели для разработки индивидуальных имплантант






Инструмент общения с пациентом 3 D Модели позволяют улучшить возможности врачей в общении с пациентом, повышает доверие к хирургу и увеличивает вероятность успешного результата Эти модели позволяют легко передавать пациенту сложные медицинские объяснения. Они персонализируют диагноз и повышают уверенность пациента в подходе врача к его конкретному случаю.


Обучение студентов Комплексные 2D-изображения могут быть преобразованы в легкие для понимания 3D-модели, которыми легко манипулировать для более полного понимания анатомии 3 D Модели также очень полезны в обучении чтения компьютерной томографии и изображений магнитно- резонансной томографии, а также тому, как выполнять специфические процедуры. Кроме того, полноцветные 3D модели позволяют лучше понять из данных другие области анатомии.


Кардиологя Достижения в области технологии Компьютерной Томографии позволяют теперь 3D-охватывать данные мягких тканей Врачи могут более точно количественно оценить размеры, формы и функции сердца. Изучение всего бьющегося сердца делает исследования и хирургические процедуры более точными и быстрыми.



С появлением 3Д-технологий всё изменилось. В каждой сфере жизнедеятельности человека произошли серьёзные положительные сдвиги. Не стала исключением медицина. Использование в медицине открывает поистине неограниченные возможности и даже больше. При помощи 3D-печати врачи спасают жизнь или делают её комфортной.

3D-принтеры позволяют печатать не только простые шаблоны и макеты, но и части тела. В скором времени посредством станет возможным повсеместное создание органов на базе клеток человека. То есть не искусственных, а живых. И хотя пока это ещё не достижимо для всех, в научных университетах такие разработки ведутся и даже с успехом применяются.

3Д-печать протезов

Самое простое и уже повсеместно доступное использование 3д-печати – это создание протезов. 3Д-принтер на основе объёмного сканирования и 3Д-моделирования позволяет создавать анатомически точные индивидуальные протезы, причем как наружного применения, так и те, которые должны имплантироваться. Например, протез коленного сустава или даже кости. Для этого используются высококачественные биосовместимые материалы, как полимерного происхождения, так и традиционные металлы (титан). Фото напечатанных протезов можно найти в сети и в большом количестве, ведь это действительно достижение.


С целью создания протезов применяются разные 3d-технологии – фотополимерная печать, обычное аддитивное производство (FDM), а также методы лазерного спекания и сплавления. Но и это не всё, и использование 3Д-принтеров в медицинской отрасли этим не ограничивается

3Д-печать в медицине

Медицина является широкой сферой и поэтому применение 3Д-принтеров в ней тоже не узкое. Только в стоматологии 3Д-принтеры используются для:

  • создания хирургических стоматологических шаблонов;
  • печати кап и элайнеров;
  • печати высококачественных коронок и зубных протезов, ортезов;
  • изготовление точных копий челюстей пациента и др.

Ключевое преимущество, которое даёт 3Д-печать медицине – это индивидуальность. Все понимают, что поставить на поток производство органов и протезов для человека сложно, ведь невозможно стандартизировать людей. Также уникальна и каждая операция. А 3Д-принтер позволяет напечатать точную копию органа, чтобы максимально детально спланировать ход операции. Именно такое планирование сделало возможными операции в ряде клинических случаев. Можно даже посмотреть видео, где очевидно насколько отточены действия хирургов, благодаря напечатанным точным копиям оперируемых органов.

Таким образом, за 3Д-печатью в медицине будущее. А дверь в это будущее приоткрывает для всех желающих интернет-магазин «3DMall».

" />

Сидни Кендалл (Sydney Kendall) потеряла свою правую руку по локоть в результате несчастного случая на лодке, когда ей было всего 6 лет. Теперь, когда Сидни исполнилось 13, она должна каждый день пользоваться протезами.

Но эти изделия не могут сравниться по практичности («не такие крутые», как говорит сама Сидни) с новым розовым пластиковым протезом, отпечатанным на 3D-принтере.

Эта рука была разработана по специальному заказу лично для Сидни этой весной, выполнена в желаемом цвете.

Разработчиком протеза стал студент Университета Вашингтона в Сент-Луисе, который сотрудничал с врачами больницы Shriners Hospital. Примечательно, что Сидни и ее родители даже могли наблюдать за процессом печати.

«Чтобы сделать каждый палец, нужно было всего по 7 минут. Мы все были поражены», - говорит Бет Кендалл, мама Сидни.

Когда девочка пришла в школу с новым протезом, ее одноклассники также были в восторге от дизайна. Ей говорили: «Всем понравилась твоя новая рука, ты выглядишь так круто. Ты станешь знаменитостью!».

Роботизированная рука с управляемыми пальцами помогает Сидни ловить бейсбольный мяч, управлять компьютерной мышкой, брать чашку с кофе.

Цена вопроса? Около 200$. Традиционный роботизированный протез в США может стоить 50000-70000$, а его придется заменять по мере того, как ребенок будет расти.

«Дети обычно не получают роботизированные протезы по причине их дороговизны», - заметила мама Сидни.

Роботизированные протезы, отпечатанные по индивидуальному заказу на 3D-принтере - это поистине новая эпоха в персонализированной медицине.

От протезирования зубов до сердечных клапанов - технология 3D-печати открывает невероятные возможности для создания индивидуальных медицинских устройств. Эксперты говорят, что сегодня десятки больниц в США экспериментируют с 3D-принтерами, а исследователи придумывают все более невероятные области применения этой технологии, вплоть до печати человеческих органов.

Для того чтобы помочь исследователям из разных уголков мира делиться своими экспериментами в области 3D-печати, Национальный институт здоровья США в июне 2014 года запустил сеть, позволяющую зарегистрированным пользователям загружать чертежи таких изделий.

«3D-печать - это потенциальная революция в правилах игры в медицинских исследованиях. Здесь, в Национальном институте здоровья, мы видим невероятную отдачу от инвестиций: копеечный пластик помогает ученым решать сложнейшие технологические задачи, экономя миллионы долларов и бесценное время», - говорит директор NIH доктор Фрэнсис Коллинз (Francis Collins).

Один из ведущих исследователей в этой области доктор Энтони Атала (Anthony Atala), директор Института регенеративной медицины Уэйк Форест (Wake Forest Institute of Regenerative Medicine), лучше всех понимает перспективы 3D-принтеров. Он уже создал миниатюрную печень, которая «живет» в чашке Петри, проверяет новые лекарства и служит прототипом для создания будущих органов.

Что такое 3D-печать?

Представьте себе струйный принтер, который вместо распыления чернил и печати букв выдает струю быстрозастывающего пластика или металлического геля, которые приобретают форму зуба, пальца или сустава. Такому устройству нужна команда от трехмерного МР- или КТ-сканера, который передает точные параметры части тела, которую нужно скопировать. 3D-принтер печатает объект постепенно, нанося материал слой за слоем.

Хотя 3D-принтеры существовали с 1980-х годов, медицинское использование этого уникального устройства стали серьезно обдумывать только в последние несколько лет. 3D-принтер может создавать гораздо более сложные геометрические фигуры, чем традиционная промышленность, которой потребовались бы многочисленные специальные заготовки и формы для каждого такого изделия. Поэтому теперь можно отпечатать точную копию кости или сустава, и стоить это будет гроши.

Процесс экономит время и деньги, перенося производство медицинских изделий, что называется, к койке пациента. Точных данных ни у кого нет, но профессор биомедицинского инжиниринга Скотт Холлистер (Scott Hollister) считает, что в США больницы в той или иной форме уже используют несколько десятков 3D-принтеров.

Зубы, конечности и слуховые приборы

3D-печать уже широко используется для производства различных частей тела (обычно из пластика и металла), которые контактируют с тканями, но не входят в кровоток. Сюда относят зубы, слуховые устройства, а также протезы конечностей.

«В прошлом стоматологическая коронка изготавливалась в зуботехнической лаборатории, что могло занять несколько дней, а пациенты должен быть совершить 2-3 визита к дантисту», - рассказывает доктор Чак Цанг (Chuck Zhang), преподаватель индустриального и системного инжиниринга в Технологическом институте Джорджии (Georgia Tech). Сегодня дантист может просто сделать 3D-снимок вашего зуба и напечатать коронку прямо на месте.

Эта технология дает пациентам после ампутации конечности, таким как Сидни, альтернативу привычным страшноватым на вид и непрактичным протезам. Студии 3D-печати часто разрабатывают протезы вместе с клиентами, что позволяет создать произведение искусства, которое будет не только облегчать жизнь, но и вызывать положительные эмоции у окружающих.

Доктор Цанг и его коллеги из Georgia Tech активно работают над созданием новых протезов для военных ветеранов. Его команда использует материалы для 3D-печати, чтобы создавать протезные карманы, которые адаптируются к изменениям уровня жидкости в организме. При необходимости эти карманы становятся мягче или тверже, чтобы не вызывать дискомфорт при ношении протеза.

Имплантируемые устройства

Пластик и металл для 3D-принтеров уже используются и внутри человеческого тела. Врачи детской больницы Mott Children’s Hospital Мичиганского университета с 2012 года спасли жизни двух детей, имплантировав им отпечатанные на принтере дыхательные пути.

У этих малышей была редкая врожденная аномалия - трахеобронхомаляция. Без лечения их слабые дыхательные пути спадались, и дети умерли бы. Единственное лечение - это трахеостомия и подключение к аппарату искусственной вентиляции легких в надежде, что через несколько лет их дыхательные пути в достаточной мере окрепнут.

От этого кошмара детей спасла новая технология. У 17-месячного Гарретта Петерсона (Garrett Peterson) не наблюдалось никаких признаков того, что дыхательные пути на ИВЛ окрепнут и позволят отключить ребенка. Врачи из Юты, где его лечили, сделали все, что возможно.

«Все в мире должно было быть прекрасно. Гарретт не мог плакать, потому что он синел. Мы должны были поддерживать его все время в счастливом расположении духа, но это было нереально - вечно держать его на аппарате», - говорит отец ребенка.

Петерсоны прочитали статью о том, как ребенку с похожей проблемой университетские врачи в 2012 году имплантировали отпечатанную на 3D-принтере трахею. Они решили не медлить, и обратились за помощью к ним.

Основываясь на КТ-снимках дыхательных путей Гарретта, хирург доктор Грин (Green) и профессор биомедицинского инжиниринга Холлистер разработали и отпечатали персонализированную дыхательную трубку, которая позволила бы ребенку дышать самостоятельно. Со временем его тело должно было «впитать» этот протез, и дыхательные пути оставались бы открытыми сами по себе.

Впоследствии в больнице Mott Children’s Hospital впервые провели эту фантастическую процедуру.

«Я думаю, это был прекрасный пример использования 3D-принтера в ситуации жизни или смерти», - сказал Холлистер.

Стоимость трахеостомии и последующего поддержания таких детей на искусственной вентиляции составляет порядка 1 миллиона долларов за пациента. Разработка, печать и операция по установке дыхательной трубки, по словам Холлистера, обойдется в 200000-300000$.

Хирурги имплантировали пациентам и другие 3D-устройства. Черепные заплатки для заполнения полостей после операций на мозге, например. Черепные пластины для замены больших фрагментов черепной кости, которые пациенты теряют в результате травм или рака. Клиника Мэйо (Mayo Clinic) и некоторые другие лечебные учреждения уже предлагают замену сустава на протез, напечатанный с помощью 3D-принтера. Такие персонализированные суставы минимизируют объем вмешательства и сокращают время пребывания в стационаре.

FDA на сегодняшний день владеет двумя лабораториями, которые изучают возможности 3D-принтеров для производства медицинских устройств.

Живые ткани

Кроме металла и пластика врачи и ученые по всей стране работают над заправкой 3D-принтеров живыми человеческими клетками. Это дало начало печатанию живой ткани, или биопринтингу (bioprinting). Главная цель таких работ - научиться печатать полноценные живые органы для трансплантации, используя для полной совместимости собственные клетки пациентов.

Некоторые эксперты уверены, что за несколько десятилетий это произведет революцию в трансплантологии. Пациенты не будут умирать тысячами, не дождавшись донорского органа. Уйдет в прошлом такое ужасное явление, как отторжение трансплантата.

Доктор Атала из Института Уэйк Форест говорит, что исследователи уже сегодня могут использовать созданную им миниатюрную печень для испытаний лекарств на гепатотоксичность. Ученые ожидают, что этот метод будет гораздо более точным и гуманным, чем нынешние испытания на животных и пациентах-добровольцах.

Биомедицинские инженеры используют несколько методов для печати органов. Принтер создает пластиковый каркас, который затем может быть покрыт человеческими клетками. Или принтер может впрыскивать живые клетки в коллагеновый гель, который удерживает структуры органа вместе. После печати клетки должны расти на своем каркасе в течение нескольких недель в лаборатории, прежде чем орган сможет нормально функционировать.

После установки органа на место каркас убирают, и остается только живая человеческая ткань, идеально совместимая с организмом реципиента. Если орган пересаживают ребенку, то он сможет расти вместе с ним, исключая необходимость в повторных пересадках.

Биоинженеры из Университета Корнелла (Cornell University) и Мичиганского университета (University of Michigan) наиболее интенсивно работают над этой концепцией. Многие лаборатории давно печатают органы для тестирования лекарств, а производство заплаток для поврежденных органов - это дело недалекого будущего.

По мнению профессора Холистера, уже в скором времени медицинские 3D-принтеры появятся абсолютно в каждом лечебном учреждении, изменив до неузнаваемости облик здравоохранения.

Константин Моканов

На прошедшем молодежном форуме «Машук-2018» ставропольские ученые представили инновационный медицинский проект «HoloDoctor. Симуляция, планирование операций, обучение студентов медицинских специальностей» по созданию трёхмерным моделей внутренних органов, для печати которых используется 3D принтер Raise3D . Мы встретились с Артемом Мишвеловым, одним из основателей проекта, он рассказал нам о внедрении цифровых технологий в современные медицинские реалии, чего уже удалось достигнуть, и какие перспективы ждут в ближайшем будущем.

— Артём, вы занимаетесь разработкой и внедрением цифровых технологий в медицинской сфере, облегчающих работу врачам и оптимизирующих процесс постановки диагноза и лечения пациентов. Расскажите, что вас подтолкнуло заниматься именно этим направлением?

Я закончил Северо-Кавказский федеральный университет, учился на врача медицинской биохимии, потом переквалифицировался на 3D биодизайнера-визуализатора. Медицинские цифровые технологии - это интересное и перспективное направление, которое объединяет инновационные технологии, такие как 3D печать, трехмерную виртуальную реальность, работу со стволовыми клетками и многое другое. С 9-го класса я начал конкретно изучать компьютерную томографию и 3D печать. Акцент делал на компьютерной томографии, МРТ, УЗИ, в целом на дифференциальной диагностике. Потом в университете перешёл к реализации зародившихся идей. Первой была программа для обучения студентов-медиков. Опирался на всем известный сериал «Доктор Хаус», который подкинул несколько интересных мыслей. К примеру, экспертная система «КиберХаус» или ПО «DoctorCT», которое позволяет переводить медицинские DICOM-изображения в 3D модели. Программа помогает конструировать трёхмерные модели органов, а потом распечатать их на 3D принтере. Если этого мало, можно воспользоваться очками виртуальной или дополненной реальности через гарнитуру Microsoft HoloLens, используя, при этом разработанный программный комплекс HoloDoctor.

— Вы параллельно работаете в нескольких масштабных стартапах, таких как Кибермед, ХолоМед, Соцмедика. Расскажите немного о каждом из них, это стартапы с государственной поддержкой? Они все основаны на внедрении 3D печати в медицинские биотехнологии?

Да, в каждом нашем проекте так или иначе задействованы аддитивные технологии, куда без них в наше время.

Центр кибермедицины и прототипирования Кибермед занимается разработкой и производством бионических и тросевых протезов. ХолоМед посвящен виртуальным симуляторам, планированию хирургического вмешательства, в частности цифровой медицине, а это и 3D печать, и биопринтинг.

Еще есть Соцмедика — резидент Сколково. Это IT-компания, специализирующаяся на создании медицинских экспертных систем, мы являемся региональными представителями в Ставропольском крае.

Так получилось, что за несколько лет мы выиграли несколько грантов, в том числе на форуме «Машук», в конкурсе «Умник», в сколковском Startup Village и т.д. И сейчас с помощью грантов реализуем программные проекты совместно со Ставропольским медицинским университетом, Студенческим конструкторским бюро и пр.

Да, наши проекты поддерживает правительство Ставропольского края, администрация президента. Особенно сильно мы ощутили эту поддержку после визита президента на наш стенд в рамках форума «Машук-2018».

Честно говоря, мы не ожидали такого внимания, наш проект отобрали в числе 7-ми других из нашего региона. Мы рассказали о наших инновационных медицинских цифровых технологиях, продемонстрировали принтер Raise3D , напечатанные на нем модели и произвели фурор, сами того не ожидая.

— На недавно прошедшем форуме «Машук-2018» вы презентовали возможности печати на 3D принтере точных прототипов человеческих органов, которые могут значительно облегчить диагностику для медиков. Расскажите, как это происходит?

На основе компьютерной и магнитно-резонансной томографии (КТ, МРТ) создаётся двухмерное изображение и в разработанной нами программе конвертируется в 3D макет. Мы получаем анатомически точные органы, сердце, почки или даже целую систему органов конкретного пациента, потом загружаем файл в принтер и получаем трехмерную модель. Такие макеты служат своеобразным симулятором для практикующих врачей при планировании хирургического вмешательства. Также данные трёхмерные визуализации уже активно применяются для диагностики врачами нашего краевого диспансера.

К примеру, если использовать только традиционные данные компьютерной томографии, бывает сложно рассчитать точный объём опухоли и отделить её от органа. А чтобы принять решение о проведении операции, необходимо иметь точную 3D модель. В этом и помогает наше ПО и 3D принтер. Полученную многослойную модель также можно поместить в программу-симулятор и совместить с поверхностью тела, крупными сосудами и пр.

— Трёхмерные прототипы применяются также в обучении студентов-медиков?

Да, в том числе и в обучении будущих хирургов. В школах, университетах, институтах недостаточно практических материалов. Допустим, мы распечатали сердце, покрасили краской, чтобы выглядело реалистичнее. Студенты изучают топографию, кровеносные сосуды, что, где находится. А распечатанные на 3D принтере симуляционные фантомные органы, соответствующие конкретному пациенту, могут стать отличным практическим пособием. Подобные 3D макеты применяются у нас в Ставропольском медицинском университете.

— А что использовалось в качестве практических пособий в высших медицинских учреждениях до внедрения 3D печати? В чем преимущество прототипов, напечатанных на 3D принтере?

Раньше использовали настоящие органы, помещённые в банки с формалином. В чем минус — реальные органы нужно очень аккуратно использовать. Студенты могут просто посмотреть на них со стороны, каких-то манипуляций провести будет нельзя. Это совершенно не наглядно. В этом огромный плюс 3D печати. Вы можете напечатать огромное количество макетов и у каждого будущего медика будет возможность все внимательно изучить, пощупать.

— Вы также занимаетесь разработкой и изготовлением протезов с помощью 3D принтеров…

Начинали мы с тросевых ручных протезов. Это самый простой и бюджетный вариант - пластиковая кисть с легко заменяемыми деталями (большая часть элементов печатается на принтере). Функционал достаточно скромный - такой «рукой» можно взять чашку, открыть дверь, но мелкая моторика доступна только для бионических процессов. Они работают с мышечными импульсами, используя датчики электромиографии. Там уже доступно около 20 разных движений. Сейчас наши бионические протезы находятся на стадии тестирования у нескольких пациентов. Их отзывы позволят подкорректировать работу протезов, исправить все недостатки перед массовым запуском.

— Как вы оцениваете перспективы развития данного коммерческого направления? Насколько 3D печать удешевляет производство кастомизированных протезов, если сравнивать с традиционными методами (литье и пр.)?

Мы печатаем практически все детали протезов на 3D принтере Raise3D, конечно, кроме сервопривода, платы. Используем пластик ABS, PLA и гибридный сверхпрочный пластик. В итоге получаем персонализированное изделие, изготавливаемое в течение 2-4 дней с невысокой себестоимостью.

Другие бионические протезы изготавливаются неделями-месяцами. К примеру, есть сверхмощные зарубежные протезы, состоящие по большей части из железа со сложным механизмом, настройками и управлением. Изготовление, ремонт, замена занимает кучу времени. Хотя пациентам достаточно пластиковых протезов, напечатанных на 3D принтерах. Для маленьких детей в основном идут тросевые протезы. Подросткам с 14-16 лет делают бионические, только из соображений того, что с возрастом дети начинают бережнее относиться к вещам.

Можно изготовить стилизованные протезы индивидуально под каждого пациента, как рыцарские доспехи, или как у железного человека, вариаций много. Еще один плюс - элементы напечатанного протеза легко заменить. Иногда пациенты обращаются с просьбой заменить палец или кожух, и это делается за 1 или 2 дня. Получается такой протез-трансформер.

Мы представляли на конкурсе 3D принтер, который может превращаться в биопринтер со специальным экструдером, где помещается шприц, и можно печатать гидрогелями, пастами, шоколадом и пр. Что касается стволовых клеток, все печатается в стерильных условиях: в стерильном боксе, в специальном помещении.

4 апреля 2017 года специалисты крупнейших российских медицинских центров и товаропроизводители обсудят стоящие перед ними задачи во время круглого стола «Полимеры в российской медицине и фармацевтике». Круглый стол пройдет в бизнес-клубе «Пальмира» в рамках VIII Российского переработчиков пластмасс. Наиболее важная тема заседания – индустрия имплантатов и 3D-печати, которая меняет качество жизни современного человека.

Накануне этого события организаторы мероприятия подготовили обзор самых примечательных фактов использования 3D-печати в медицинской и фармацевтической деятельности, которые мы с удовольствием публикуем.

Хирургические инструменты

В 2006 г. студенты биоинженерного факультета из Университета Британской Колумбии получили награду за 3D-печать эффективного хирургического эвакуатора дыма. Ранее в трехмерном формате были напечатаны и получили практическое применение щипцы, гемостаты, рукоятки и зажимы скальпеля.

Инструменты выпускаются теперь новым способом серийно, выходят из принтера стерильными и стоят одну десятую часть прототипов предыдущего поколения, выполненных из нержавеющей стали.

Также подобные инструмент применяются, например, в .

Имплантаты костей

Нетрудно представить, что технология 3D-сканирования и печати быстро завоевала сектор краниальных и других имплантатов, изготавливаемых из любых неорганических материалов – сплавов, керамики, пеностекла.

Технология позволяет в режиме реального времени создать контуры отверстия или костного дефекта до операции или же в ходе операции, сразу после удаления поврежденных участков. Затем быстро напечатать имплантат и разместить его точно по контуру отверстия.

В 2013 г. в США была сделана операция, в ходе которой 75% черепа пациента были заменены после двухнедельной работы с отсканированной моделью. Результат повторяет мельчайшие подробности формы.

По данным Oxford Performance Materials, от 300 до 500 человек в США ежемесячно могут стать пациентами, которым требуются подобные операции. К ним относятся жертвы дорожно-транспортных происшествий, военнослужащие и онкологические пациенты с опухолью в черепе.

По данным российского НИИ скорой помощи им. Н.В. Склифосовского, ежегодно в России более 2 тысяч черепно-мозговых травм требуют применения трансплантации, и до 20% этих операций в дальнейшем требуют повторного вмешательства хирургов из-за плохой приживаемости или неправильного расположения имплантата в ткани.

В 2014 г. состоялись первые операции в Китае, в ходе которых пациентам имплантировали напечатанные на 3D-принтере ключицу, лопатку и правую подвздошную кость таза. Показания к операции – раковые опухоли. В том же 2014 г. в США появился первый человек, которому имплантировали коленный сустав, напечатанный по разработке компании Conformis на 3D-принтере. В отличие от серийных стальных и пластиковых протезов колена, этот образец не придется менять через 10 лет эксплуатации.

Одновременно в Британии провели операцию по замене тазобедренного сустава напечатанным 71-летней пациентке.

В 2016 г. учеными Пекинского университета была проведена операция на позвоночнике у 12-летнего мальчика. Позвонок, полученный с помощью 3D-печати, позволил эффективно заменить поврежденный позвонок, точно повторил контуры прилежащих позвонков, кроме того, он превосходит титановые аналоги в прочности и долговечности.

Новый метод позволяет ускорить сроки реабилитации и значительно снижает болевой синдром после операции. Как и обычный позвонок, 3D-аналог является полым в центре, чтобы нервы могли проходить в ствол мозга и соединяться с периферическими окончаниями.

Ушная раковина

Сначала эксперименты в этом направлении вылились в создание бионического уха, которое пока существует отдельно от человека. Устройство, выполненное с участием живых клеток кожи человека, содержит индуктивную радиоантенну.

Концепт создан для апробации использования наноэлектроники в 3D-печати. В 2016 г. Технологическим университетом Квинсленда (Австралия) была разработана технология печати анатомически верных ушей из собственных клеток хрящевой ткани пациента. После нескольких недель выращивания такое ухо хирургическим путем было пересажено 2-летней пациентке.

По планам разработчиков, такое лечение будет обходиться в ближайшем будущем в 200 долларов на каждого ребенка.

В прошлом году подобный эксперимент китайские медики.

Стоматология

Технология 3D-печати в стоматологии используется с 1999 года. Пионер этой области – компания Align Technology, начавшая производство и продажу кап для зубов как альтернативы брекетам.

Что касается протезирования зубов, то 3D удешевило процесс в несколько раз и сделало эту манипуляцию доступной для широких масс населения. 3D-принтеры избавляют стоматологов от сложного и трудоемкого ручного моделирования.

Клиентам больше не нужно проходить сложный процесс от первого визита до установки окончательной конструкции, проходя через череду примерок и доработок. Зубные техники полагались раньше на твердость руки и хорошее зрение, их работа трудоемкая и занимает много времени. Теперь достаточно сделать сканирование ротовой полости – и вскоре получить прекрасный результат.

Уникальную форму каждого зуба невероятно сложно передать с помощью ручного изготовления или фрезерного станка.

Стоматологические 3D-принтеры делают ненужными сложные и устаревшие методы производства. Благодаря новейшим технологиям и самым современным материалам вы получаете готовую продукцию в несколько раз быстрее, чем раньше. Но главное – стоматологические модели, напечатанные на 3D-принтере, в точности повторяют нюансы исходного образца.

Трехмерная печать обеспечивает стабильную точность и выводит стоматологический бизнес на индустриальные мощности. Теперь вы можете использовать снимки и сканирование ротовой полости для быстрого моделирования CAD/CAM и 3D-печати редких ортодонтических инструментов, гипсовых моделей, моделей коронок и мостовидовых протезов.

В 2012 г. состоялась первая операция по вживлению имплантата нижней челюсти, напечатанного на 3D-принтере. Материал – титан. Исполнитель – компания LayerWise. В 2014 г. еще два пациента стали обладателями новой челюсти. Один из них лишился ее из-за опухоли, а второй сломал челюсть.

Российские ученые не отстают от мировых коллег и также печатать имплантаты для стоматологии на 3D-принтере.

Суставы из заполняемого полимера

Исследователи Северно-Западного университета разработали полимерную композицию, которую используют для печати гибкой пористой структуры с внешним контуром заменяемого костного дефекта. Созданные на 3D-принтере пластиковые имплантаты не отторгаются, постепенно заполняются клетками и окостеневают. При этом пластиковая составляющая со временем растворяется.

Новый расходный материал для 3D-печатных костей содержит два компонента:
гидроксиапатит – минерал, который присутствует в обычной костной ткани, обеспечивая её прочность и жёсткость;
поликапролактон – полимер, который не вызывает ответной реакции иммунной системы и широко используется для медицинских целей.

В результате имплантат лишь на 10% объема состоит из растворяемого полимера (остальной объем – полости). Искусственная кость не просто является эластичной и может быть введена через небольшой разрез – её можно растягивать практически в два раза без разрушительного эффекта.

Внутренние органы

Ежегодно в мире выполняется 100 тысяч трансплантаций органов и более 200 тысяч – тканей и клеток человека. Из них до 26 тысяч приходится на трансплантации почек, 8-10 тысяч – печени, 2,7-4,5 тысячи – сердца, 1,5 тысячи – легких, 1 тысяча – поджелудочной железы.

Лидером среди государств мира по количеству проводимых трансплантаций являются США: ежегодно американские врачи выполняют 10 тысяч пересадок почек, 4 тысячи – печени, 2 тысячи – сердца.

В России ежегодно производится 4-5 трансплантаций сердца, 5-10 трансплантаций печени, 500-800 трансплантаций почек. Этот показатель в сотни раз ниже потребности в данных операциях.

Согласно исследованию американских экспертов, расчетная потребность количества трансплантаций органов на 1 млн населения в год составляет: почка – 74,5; сердце – 67,4; печень – 59,1; поджелудочная железа – 13,7; легкое – 13,7; комплекс сердце–легкое – 18,5.

В начале 2017 г. специалисты из американской компании Organovo объявили, что через шесть лет начнут пересаживать пациентам ткани, полученные методом 3D-печати из живых человеческих клеток. Для трансплантации будут создаваться как части повреждённых тканей, так и органы целиком.

В данный момент искусственные ткани, выращенные специалистами компании в лабораторных условиях, используются фармацевтами для тестирования новых лекарственных препаратов. 3D-печатные ткани функционируют так же, как и обычные, и позволяют наблюдать реакцию, характерную для человеческого организма, в отличие от приближенной реакции подопытных животных.

Теперь компания сосредоточила силы на создании жизнеспособных органов, пригодных для трансплантации.

Первыми в сотрудничестве с Королевской детской больницей в Мельбурне будут созданы функциональные и . Метод создания структуры человеческой почки из стволовых клеток уже разработан. В перспективе искусственная почка будет пригодна для трансплантации. Только в США в списке на трансплантацию почек – 120 тысяч пациентов. Основной проблемой технологии в ее нынешнем виде является длительность печати одного органа, измеряемая несколькими месяцами, и кровоснабжение. Каждая клетка в тканях находится рядом с капиллярами, которые печатать пока не научились.

Чуть дальше в данном направлении продвинулись российские ученые. В 2016 году компании 3D Bioprinting Solutions удалось впервые в мире создать с помощью 3D-печати орган – щитовидную железу, которую в дальнейшем пересадили подопытной мыши.

Сердце и кровеносные сосуды

Исследователи из Университета Ростока в Германии, Гарвардский медицинский институт и Сиднейский университет разрабатывают биологические клетки, трехмерный струйный принтер и лазер для восстановления сердца, в частности, наложением полученной 3D-методом органической заплаты. Теми же специалистами создаются искусственные (полученные инструментально из живых клеток или с использованием полимерной сетки) кровеносные сосуды.

Несколько дней назад об изысканиях в данном направлении в США.

Кожа

Группа испанских учёных из Университета Карлоса III (Мадрид), Центра по исследованиям в сфере энергетики, окружающей среды и технологий (CIEMAT), а также мадридского Университетского госпиталя Грегорио Мараньона представила 3D–биопринтер, который способен послойно воспроизводить человеческую кожу, идентичную натуральной. Последнее было доказано гистологическими и иммуногистохимическими исследованиями.

3D–биопринтер использует инжекторы с биологическими компонентами человека и биочернила, запатентованные CIEMAT и лицензированные компанией BioDan Group, которая планирует выводить на рынок данную технологию. Кожа человека печатается слоями, а весь процесс контролируется компьютером. Для печати используются биочернила, содержащие плазму, первичные фибробласты и кератиноциты (клетки эпителиальной ткани) человека.

Поскольку для печати применяются живые клетки, то напечатанная кожа является биологически активной и сама начинает вырабатывать коллаген. В практике ожоговых центров выращивание из собственных клеток пациента кожи in vitro занимает около 2 недель. Новая технология печати на 3D-принтере позволяет решить ту же задачу за 2 дня. В планах научного коллектива – печать трахеи, сердечных клапанов и кровеносных сосудов.

Помощь во время операций

Имея перед глазами объемную 3D-модель, хирургам будет гораздо проще ориентироваться внутри живого человека во время операции. Например, когда операция проходит у двенадцатилетней девочки, чья раковая опухоль признана неоперабельной, так как находилась слишком близко к позвоночнику, а также была окружена здоровыми тканями, органами, венами и артериями.

Опаснейшая операция прошла успешно, поскольку врачи использовали распечатанную 3D-модель и тщательно спланировали все манипуляции.

Кардиологи всего мира собирают сейчас библиотеку 3D-макетов сердец. Распечатанное сердце помогает врачам планировать операцию, ведь одно дело – видеть результаты сканирования, а другое – держать орган в руках в натуральную величину.

Совсем недавно подобная технология была кардиохирургами в Белоруссии.

Печать пористых таблеток

В 2016 г. сотрудники американской фармкомпании «Aprecia Pharmaceuticals» получили разрешение FDA (Food and Drug Administration – управление по санитарному надзору за качеством пищевых продуктов и медикаментов) использовать технологию 3D-печати для создания лекарственных средств. Спритам (леветирацетам) стал первым препаратом, созданным при помощи 3D-принтера.

Медикамент применяется взрослыми и детьми для предупреждения развития эпилептических припадков. В России леветирацетам входит в список жизненно необходимых и важнейших лекарственных препаратов, утвержденный Правительством Российской Федерации.

Новая технология по созданию спритама, носящая название ZipDose, была создана специалистами Массачусетского технологического института. В результате ее применения таблетки состоят не из «спрессованных» лекарственных слоев, а обладают пористой структурой. Этот вид производства позволяет добиться более быстрого растворения и лучшего всасывания лекарственного препарата. Данная методика упрощает прием медикамента для пациентов, имеющих сложности с глотанием таблеток.

Дон Везерхолд, генеральный директор Aprecia Pharmaceuticals, заявил, что технология может использоваться для пациентов, страдающих шизофренией, болезнью Паркинсона и множеством других расстройств.

В Дубае уже всерьез перспективной разработкой.

Борьба с раком

Разработку лекарств против рака осложняет колоссальное количество разновидностей раковых клеток, относящихся как к разным тканям, так и принадлежащих разным особям, а также находящиеся на различных стадиях индивидуальной эволюции.

Удешевить исследование лекарств для конкретных применений позволит 3D-печать тканей из раковых клеток различных тканей и разных пациентов, что позволит в несколько раз сократить сроки исследований, клинических испытаний, их стоимость и, возможно, начать выпуск индивидуальных составов для конкретных пациентов, определить наиболее эффективный препарат не последовательным применением на живом человеке, а in vitro.

Еще больше интересных новостей о 3D-печати в медицинской деятельности вы сможете узнать в специальном нашего портала.



Поделиться