Как работает тэц схема. Как работают ТЭС на газе

24 октября 2012

Электрическая энергия давно вошла в нашу жизнь. Еще греческий философ Фалес в 7 веке до нашей эры обнаружил, что янтарь, потертый о шерсть начинает притягивать предметы. Но долгое время на этот факт никто не обращал внимание. Лишь в 1600 году впервые появился термин «Электричество», а в 1650 году Отто фон Герике создал электростатическую машину в виде насаженного на металлический стержень серного шара, которая позволила наблюдать не только эффект притягивания, но и эффект отталкивания. Это была первая простейшая электростатическая машина.

Прошло много лет с тех пор, но даже сегодня, в мире, заполненном терабайтами информации, когда можно самому узнать все, что тебя интересует, для многих остается загадкой как производится электричество, как его доставляют к нам в дом, офис, на предприятие…

В несколько частей рассмотрим эти процессы.

Часть I. Генерация электрической энергии.

Откуда же берется электрическая энергия? Появляется эта энергия из других видов энергии – тепловой, механической, ядерной, химической и многих других. В промышленных масштабах электрическую энергию получают на электростанциях. Рассмотрим только самые распространенные виды электростанций.

1) Тепловые электростанции. Сегодня из можно объединить одним термином – ГРЭС (Государственная Районная Электростанция). Конечно, сегодня этот термин потерял первоначальный смысл, но он не ушел в вечность, а остался с нами.

Тепловые электростанции делятся на несколько подтипов:

А) Конденсационная электростанция (КЭС) - тепловая электростанция, производящая только электрическую энергию, своим названием этот тип электростанций обязан особенностям принципа работы.

Принцип работы: В котел при помощи насосов подается воздух и топливо (газообразное, жидкое или твердое). Получается топливо-воздушная смесь, которая горит в топке котла, выделяя огромное количество теплоты. При этом вода проходит по трубной системе, которая располагается внутри котла. Выделяющаяся теплота передается этой воде, при этом ее температура повышается и доводится до кипения. Пар, который был получен в котле снова идет в котел для перегревания его выше температуры кипения воды (при данном давлении), затем по паропроводам он поступает на паровую турбину, в которой пар совершает работу. При этом он расширяется, уменьшается его температура и давление. Таким образом, потенциальная энергия пара передается турбине, а значит, превращается в кинетическую. Турбина же в свою очередь приводит в движение ротор трехфазного генератора переменного тока, который находится на одном валу с турбиной и производит энергию.

Рассмотрим некоторые элементы КЭС поближе.

Паровая турбина.

Поток водяного пара поступает через направляющие аппараты на криволинейные лопатки, закрепленные по окружности ротора, и, воздействуя на них, приводит ротор во вращение. Между рядами лопаток, как видите, есть промежутки. Они есть потому, что этот ротор вынут из корпуса. В корпус тоже встроены ряды лопаток, но они неподвижны и служат для создания нужного угла падения пара на движущиеся лопатки.

Конденсационные паровые турбины служат для превращения максимально возможной части теплоты пара в механическую работу. Они работают с выпуском (выхлопом) отработавшего пара в конденсатор, в котором поддерживается вакуум.

Турбина и генератор, которые находятся на одном валу называются турбогенератором. Трехфазный генератор переменного тока (синхронная машина).

Он состоит из:


Который повышает напряжение до стандартного значения (35-110-220-330-500-750 кВ). При этом ток значительно уменьшается (например, при увеличении напряжения в 2 раза, ток уменьшается в 4 раза), что позволяет передавать мощность на большие расстояния. Следует отметить, что когда мы говорим о классе напряжения, то мы имеем в виду линейное (междуфазное) напряжение.

Активную мощность, которую вырабатывает генератор, регулируют изменением количеством энергоносителя, при этом изменяется ток в обмотке ротора. Для увеличения выдаваемой активной мощности нужно увеличить подачу пара на турбину, при этом ток в обмотке ротора возрастет. Не следует забывать, что генератор синхронный, а это значит, что его частота всегда равна частоте тока в энергосистеме, и изменение параметров энергоносителя не повлияет на частоту его вращения.

Кроме того, генератор вырабатывает и реактивную мощность. Ее можно использовать для регулирования выдаваемого напряжения в небольших пределах (т.е. это не основное средство регулирования напряжения в энергосистеме). Работает это таким образом. При перевозбуждении обмотки ротора, т.е. при повышении напряжения на роторе сверх номинала, «излишек» реактивной мощности выдается в энергосистему, а когда обмотку ротора недовозбуждают, то реактивная мощность потребляется генератором.

Таким образом, в переменном токе мы говорим о полной мощности (измеряется в вольт-амперах – ВА), которая равна корню квадратному от суммы активной (измеряется в ваттах – Вт) и реактивной (измеряется в вольт-амперах реактивных – ВАР) мощностях.

Вода в водохранилище служит для отведения тепла от конденсатора. Однако, часто для этих целей используют брызгальные бассейны


или градирни. Градирни бывают башенными Рис.8

или вентиляторными Рис.9

Градирни устроены почти так же как и , с тем лишь различием, что вода стекает по радиаторам, передает им тепло, а уже они охлаждаются нагнетаемым воздухом. При этом часть воды испаряется и уносится в атмосферу.
КПД такой электростанции не превышает 30%.

Б) Газотурбинная электростанция.

На газотурбинной электростанции турбогенератор приводится в движение не паром, а непосредственно газами, получаемыми при сгорании топлива. При этом можно использовать только природный газ, иначе турбина быстро выйдет из стоя из-за ее загрязнения продуктами горения. КПД на максимальной нагрузке 25-33%

Гораздо больший КПД (до 60%) можно получить, совмещая паровой и газовый циклы. Такие установки называются парогазовыми. В них вместо обычного котла установлен котел-утилизатор, не имеющий собственных горелок. Теплоту он получает от выхлопа газовой турбины. В настоящее время ПГУ активнейшим образом внедряются в нашу жизнь, но пока в России их немного.

В) Теплоэлектроцентрали (очень давно стали неотъемлемой частью крупных городов). Рис.11

ТЭЦ конструктивно устроена как конденсационная электростанция (КЭС). Особенность электростанции такого типа состоит в том, что она может вырабатывать одновременно как тепловую, так и электрическую энергию. В зависимости от вида паровой турбины, существуют различные способы отборы пара, которые позволяют забирать из нее пар с разными параметрами. При этом часть пара или полностью весь пар (зависит от типа турбины) поступает в сетевой подогреватель, отдает ему теплоту и конденсируется там. Теплофикационные турбины позволяют регулировать количество пара для тепловых или промышленных нужд что позволяет ТЭЦ работать в нескольких режимах по нагрузке:

тепловому - выработка электрической энергии полностью зависит от выработки пара для промышленных или теплофикационных нужд.

электрическому - электрическая нагрузка независима от тепловой. Кроме того, ТЭЦ могут работать и в полностью конденсационном режиме. Это может потребоваться, например, при резком дефиците активной мощности летом. Такой режим является невыгодным для ТЭЦ, т.к. значительно снижается КПД.

Одновременное производство электрической энергии и тепла (когенерация) – выгодный процесс, при котором КПД станции существенно повышается. Так, например, расчетный КПД КЭС составляет максимум 30%, а у ТЭЦ – около 80%. Плюс ко всему, когенерация позволяет уменьшить холостые тепловые выбросы, что положительно сказывается на экологии местности, в которой расположена ТЭЦ (по сравнению с тем, если бы тут была КЭС аналогичной мощности).

Рассмотрим подробнее паровую турбину.

К теплофикационным паровым турбинам относятся турбины с:

Противодавлением;

Регулируемым отбором пара;

Отбором и противодавлением.

Турбины с противодавлением работают с выхлопом пара не в конденсатор, как у КЭС, а в сетевой подогреватель, то есть весь пар, пошедший через турбину, идет на теплофикационные нужды. Конструкция таких турбин обладает существенным недостатком: график электрической нагрузки полностью зависит от графика тепловой нагрузки, то есть такие аппараты не могут принимать участия в оперативном регулировании частоты тока в энергосистеме.

В турбинах, имеющих регулируемый отбор пара, происходит его отбор в нужном количестве в промежуточных ступенях, при этом выбирают такие ступени для отбора пара, какие подходят в данном случае. Такой тип турбины обладает независимостью от тепловой нагрузки и регулирование выдаваемой активной мощности можно регулировать в больших пределах, чем у ТЭЦ с противодавлением.

Турбины с отбором и противодавлением совмещают в себе функции первых двух видов турбин.

Теплофикационные турбины ТЭЦ не всегда не способны за малый промежуток времени изменить тепловую нагрузку. Для покрытия пиков нагрузки,а иногда и для увеличения электрической мощности путем перевода турбин в конденсационный режим, на ТЭЦ устанавливают пиковые водогрейные котлы.

2) Атомные электростанции.

В России на настоящий момент существует 3 вида реакторных установок. Общий принцип их работы примерно похож на работу КЭС (в былые времена АЭС называли ГРЭС). Принципиальное различие состоит лишь в том, что тепловую энергию получают не в котлах на органическом топливе, а в ядерных реакторах.

Рассмотрим две самых распространенных типов реакторов в России.

1) Реактор РБМК .


Отличительная особенность этого реактора состоит в том, что пар для вращения турбины получают непосредственно в активной зоне реактора.

Активная зона РБМК. Рис.13

состоит из вертикальных графитовых колонн, в которых находятся продольные отверстия, с вставленными туда трубами из циркониевого сплава и нержавеющей стали. Графит выполняет роль замедлителя нейтронов. Все каналы делятся на топливные и каналы СУЗ (система управления и защиты). Они имеют разные контуры охлаждения. В топливные каналы вставляют кассету (ТВС – тепловыделяющую сборку) со стержнями (ТВЭЛ – тепловыделяющий элемент) внутри которых находятся урановые таблетки в герметичной оболочке. Понятно, что именно от них получают тепловую энергию, которая передается непрерывно циркулирующему снизу вверх теплоносителю под большим давлением – обычной, но очень хорошо очищенной от примесей воде.

Вода, проходя по топливным каналам, частично испаряется, пароводяная смесь поступает от всех отдельных топливных каналов в 2 барабан-сепаратора, где происходит отделение (сепарация) пара от воды. Вода снова уходит в реактор с помощью циркуляционных насосов (всего из 4 на петлю), а пар по паропроводам идет на 2 турбины. Затем пар конденсируется в конденсаторе, превращается в воду, которая снова идет в реактор.

Тепловой мощностью реактора управляют только с помощью стержней-поглотителей нейтронов из бора, которые перемещаются в каналах СУЗ. Вода, охлаждающая эти каналы идет сверху вниз.

Как вы могли заметить, я еще ни разу не сказал про корпус реактора. Дело в том, что фактически у РБМК нет корпуса. Активная зона про которую я вам сейчас рассказывал помещена в бетонную шахту, сверху она закрыта крышкой весом в 2000 тонн.

На приведенном рисунке видна верхняя биологическая защита реактора. Но не стоит ожидать, что приподняв один из блоков, можно будет увидеть желто-зеленое жерло активной зоны, нет. Сама крышка располагается значительно ниже, а над ней, в пространстве до верхней биологической защиты остается промежуток для коммуникаций каналов и полностью извлеченных стержней поглотителей.

Между графитовыми колоннами оставляют пространство для теплового расширения графита. В этом пространстве циркулирует смесь газов азота и гелия. По ее составу судят о герметичности топливных каналов. Активная зона РБМК рассчитана на разрыв не более 5 каналов, если разгерметизируется больше – произойдет отрыв крышки реактора и раскрытие остальных каналов. Такое развитие событий вызовет повторение Чернобыльской трагедии (тут я имею в виду не саму техногенную катастрофу, а ее последствия).

Рассмотрим плюсы РБМК:

—Благодаря поканальному регулированию тепловой мощности есть возможность менять топливные сборки, не останавливая реактор. Каждый день, обычно, меняют несколько сборок.

—Низкое давление в КМПЦ (контур многократной принудительной циркуляции), что способствует более мягкому протеканию аварий, связанных с его разгерметизацией.

—Отсутствие сложного в изготовлении корпуса реактора.

Рассмотрим минусы РБМК:

—В ходе эксплуатации были обнаружены многочисленные просчеты в геометрии активной зоны, устранить которые на действующих энергоблоках 1-го и 2-го поколений (Ленинград, Курск, Чернобыль, Смоленск) полностью не возможно. Энергоблоки РБМК 3-его поколения (он один – на 3 энергоблоке Смоленской АЭС) лишен этих недостатков.

—Реактор одноконтурный. То есть турбины вращает пар, полученный непосредственно в реакторе. А это значит, что он содержит радиоактивные компоненты. При разгерметизации турбины (а такое было на Чернобыльской АЭС в 1993 году) ее ремонт будет сильно усложнен, а, может быть, и невозможен.

—Срок службы реактора определяется сроком службы графита (30-40 лет). Затем наступает его деградация, проявляющаяся в его разбухании. Этот процесс уже вызывает серьезные опасения на старейшем энергоблоке РБМК Ленинград-1, построенном в 1973 году (ему уже 39 лет). Наиболее вероятный выход из ситуации – заглушение n-нного количества каналов для уменьшения теплового расширения графита.

—Графитовый замедлитель является горючим материалом.

—Ввиду огромного количества запорной арматуры, реактор сложен в управлении.

— На 1 и 2 поколениях существует неустойчивость при работе на малых мощностях.

В целом можно сказать, что РБМК – хороший реактор для своего времени. В настоящее время принято решение не строить энергоблоки с этим типом реакторов.

2) Реактор ВВЭР.

На смену РБМК в настоящее время приходит ВВЭР. Он обладает значительными плюсами по сравнению с РБМК.

Активная зона полностью находится в очень прочном корпусе, который изготавливают на заводе и привозят железнодорожным, а затем и автомобильным транспортом на строящийся энергоблок в полностью готовом виде. Замедлителем является чистая вода под давлением. Реактор состоит из 2-х контуров: вода первого контура под большим давлением охлаждает топливные сборки, передавая тепло 2-му контуру с помощью парогенератора (выполняет функцию теплообменника между 2-ми изолированными контурами). В нем вода второго контура кипит, превращается в пар и идет на турбину. В первом контуре вода не кипит, так как она находится под очень большим давлением. Отработанный пар конденсируется в конденсаторе и снова идет в парогенератор. Двухконтурная схема обладает значительными плюсами по сравнению с одноконтурной:

Пар, идущий на турбину не радиоктивен.

Мощностью реактора можно управлять не только стержнями-поглотителями, но и раствором борной кислоты, что делает реактор более устойчивым.

Элементы первого контура располагаются очень близко друг от друга, поэтому их можно поместить в общую защитную оболочку. При разрывах в первом контуре радиоактивные элементы попадут в гермооболочку и не выйдут в окружающую среду. Кроме того гермооболочка защищает реактор от внешнего воздействия (например от падения небольшого самолета или взрыва за периметром станции).

Реактор не сложен в управлении.

Имеются так же и минусы:

—В отличие от РБМК, топливо нельзя менять при работающем реакторе, т.к. оно находится в общем корпусе, а не в отдельных каналах, как в РБМК. Время перезагрузки топлива обычно совпадает со временем текущего ремонта, что уменьшает воздействие этого фактора на КИУМ (коэффициент используемой установленной мощности).

—Первый контур находится под большим давлением, что потенциально может вызвать больший масштаб аварии при разгерметизации, чем РБМК.

—Корпус реактора очень сложно перевезти с завода-изготовителя на стройплощадку АЭС.

Что же, работу тепловых электростанций мы рассмотрели, теперь рассмотрим работу

Принцип работы ГЭС достаточно прост. Цепь гидротехнических сооружений обеспечивает необходимый напор воды, поступающей на лопасти гидротурбины, которая приводит в действие генераторы, вырабатывающие электроэнергию.

Необходимый напор воды образуется посредством строительства плотины, и как следствие концентрации реки в определенном месте, или деривацией - естественным током воды. В некоторых случаях для получения необходимого напора воды используют совместно и плотину, и деривацию. ГЭС обладают очень высокой маневренностью вырабатываемой мощности, а также малой стоимостью вырабатываемой электроэнергии. Эта особенность ГЭС привела с созданию другого типа электростанции – ГАЭС. Такие станции способны аккумулировать вырабатываемую электроэнергию, и пускать её в ход в моменты пиковых нагрузок. Принцип работы таких электростанций следующий: в определенные периоды (обычно ночью), гидроагрегаты ГАЭС работают как насосы, потребляя электрическую энергию из энергосистемы, и закачивают воду в специально оборудованные верхние бассейны. Когда возникает потребность (в пики нагрузки), вода из них поступает в напорный трубопровод и приводит в действие турбины. ГАЭС выполняют исключительно важную функцию в энергосистеме (регулирование частоты), но они не получают широкого распространения у нас в стране, т.к. в итоге они потребляют больше мощности, чем выдают. То есть станция такого типа убыточна для владельца. Например, на Загорской ГАЭС мощность гидрогенераторов в генераторном режиме 1200 МВт, а в насосном – 1320 МВт. Однако такой тип станции наилучшем образом подходит для быстрого увеличения или уменьшения вырабатываемой мощности, поэтому их выгодно сооружать около, например, АЭС, так как последние работают в базовом режиме.

Мы с вами рассмотрели как именно производится электрическая энергия. Пора задать себе серьезный вопрос: «А какой тип станций наилучшем образом отвечает всем современным требованиям по надежности, экологичности, а кроме этого, еще и будет отличаться малой стоимостью энергии?» Каждый ответит на этот вопрос по-разному. Приведу свой список «лучших из лучших».

1) ТЭЦ на природном газе. КПД таких станций очень высок, высока и стоимость топлива, но природный газ – один из самых «чистых» видов топлива, а это очень важно для экологии города, в черте которых обычно и располагаются ТЭЦ.

2) ГЭС и ГАЭС. Преимущества над тепловыми станциями очевидно, так как этот тип станции не загрязняет атмосферу и производит самую «дешевую» энергию, которая плюс ко всему является возобновляемым ресурсом.

3) ПГУ на природном газе. Самый высокий КПД среди тепловых станций, а так же малое количество потребляемого топлива, позволит частично решить проблему теплового загрязнения биосферы и ограниченных запасов ископаемого топлива.

4) АЭС. В нормальном режиме работы АЭС выбрасывает в окружающую среду в 3-5 раз меньше радиоактивных веществ, чем тепловая станция той же мощности, поэтому частичное замещения тепловых электростанций атомными вполне оправдано.

5) ГРЭС. В настоящее время на таких станциях в качестве топлива используют природный газ. Это является абсолютно бессмысленным, так как с тем же успехов в топках ГРЭС можно утилизировать попутный нефтяной газ (ПНГ) или сжигать уголь, запасы которого огромны, по сравнению с запасами природного газа.

На этом я завершаю первую часть статьи.

Материал подготовил:
студент группы ЭС-11б ЮЗГУ Агибалов Сергей.

ВВЕДЕНИЕ. 4

1 ТЕПЛОЭЛЕКТРОЦЕНТРАЛИ.. 5

1.1 Общая характеристика. 5

1.2 Принципиальная схема ТЭЦ.. 10

1.3 Принцип работы ТЭЦ. 11

1.4 Расход теплоты и КПД ТЭЦ…………………………………………………..15

2 СРАВНЕНИЕ РОССИЙСКИХ ТЭЦ С ИНОСТРАННЫМИ.. 17

2.1 Китай. 17

2.2 Япония. 18

2.3 Индия. 19

2.4 Великобритания. 20

ЗАКЛЮЧЕНИЕ. 22

БИБЛИОГРАФИЧЕСКИЙ СПИСОК.. 23


ВВЕДЕНИЕ

ТЭЦ - основное производственное звено в системе централизованного теплоснабжения. Строительство ТЭЦ - одно из основных направлений развития энергетического хозяйства в СССР и др. социалистических странах. В капиталистических странах ТЭЦ имеют ограниченное распространение (в основном промышленные ТЭЦ).

Теплоэлектроцентрали (ТЭЦ)- электрические станции с комбинированной выработкой электрической энергии и тепла. Они характеризуются тем, что тепло каждого килограмма пара, отбираемого из турбины, используется частично для выработки электрической энергии, а затем у потребителей пара и горячей воды.

ТЭЦ предназначена для централизованного снабжения промышленных предприятий и городов теплом и электроэнергией.

Технически и экономически обоснованное планирование производства на ТЭЦ позволяет достигнуть наиболее высоких эксплуатационных показателей при минимальных затратах всех видов производственных ресурсов, т. к. на ТЭЦ тепло «отработавшего» в турбинах пара используется для нужд производства, отопления и горячего водоснабжения.


ТЕПЛОЭЛЕКТРОЦЕНТРАЛИ

Теплоэлектроцентраль - электростанция, вырабатывающая электрическую энергию за счет преобразования химической энергии топлива в механическую энергию вращения вала электрогенератора.

Общая характеристика

Теплоэлектроцентраль - тепловая электростанция, вырабатывающая не только электрическую энергию, но и тепло, отпускаемое потребителям в виде пара и горячей воды. Использование в практических целях отработавшего тепла двигателей, вращающих электрические генераторы, является отличительной особенностью ТЭЦ и носит название Теплофикация. Комбинированное производство энергии двух видов способствует более экономному использованию топлива по сравнению с раздельной выработкой электроэнергии на конденсационных электростанциях и тепловой энергии на местных котельных установках. Замена местных котельных, нерационально использующих топливо и загрязняющих атмосферу городов и посёлков, централизованной системой теплоснабжения способствует не только значительной экономии топлива, но и повышению чистоты воздушного бассейна, улучшению санитарного состояния населённых мест.

Исходный источник энергии на ТЭЦ - органическое топливо (на паротурбинных и газотурбинных ТЭЦ) либо ядерное топливо (на планируемых атомных ТЭЦ). Преимущественное распространение имеют (1976) паротурбинные ТЭЦ на органическом топливе (рис. 1 ), являющиеся наряду с конденсационными электростанциями основным видом тепловых паротурбинных электростанций (ТПЭС). Различают ТЭЦ промышленного типа - для снабжения теплом промышленных предприятий, и отопительного типа - для отопления жилых и общественных зданий, а также для снабжения их горячей водой. Тепло от промышленных ТЭЦ передаётся на расстояние до нескольких км (преимущественно в виде тепла пара), от отопительных - на расстояние до 20-30 км (в виде тепла горячей воды).

Основное оборудование паротурбинных ТЭЦ - турбоагрегаты, преобразующие энергию рабочего вещества (пара) в электрическую энергию, и Котлоагрегаты, вырабатывающие пар для турбин. В состав турбоагрегата входят Паровая турбина и Синхронный генератор. Паровые турбины, используемые на ТЭЦ, называются теплофикационными турбинами (ТТ). Среди них различают ТТ: с противодавлением, обычно равным 0,7-1,5 Мн/ м 2 (устанавливаются на ТЭЦ, снабжающих паром промышленные предприятия); с конденсацией и отборами пара под давлением 0,7- 1,5 Мн/ м 2 (для промышленных потребителей) и 0,05-0,25 Мн /м 2 (для коммунально-бытовых потребителей); с конденсацией и отбором пара (отопительным) под давлением 0,05-0,25 Мн/ м 2 .

Отработавшее тепло ТТ с противодавлением можно использовать полностью. Однако электрическая мощность, развиваемая такими турбинами, зависит непосредственно от величины тепловой нагрузки, и при отсутствии последней (как это, например, бывает в летнее время на отопительных ТЭЦ) они не вырабатывают электрической мощности. Поэтому ТТ с противодавлением применяют лишь при наличии достаточно равномерной тепловой нагрузки, обеспеченной на всё время действия ТЭЦ (то есть преимущественно на промышленных ТЭЦ).

У ТТ с конденсацией и отбором пара для снабжения теплом потребителей используется лишь пар отборов, а тепло конденсационного потока пара отдаётся в конденсаторе охлаждающей воде и теряется. Для сокращения потерь тепла такие ТТ большую часть времени должны работать по «тепловому» графику, то есть с минимальным «вентиляционным» пропуском пара в конденсатор. В СССР разработаны и построены ТТ с конденсацией и отбором пара, в которых использование тепла конденсации предусмотрено: такие ТТ в условиях достаточной тепловой нагрузки могут работать как ТТ с противодавлением. ТТ с конденсацией и отбором пара получили на ТЭЦ преимущественное распространение как универсальные по возможным режимам работы. Их использование позволяет регулировать тепловую и электрическую нагрузки практически независимо; в частном случае, при пониженных тепловых нагрузках или при их отсутствии, ТЭЦ может работать по «электрическому» графику, с необходимой, полной или почти полной электрической мощностью.

Электрическую мощность теплофикационных турбоагрегатов (В отличие от конденсационных) выбирают предпочтительно не по заданной шкале мощностей, а по количеству расходуемого ими свежего пара. Поэтому в СССР крупные теплофикационные турбоагрегаты унифицированы именно по этому параметру. Так, турбоагрегаты Р-100 с противодавлением, ПТ-135 с промышленными и отопительными отборами и Т-175 с отопительным отбором имеют одинаковый расход свежего пара (около 750 т/ ч ), но различную электрическую мощность (соответственно 100, 135 и 175 МВт ). Котлоагрегаты, вырабатывающие пар для таких турбин, имеют одинаковую производительность (около 800 т/ ч ). Такая унификация позволяет использовать на одной ТЭЦ турбоагрегаты различных типов с одинаковым тепловым оборудованием котлов и турбин. В СССР унифицировались также котлоагрегаты, используемые для работы на ТПЭС различного назначения. Так, котлоагрегаты производительностью по пару 1000 т/ ч используют для снабжения паром как конденсационных турбин на 300 МВт, так и самых крупных в мире ТТ на 250 МВт.

Тепловая нагрузка на отопительных ТЭЦ неравномерна в течение года. В целях снижения затрат на основное энергетическое оборудование часть тепла (40-50%) в периоды повышенной нагрузки подаётся потребителям от пиковых водогрейных котлов. Доля тепла, отпускаемого основным энергетическим оборудованием при наибольшей нагрузке, определяет величину коэффициента теплофикации ТЭЦ (обычно равного 0,5-0,6). Подобным же образом можно покрывать пики тепловой (паровой) промышленной нагрузки (около 10-20% от максимальной) пиковыми паровыми котлами невысокого давления. Отпуск тепла может осуществляться по двум схемам (рис. 2 ). При открытой схеме пар от турбин направляется непосредственно к потребителям. При закрытой схеме тепло к теплоносителю (пару, воде), транспортируемому к потребителям, подводится через теплообменники (паропаровые и пароводяные). Выбор схемы определяется в значительной мере водным режимом ТЭЦ.

На ТЭЦ используют твёрдое, жидкое или газообразное топливо. Вследствие большей близости ТЭЦ к населённым местам на них шире (по сравнению с ГРЭС) используют более ценное, меньше загрязняющее атмосферу твёрдыми выбросами топливо - мазут и газ. Для защиты воздушного бассейна от загрязнения твёрдыми частицами используют (как и на ГРЭС) золоуловители, для рассеивания в атмосфере твёрдых частиц, окислов серы и азота сооружают дымовые трубы высотой до 200-250 м. ТЭЦ, сооружаемые вблизи потребителей тепла, обычно отстоят от источников водоснабжения на значительном расстоянии. Поэтому на большинстве ТЭЦ применяют оборотную систему водоснабжения с искусственными охладителями - Градирнями. Прямоточное водоснабжение на ТЭЦ встречается редко.

На газотурбинных ТЭЦ в качестве привода электрических генераторов используют газовые турбины. Теплоснабжение потребителей осуществляется за счёт тепла, отбираемого при охлаждении воздуха, сжимаемого компрессорами газотурбинной установки, и тепла газов, отработавших в турбине. В качестве ТЭЦ могут работать также парогазовые электростанции (оснащенные паротурбинными и газотурбинными агрегатами) и атомные электростанции.

Рис. 1. Общий вид теплоэлектроцентрали.

Рис. 2. Простейшие схемы теплоэлектроцентралей с различными турбинами и различными схемами отпуска пара: а - турбина с противодавлением и отбором пара, отпуск тепла - по открытой схеме; б - конденсационная турбина с отбором пара, отпуск тепла - по открытой и закрытой схемам; ПК - паровой котёл; ПП - пароперегреватель; ПТ - паровая турбина; Г - электрический генератор; К - конденсатор; П - регулируемый производственный отбор пара на технологические нужды промышленности; Т - регулируемый теплофикационный отбор на отопление; ТП - тепловой потребитель; ОТ - отопительная нагрузка; КН и ПН - конденсатный и питательный насосы; ПВД и ПНД - подогреватели высокого и низкого давления; Д - деаэратор; ПБ - бак питательной воды; СП - сетевой подогреватель; СН - сетевой насос.

Принципиальны схема ТЭЦ

Рис. 3. Принципиальная схема ТЭЦ.

В отличие от КЭЦ, ТЭЦ вырабатывает и отпускает потребителям не только электрическую, но и тепловую энергию в виде горячей воды и пара.

Для отпуска горячей воды служат сетевые подогреватели (бойлеры), в которых вода подогревается паром из теплофикационных отборов турбины до необходимой температуры. Вода в сетевых подогревателях называется сетевой. После охлаждения у потребителей сетевая вода насосами вновь подается в сетевые подогреватели. Конденсат бойлеров насосами направляется в деаэратор.

Пар, отдаваемый на производство, используется заводскими потребителями на различные цели. От характера этого использования зависит возможность возврата производственного конденсата в КА ТЭЦ. Возвращаемый с производства конденсат, если качество его отвечает производственным нормам, направляется в деаэратор насосом, установленным после сборной ёмкости. В противном случае он подается на ВПУ для соответствующей обработки (обессоливание, умягчение, обезжелезивание и т.д.).

ТЭЦ обычно оборудуется барабанными КА. Из этих КА небольшая часть котловой воды выводиться с продувкой в расширитель непрерывной продувки и далее через теплообменник сбрасывается в дренаж. Сбрасываемая вода называется продувочной. Полученный в расширителе пар обычно направляется в деаэратор.

Принцип работы ТЭЦ

Рассмотрим принципиальную технологическую схему ТЭЦ (рис.4), характеризующую состав ее частей, общую последовательность технологических процессов.

Рис. 4. Принципиальная технологическая схема ТЭЦ.

В состав ТЭЦ входят топливное хозяйство (ТХ) и устройства для подготовки его перед сжиганием (ПТ). Топливное хозяйство включает приемно-разгрузочные устройства, транспортные механизмы, топливные склады, устройства для предварительной подготовки топлива (дробильные установки).

Продукты сгорания топлива - дымовые газы отсасываются дымососами (ДС) и отводятся через дымовые трубы (ДТр) в атмосферу. Негорючая часть твердых топлив выпадает в топке в виде шлака (Ш), а значительная часть в виде мелких частиц уносится с дымовыми газами. Для защиты атмосферы от выброса летучей золы перед дымососами устанавливают золоуловители (ЗУ). Шлаки и зола удаляются обычно на золоотвалы. Воздух, необходимый для горения, подается в топочную камеру дутьевыми вентиляторами. Дымососы, дымовая труба, дутьевые вентиляторы составляют тягодутьевую установку станции (ТДУ).

Перечисленные выше участки образуют один из основных технологических трактов - топливно-газовоздушный тракт.

Второй важнейший технологический тракт паротурбинной электростанции- пароводяной, включающий пароводяную часть парогенератора, тепловой двигатель (ТД), преимущественно паровую турбину, конденсационную установку, включая конденсатор (К) и конденсатный насос (КН), систему технического водоснабжения (ТВ) с насосами охлаждающей воды (НОВ), водоподготовительную и питательную установку, включающую водоочистку (ВО), подогреватели высокого и низкого давления (ПВД и ПНД), питательные насосы (ПН), а также трубопроводы пара и воды.

В системе топливно-газовоздушного тракта химически связанная энергия топлива при сжигании в топочной камере выделяется в виде тепловой энергии, передаваемой радиацией и конвекцией через стенки металла трубной системы парогенератора воде и образуемому из воды пару. Тепловая энергия пара преобразуется в турбине в кинетическую энергию потока, передаваемую ротору турбины. Механическая энергия вращения ротора турбины, соединенного с ротором электрического генератора (ЭГ), преобразуется в энергию электрического тока, отводимого за вычетом собственного расхода электрическому потребителю.

Тепло проработавшего в турбинах рабочего тела можно использовать для нужд внешних тепловых потребителей (ТП).

Потребление тепла происходит по следующим направлениям:

1. Потребление для технологических целей;

2. Потребление для целей отопления и вентиляции жилых, общественных и производственных зданий;

3. Потребление для других бытовых нужд.

График технологического потребления тепла зависит от особенностей производства, режима работы и т.п. Сезонность потребления в этом случае имеет место только в сравнительно редких случаях. На большинстве же промышленных предприятиях разница между зимним и летним потреблением тепла для технологических целей незначительна. Небольшая разница получается только в случае применения части технологического пара для отопления, а также вследствие увеличения в зимнее время потерь тепла.

Для потребителей тепла на основании многочисленных эксплуатационных данных устанавливают энергетические показатели, т.е. нормы количества расходуемого различными видами производства тепла на единицу вырабатываемой продукции.

Вторая группа потребителей, снабжаемая теплом для целей отопления и вентиляции, характеризуется значительной равномерностью расхода тепла на протяжении суток и резкой неравномерностью расхода тепла в течении года: от нуля летом до максимума зимой.

Тепловая мощность отопления находится в прямой зависимости от температуры наружного воздуха, т.е. от климатических и метеорологических факторов.

При отпуске тепла со станции теплоносителями могут служить пар и горячая вода, подогреваемая в сетевых подогревателях паром из отборов турбин. Вопрос о выборе того или иного теплоносителя и его параметров решают, исходя из требований технологии производства. В некоторых случаях отработавший на производстве пар низкого давления (например, после паровых молотов) применяют для отопительно-вентиляционных целей. Иногда же пар применяют для отопления производственных зданий, чтобы избежать устройства отдельной системы отопления горячей водой.

Отпуск пара на сторону для целей отопления явно нецелесообразен, так как отопительные нужды легко удовлетворить горячей водой с оставлением всего конденсата греющего пара на станции.

Отпуск горячей воды для технологических целей производится сравнительно редко. Потребителями горячей воды являются только производства, расходующие ее для горячих промывок и других подобных им процессов, причем загрязненная вода уже не возвращается на станцию.

Горячая вода, отпускаемая для отопительно-вентиляционных целей, подогревается на станции в сетевых подогревателях паром из регулируемого отбора давлением 1,17-2,45 бар. При этом давлении вода нагревается до температуры 100-120 .

Однако при низких температурах наружного воздуха отпуск больших количеств тепла при такой температуре воды становится нецелесообразным, так как количество циркулирующей в сети воды, а следовательно, и расход электроэнергии на ее перекачивание заметно увеличиваются. Поэтому, кроме основных подогревателей, питающихся паром из регулируемого отбора, устанавливают пиковые подогреватели, к которым греющий пар давлением 5,85-7,85 бар подводится из отбора более высокого давления или непосредственно из котлов через редукционно-охладительную установку.

Чем выше начальная температура воды, тем меньше расход электроэнергии на привод сетевых насосов, а также диаметр теплопроводов. В настоящее время в пиковых подогревателях воду чаще всего подогревают до температуры 150 цию от потребителя, при чисто отопительной нагрузке имеет обычно температуру около 70 .

1.4. Расход теплоты и КПД ТЭЦ

Теплоэлектроцентрали отпускают потребителям электрическую энергию и теплоту с паром, отработавшим в турбине. В Советском Союзе принято распределять расходы теплоты и топлива между этими двумя видами энергии:

2) по производству и отпуску теплоты:

, (3.3)
, (3.3а)

где - затрата теплоты на внешнего потребителя; - отпуск теплоты потребителю; h т - КПД отпуска теплоты турбинной установкой, учитывающий потери теплоты при отпуске ее (в сетевых подогревателях, паропроводах и т. д.); h т = 0,98¸0,99.

Общий расход теплоты на турбоустановку Q ту составляется из теплового эквивалента внутренней мощности турбины 3600N i , расхода теплоты на внешнего потребителя Q т и потери теплоты в конденсаторе турбины Q к. Общее уравнение теплового баланса теплофикационной турбоустановки имеет вид

Для ТЭЦ в целом с учетом КПД парового котла h п.к и КПД транспорта теплоты h тр получим:

; (3.6)
. (3.6а)

Значение в основном определяется значением значение - значением .

Выработка электроэнергии с использованием отработавшей теплоты существенно повышает КПД по производству электроэнергии на ТЭЦ по сравнению с КЭС и обусловливает значительную экономию топлива в стране.

Вывод по части один

Таким образом, теплоэлектроцентраль не является источником масштабных загрязнений района расположения. Технически и экономически обоснованное планирование производства на ТЭЦ позволяет достигнуть наиболее высоких эксплуатационных показателей при минимальных затратах всех видов производственных ресурсов, т. к. на ТЭЦ тепло «отработавшего» в турбинах пара используется для нужд производства, отопления и горячего водоснабжения

СРАВНЕНИЕ РОССИЙСКИХ ТЭЦ С ИНОСТРАННЫМИ

Крупнейшими в мире странами-производителями электроэнергии являются вырабатывающие по 20 % от мирового производства США, Китай и уступающие им в 4 раза Япония, Россия, Индия.

Китай

Энергопотребление Китая к 2030 г., по прогнозу корпорации ExxonMobil, вырастет более чем в 2 раза. В целом на долю КНР к этому времени придется около 1/3 мирового увеличения спроса на электроэнергию. Данная динамика, по мнению ExxonMobil, принципиально отличается от положения дел в США, где прогноз роста спроса очень умеренный.

В настоящее время структура генерирующих мощностей КНР такова. Около 80% вырабатываемой электроэнергии в Китае обеспечивают угольные ТЭС, что связано с наличием крупных угольных месторождений в стране. 15% обеспечивают ГЭС, 2% приходится на АЭС и по 1% на мазутные, газовые ТЭС и иные электростанции (ветровые и пр.). Что касается прогнозов, то в ближайшем будущем (2020 г.) роль угля в китайской энергетике останется доминирующей, однако существенно увеличится доля атомной энергии (до 13%) и доля природного газа (до 7%) 1 , применение которого позволит существенно улучшить экологическую обстановку в стремительно развивающихся городах КНР.

Япония

Суммарная установленная мощность электростанций Японии достигает 241,5 млн кВт. Из них 60% составляют ТЭС (в т.ч. ТЭС, работающие на газе – 25%, мазуте – 19%, угле – 16%). На АЭС приходится 20%, на ГЭС – 19% суммарных электрогенерирующих мощностей. В Японии функционирует 55 ТЭС установленной мощностью свыше 1 млн кВт. Крупнейшими из них являются газовые: Кавагое (Chubu Electric) – 4,8 млн кВт, Хигаши (Tohoku Electric) – 4,6 млн кВт, мазутная Касима (Tokyo Electric) – 4,4 млн кВт и угольная Хекинан (Chubu Electric) – 4,1 млн кВт.

Таблица 1-Производство электроэнергии на ТЭС по данным IEEJ-Institute of Energy Economics, Japan (Институт экономики энергетики, Япония)

Индия

Около 70% электроэнергии, потребляемой в Индии создается тепловыми электростанциями. Принятая властями страны программа электрификации превратила Индию в один из наиболее привлекательных рынков для инвестиций и продвижения инжиниринговых услуг. На протяжении последних лет республика предпринимает последовательные шаги для создания полноценной и надежной электроэнергетики. Опыт Индии примечателен тем, что в стране, страдающей от нехватки углеводородного сырья, активно ведется освоение альтернативных энергетических источников. Особенностью потребления электроэнергии в Индии, которую отмечают экономисты Всемирного банка, является то, что рост бытового потребления сильно ограничен отсутствием у почти 40% жителей доступа к электричеству (по другим источникам, доступ к электричеству ограничен у 43% горожан и 55% сельских жителей). Еще одной болезнью местной электроэнергетики является ненадежность поставок. Отключения электричества – обычная ситуация даже в крупных годах и промышленных центрах страны.

По данным Международного энергетического агентства, учитывая нынешние экономические реалии, Индия – одна из немногих стран, где в обозримой перспективе ожидается устойчивый рост потребления электроэнергии. Экономика этой второй в мире по количеству населения страны – одна из самых быстроразвивающихся. За последние два десятилетия средний рост годового ВВП составил 5,5%. В 2007/08 финансовом году, по данным Центральной статистической организации Индии, объем ВВП достиг $1059,9 млрд, что ставит страну на 12-ю строчку в мире по величине экономики. В структуре ВВП доминирующее положение занимают услуги (55,9%), далее идут промышленность (26,6%) и сельское хозяйство (17,5%). В то же время, по неофициальным данным, в июле текущего года в стране был установлен своеобразный пятилетний рекорд – спрос на электроэнергию превысил предложение на 13,8%.

Более 50% электроэнергии в Индии вырабатывают ТЭС, использующие уголь. Индия является одновременно третьим в мире производителем угля и третьим в мире потребителем этого ресурса, при этом оставаясь нетто-экспортером угля. Этот вид топлива остается важнейшим и самым экономичным для энергетики Индии, до четверти населения которой живет за чертой бедности.

Великобритания

Сегодня в Великобритании электростанции, работающие на угле, производят около трети необходимой стране электроэнергии. Такие электростанции выбрасывают в атмосферу миллионы тонн парниковых газов и твердых токсичных частиц, поэтому экологи постоянно убеждают правительство в необходимости немедленно закрыть эти электростанции. Но проблема состоит в том, что восполнить ту часть электроэнергии, которую вырабатывают тепловые электростанции, пока нечем.

Вывод по части два

Таким образом, Россия уступает крупнейшим в мире странами-производителями электроэнергии США и Китай, вырабатывающие по 20 % от мирового производства и стоит на ровне с Японией и Индией.

ЗАКЛЮЧЕНИЕ

В данном реферате описаны виды теплоэлектроцентралей. Рассмотрена принципиальная схема, назначение элементов структуры и описание их работы. Определены основные КПД станции.


©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-08-08

Проведём экскурсию по Чебоксарской ТЭЦ-2, посмотрим, как электричество и тепло вырабатываются:

Напомню, кстати, что труба - самое высокое промышленное сооружение в Чебоксарах. Аж 250 метров!

Начнём с общих вопросов, к которым относится в первую очередь безопасность.
Разумеется, ТЭЦ, как и ГЭС, предприятие режимное, и просто так туда не пускают.
А если уж пустили, хоть даже на экскурсию, то инструктаж по технике безопасности пройти всё равно придётся:

Ну, нам это не в диковинку (как и сама ТЭЦ не в диковинку, я работал там лет 30 назад;)).
Да, ещё одно жёсткое предупреждение, не могу пройти мимо:

Технология

Главным рабочим веществом на всех тепловых электростанциях является, как ни странно, вода.
Потому что она легко превращается в пар и обратно.
Технология у всех одинакова: надо получить пар, который будет вращать турбину. На оси турбины помещается генератор.
В атомных электростанциях вода разогревается за счёт выделения тепла при распаде радиоактивного топлива.
А в тепловых - за счёт сжигания газа, мазута и даже, до недавних пор, угля.

Куда девать отработанный пар? Однако, обратно в воду и снова в котёл!
А куда девать тепло отработанного пара? Да на подогрев воды, поступающей в котёл - для повышения кпд всей установки в целом.
И на подогрев воды в теплосети и водопроводе (горячая вода)!
Так что в отопительный сезон из тепловой станции извлекается двойная польза - электричество и тепло. Соответственно, такое комбинированное производство и называется ТЭЦ (теплоэлектроцентраль).

Но летом всё тепло израсходовать с пользой не удаётся, поэтому пар, вышедший из турбины, охлаждается, превращаясь в воду, в градирнях, после чего вода возвращается в замкнутый производственный цикл. А в тёплых бассейнах градирен ещё и рыбу разводят;)

Чтобы не изнашивались теплосети и котёл, вода проходит специальную подготовку в химическом цехе:

А по всему замкнутому кругу воду гоняют циркуляционные насосы:

Наши котлы могут работать как на газе (жёлтые трубопроводы), так и на мазуте (чёрные). С 1994 работают на газе. Да, котлов у нас 5 штук!
Для горения в горелки необходима подача воздуха (синие трубопроводы).
Вода кипит, и пар (паропроводы красного цвета) проходит через специальные теплообменники - пароперегреватели, которые повышают температуру пара до 565 градусов, а давление, соответственно, до 130 атмосфер. Это вам не скороварка на кухне! Одна маленькая дырочка в паропроводе обернётся большой аварией; тонкая струя перегретого пара режет металл, как масло!

И вот такой пар уже подаётся на турбины (в больших станциях несколько котлов могут работать на общий паровой коллектор, от которого питаются несколько турбин).

В котельном цехе всегда шумно, потому что горение и кипение - весьма бурные процессы.
А сами котлы (ТГМЕ-464) представляют собой грандиозные сооружения высотой с двадцатиэтажный дом, и показать их целиком можно только на панораме из множества кадров:

Ещё один ракурс на подвал:

Пульт управления котла выглядит так:

На дальней стене располагается мнемосхема всего техпроцесса с лампочками, индицирующими состояние задвижек, классические приборы с самописцами на бумажной ленте, табло сигнализации и другие индикаторы.
А на самом пульте классические кнопки и ключи соседствуют с компьютерным дисплеем, где крутится система управления (SCADA). Здесь же есть самые ответственные выключатели, защищённые красными кожухами: "Останов котла" и "Главная паровая задвижка" (ГПЗ):

Турбины

Турбин у нас 4.
Они имеют очень сложную конструкцию, чтобы не пропустить ни малейшего кусочка кинетической энергии перегретого пара.
Но снаружи ничего не видно - всё закрыто глухим кожухом:

Серьёзный защитный кожух необходим - турбина вращается с высокой скоростью 3000 оборотов в минуту. Да ещё по ней проходит перегретый пар (выше говорил, как он опасен!). А паропроводов вокруг турбины множество:

В этих теплообменниках отработанным паром подогревается сетевая вода:

Кстати, на фото у меня самая старая турбина ТЭЦ-2, так что не удивляйтесь брутальному виду устройств, которые будут показаны ниже:

Вот это механизм управления турбиной (МУТ), который регулирует подачу пара и, соответственно, управляет нагрузкой. Его раньше крутили вручную:

А это Стопорный клапан (его надо долго вручную взводить после того, как он сработал):

Малые турбины состоят из одного так называемого цилиндра (набора лопастей), средние - из двух, большие - из трёх (цилиндры высокого, среднего и низкого давления).
С каждого цилиндра пар уходит в промежуточные отборы и направляется в теплообменники - подогреватели воды:

А в хвосте турбины должен быть вакуум - чем он лучше, тем выше кпд турбины:

Вакуум образуется за счёт конденсации остатков пара в конденсационной установке.
Вот мы и прошлись по всему пути воды на ТЭЦ. Обратите внимание также на ту часть пара, которая идёт на подогрев сетевой воды для потребителя (ПСГ):

Ещё один вид с кучей контрольных точек. Не забываем, что контролировать на турбине необходимо кучу давлений и температур не только пара, но и масла в подшипниках каждой её части:

Да, а вот и пульт. Он обычно находится в той же комнате, что и у котлов. Несмотря на то, что сами котлы и турбины стоят в разных помещениях, управление котлотурбинным цехом нельзя разделять на отдельные кусочки - слишком всё связано перегретым паром!

На пульте мы видим пару средних турбин с двумя цилиндрами, кстати.

Автоматизация

В отличие от , процессы на ТЭЦ более быстрые и ответственные (кстати, все помнят слышный во всех краях города громкий шум, похожий на самолётный? Так это изредка срабатывает паровой клапан, стравливая чрезмерное давление пара. Представьте, как это слышится вблизи!).
Поэтому автоматизация здесь пока запаздывает и в основном ограничивается сбором данных. А на пультах управления мы видим сборную солянку различных SCADA и промышленных контроллеров, занимающихся локальным регулированием. Но процесс идёт!

Электричество

Ещё раз посмотрим общий вид турбинного цеха:

Обратите внимание, слева под жёлтым кожухом - электрические генераторы.
Что происходит с электричеством дальше?
Оно отдаётся в федеральные сети через ряд распределительных устройств:

Электрический цех - очень непростое место. Достаточно взглянуть на панораму пульта управления:

Релейная защита и автоматика - наше всё!

На этом обзорную экскурсию можно завершить и всё-таки сказать пару слов про насущные проблемы.

Тепло и коммунальные технологии

Итак, мы выяснили, что ТЭЦ даёт электричество и тепло. И то, и другое, разумеется, поставляется потребителям. Теперь нас, главным образом, будет интересовать тепло.
После перестройки, приватизации и разделения всей единой советской промышленности на отдельные кусочки во многих местах получилось так, что электростанции остались в ведомстве Чубайса, а городские теплосети стали муниципальными. И на них образовался посредник, который берёт деньги за транспортировку тепла. А как эти деньги тратятся на ежегодный ремонт изношенных на 70% теплосетей, вряд ли нужно рассказывать.

Так вот, из-за многомиллионных долгов посредника "НОВЭК" в Новочебоксарске ТГК-5 уже перешла на прямые договора с потребителями.
В Чебоксарах пока этого нет. Более того, чебоксарские «Коммунальные технологии» на сегодня проект развития своих котельных и теплосетей аж на 38 миллиардов (ТГК-5 справилась бы всего за три).

Все эти миллиарды так или иначе будут включены в тарифы на тепло, которые устанавливает городская администрация "из соображений социальной справедливости". Между тем, сейчас себестоимость тепла, вырабатываемого ТЭЦ-2, в 1.5 раза меньше, чем на котельных КТ. И такое положение должно сохраниться и в будущем, потому что чем крупнее электростанция, тем она эффективнее (в частности, меньше эксплуатационных затрат + окупаемость тепла за счёт производства электроэнергии).

А что с точки зрения экологии?
Безусловно, одна большая ТЭЦ с высокой трубой лучше в экологическом плане, чем десяток мелких котельных с маленькими трубами, дым из которых практически останется в городе.
Самым же плохим в смысле экологии является ныне популярное индивидуальное отопление.
Маленькие домашние котлы не обеспечивают такой полноты сгорания топлива, как большие ТЭЦ, да и все выхлопные газы остаются не просто в городе, а буквально над окнами.
Кроме того, мало кто задумывается о повышенной опасности дополнительного газового оборудования, стоящего в каждой квартире.

Какой выход?
Во многих странах при центральном отоплении используются поквартирные регуляторы, которые позволяют экономнее потреблять тепло.
К сожалению, при нынешних аппетитах посредников и изношенности теплосетей преимущества центрального отопления сходят на нет. Но всё-таки, с глобальной точки зрения, индивидуальное отопление более уместно в коттеджах.

Другие посты о промышленности:

ТЭЦ — тепловая электростанция, которая производит не только электроэнергию, но и дает тепло в наши дома зимой. На примере Красноярской ТЭЦ посмотрим как работает почти любая теплоэлектростанция.

В Красноярске есть 3 теплоэлектроцентрали, суммарная электрическая мощность которых всего 1146 МВт (для сравнения, одна только наша Новосибирская ТЭЦ 5 имеет мощность 1200 МВт), но примечательна была для меня именно Красноярская ТЭЦ-3 тем, что станция новая - ещё не прошло и года, как первый и пока единственный энергоблок был аттестован Системным оператором и введён в промышленную эксплуатацию. Поэтому мне удалось поснимать ещё не запылившуюся, красивую станцию и узнать много нового для себя о ТЭЦ.

В этом посте, помимо технической информации о КрасТЭЦ-3, я хочу раскрыть сам принцип работы почти любой теплоэлектроцентрали.

1. Три дымовые трубы, высота самой высокой из них 275 м, вторая по высоте - 180м



Сама аббревиатура ТЭЦ подразумевает собой, что станция вырабатывает не только электричество, но и тепло (горячая вода, отопление), причем, выработка тепла возможно даже более приоритетна в нашей известной суровыми зимами стране.

2. Установленная электрическая мощность Красноярской ТЭЦ-3 208 МВт, а установленная тепловая мощность 631,5 Гкал/ч

Упрощенно принцип работы ТЭЦ можно описать следующим образом:

Всё начинается с топлива. В роли топлива на разных электростанциях могут выступать уголь, газ, торф, горючие сланцы. В нашем случае это бурый уголь марки Б2 с Бородинского разреза, расположенного в 162 км от станции. Уголь привозят по железной дороге. Часть его складируется, другая часть идёт по конвеерам в энергоблок, где сам уголь сначала измельчается до пыли и потом подаётся в камеру сгорания - паровой котёл.

Паровой котёл - это агрегат для получения пара с давлением выше атмосферного из непрерывно поступающей в него питательной воды. Происходит это засчет теплоты, выделяющейся при сгорании топлива. Сам котёл выглядит довольно внушительно. На КрасТЭЦ-3 высота котла 78 метров (26-этажный дом), а весит он более 7000 тонн.

6. Паровой котёл марки Еп-670, произведенный в Таганроге. Производительность котла 670 тонн пара в час

Я позаимствовал с сайта energoworld.ru упрощённую схему парового котла электростанции, чтобы вам было понятно его устройтсво

1 — топочная камера (топка); 2 — горизонтальный газоход; 3 — конвективная шахта; 4 — топочные экраны; 5 — потолочные экраны; 6 — спускные трубы; 7 — барабан; 8 — радиационно-конвективный пароперегреватель; 9 — конвективный пароперегреватель; 10 — водяной экономайзер; 11 — воздухоподогреватель; 12 — дутьевой вентилятор; 13 — нижние коллекторы экранов; 14 — шлаковый комод; 15 — холодная коронка; 16 — горелки. На схеме не показаны золоуловитель и дымосос.

7. Вид сверху

10. Отчётливо виден барабан котла. Барабан представляет собой цилиндрический горизонтальный сосуд, имеющий водяной и паровой объемы, которые разделяются поверхностью, называемой зеркалом испарения.

Благодаря большой паропроизводительности котёл имеет развитые поверхности нагрева, как испарительные, так и пароперегревательные. Топка у него призматическая, четырёхугольная с естественной циркуляцией.

Пара слов о принципе работы котла:

В барабан, проходя экономайзер, попадает питательная вода, по спускным трубам спускается в нижние коллекторы экранов из труб, по этим трубам вода поднимается вверх и, соответственно, нагревается, так как внутри топки горит факел. Вода превращается в паро-водяную смесь, часть её попадает в выносные циклоны и другая часть обратно барабан. И там, и там происходит разделение этой смеси на воду и пар. Пар уходит в пароперегреватели, а вода повторяет свой путь.

11. Остывшие дымовые газы (примерно 130 градусов), выходят из топки в электрофильтры. В электрофильтрах происходит очистка газов от золы, зола удаляется на золоотвал, а очищенные дымовые газы уходят в атмосферу. Эффективная степень очистки дымовых газов составляет 99,7%.
На фотографии те самые электрофильтры.

Проходя через пароперегреватели пар нагревается до температуры 545 градусов и поступает в турбину, где под его давлением вращается ротор турбогенератора и, соответственно, вырабатывается электроэнергия. Следует отметить, что в конденсационных электростанциях (ГРЭС) система обращения воды полностью замкнута. Весь пар, проходя сквозь турбину, охлаждается и конденсируется. Снова превратившись в жидкое состояние, вода используется заново. А в турбинах ТЭЦ не весь пар попадает в конденсатор. Осуществляются отборы пара - производственные (использование горячего пара на каких-либо производствах) и теплофикационные (сеть горячего водоснабжения). Это делает ТЭЦ экономически более выгодной, но у неё есть свои минусы. Недостатком теплоэлектроцентралей является то, что они должны быть построены недалеко от конечного потребителя. Прокладка теплотрасс стоит огромных денег.

12. На Красноярской ТЭЦ-3 используется прямоточная система технического водоснабжения, это позволяет отказаться от использование градирен. То есть воду для охлаждения конденсатора и использования в котле берут прямо из Енисея, но перед этим она проходит очистку и обессоливание. После использования вода возвращается по каналу обратно в Енисей, проходя систему рассеивающего выпуска (перемешивание нагретой воды с холодной, дабы снизить тепловое загрязнение реки)

14. Турбогенератор

Я надеюсь, мне удалось внятно описать принцип работы ТЭЦ. Теперь немного о самой КрасТЭЦ-3.

Строительство станции началось ещё в далёком 1981 году, но, как у нас в России бывает, из-за развалов СССР и кризисов построить ТЭЦ вовремя не получилось. С 1992 г до 2012 г станция работала как котельная - нагревала воду, но электричество вырабатывать научилась только 1-го марта прошлого года.

Красноярская ТЭЦ-3 принадлежит Енисейской ТГК-13. На ТЭЦ работает около 560 человек. В настоящее время Красноярская ТЭЦ-3 обеспечивает теплоснабжение промышленных предприятий и жилищно-коммунального сектора Советского района г. Красноярска - в частности, микрорайоны «Северный», «Взлётка», «Покровский» и «Иннокентьевский».

17.

19. ЦПУ

20. Ещё на КрасТЭЦ-3 функционируют 4 водогрейных котла

21. Глазок в топке

23. А это фото снято с крыши энергоблока. Большая труба имеет высоту 180м, та что поменьше - труба пусковой котельной.

24. Трансформаторы

25. В качестве распределительного устройства на КрасТЭЦ-3 используется закрытое распределительное устройство с элегазовой изоляцией (ЗРУЭ) на 220 кВ.

26. Внутри здания

28. Общий вид распределительного устройства

29. На этом всё. Спасибо за внимание

Однажды, когда мы въезжали в славный город Чебоксары, с восточного направления моя супруга обратила внимание на две огромные башни, стоящие вдоль шоссе. «А что это такое?» – спросила она. Поскольку мне абсолютно не хотелось показать жене свою неосведомленность, я немного покопался в своей памяти и выдал победное: «Это ж градирни, ты что, не знаешь?». Она немного смутилась: «А для чего они нужны?» «Ну что-то там охлаждать, вроде бы». «А чего?». Потом смутился я, потому что совершенно не знал как выкручиваться дальше.

Может быть этот вопрос так и остался навсегда в памяти без ответа, но чудеса случаются. Через несколько месяцев после этого случая, вижу в своей френдленте пост о наборе блогеров, желающих посетить Чебоксарскую ТЭЦ-2, ту самую, что мы видели с дороги. Приходиться резко менять все свои планы, упустить такой шанс будет непростительно!

Так что же такое ТЭЦ?

Согласно Википедии ТЭЦ – сокращенное от теплоэлектроцентраль – это разновидность тепловой станции, которая производит не только электроэнергию, но и является источником тепла, в виде пара или горячей воды.

О том как все устроено, я расскажу ниже, а здесь можно посмотреть парочку упрощенных схем работы станции.

Итак, все начинается с воды. Поскольку вода (и пар, как её производное) на ТЭЦ является основным теплоносителем, перед тем как она попадет в котел, её необходимо предварительно подготовить. Для того, что бы в котлах не образовывалась накипь, на первом этапе, воду необходимо умягчить, а на втором, очистить её от всевозможных примесей и включений.

Происходит все это на территории химического цеха, в котором расположены все эти емкости и сосуды.

Вода перекачивается огромными насосами.

Работа цеха контролируется отсюда.

Вокруг много кнопочек…

Датчиков…

А также совсем непонятных элементов…

Качество воды проверяется в лаборатории. Здесь все по-серьезному…

Полученную здесь воду, в дальнейшем мы будем называть «Чистой водой».

Итак, с водой разобрались, теперь нам нужно топливо. Обычно это газ, мазут или уголь. На Чебоксарской ТЭЦ-2 основным видом топлива является газ, поступающий по магистральному газопроводу Уренгой – Помары – Ужгород. На многих станциях существует пункт подготовки топлива. Здесь природный газ, так же как и вода очищается от механических примесей, сероводорода и углекислого газа.

ТЭЦ – объект стратегический, работающий 24 часа в сутки и 365 дней в году. Поэтому здесь везде, и на всё, есть резерв. Топливо не является исключением. В случае отсутствия природного газа, наша станция может работать на мазуте, который хранится в огромных емкостях, расположенных через дорогу.

Теперь мы получили Чистую воду и подготовленное топливо. Следующий пункт нашего путешествия – котлотурбинный цех.

Состоит он из двух отделений. В первом находятся котлы. Нет, не так. В первом находятся КОТЛЫ. По другому написать, рука не поднимается, каждый, с двенадцатиэтажный дом. Всего на ТЭЦ-2 их пять штук.

Это сердце ТЭЦ, и здесь происходит основное действие. Газ, поступающий в котел, сгорает, выделяя сумасшедшее количество энергии. Сюда же подается «Чистая вода». После нагрева она превращается в пар, точнее в перегретый пар, имеющий температуру на выходе 560 градусов, а давление 140 атмосфер. Мы тоже назовем его «Чистый пар», потому что он образован из подготовленной воды.

Кроме пара, на выходе мы еще имеем выхлоп. На максимальной мощности, все пять котлов потребляют почти 60 кубометров природного газа в секунду! Чтобы вывести продукты сгорания, нужна недетская «дымовая» труба. И такая тоже имеется.

Трубу видно практически из любого района города, учитывая высоту 250 метров. Подозреваю, что это самое высокое строение в Чебоксарах.

Рядом находится труба чуть поменьше. Снова резерв.

Если ТЭЦ работает на угле, необходима дополнительная очистка выхлопа. Но в нашем случае этого не требуется, так как в качестве топлива используется природный газ.

В втором отделении котлотурбинного цеха находятся установки, вырабатывающие электроэнергию.

В машинном зале Чебоксарской ТЭЦ-2 их установлено четыре штуки, общей мощностью 460 МВт (мегаватт). Именно сюда подается перегретый пар из котельного отделения. Он, под огромным давлением направляется на лопатки турбины, заставляя вращаться тридцатитонный ротор, со скоростью 3000 оборотов в минуту.

Установка состоит из двух частей: собственно сама турбина, и генератор, вырабатывающий электроэнергию.

А вот как выглядит ротор турбины.

Повсюду датчики и манометры.

И турбины, и котлы, в случае аварийной ситуации можно остановить мгновенно. Для этого существуют специальные клапаны, способные перекрыть подачу пара или топлива за какие-то доли секунды.

Интересно, а есть такое понятие как промышленный пейзаж, или промышленный портрет? Здесь есть своя красота.

В помещении стоит страшный шум, и чтобы расслышать соседа приходиться сильно напрягать слух. К тому же очень жарко. Хочется снять каску и раздеться до футболки, но делать этого нельзя. По технике безопасности, одежда с коротким рукавом на ТЭЦ запрещена, слишком много горячих труб.

Основную часть времени цех пустой, люди здесь появляются один раз в два часа, во время обхода. А управление работой оборудования ведется с ГрЩУ (Групповые щиты управления котлами и турбинами).

Вот так выглядит рабочее место дежурного.

Вокруг сотни кнопок.

И десятки датчиков.

Есть механические, есть электронные.

Это у нас экскурсия, а люди работают.

Итого, после котлотурбинного цеха, на выходе мы имеем электроэнергию и частично остывший и потерявший часть давления пар. С электричеством вроде бы попроще. На выходе с разных генераторов напряжение может быть от 10 до 18 кВ (киловольт). С помощью блочных трансформаторов оно повышается до 110 кВ, а дальше электроэнергию можно передавать на большие расстояния с помощью ЛЭП (линий электропередач).

Оставшийся «Чистый пар» отпускать на сторону невыгодно. Так как он образован из «Чистой воды», производство которой довольно сложный и затратный процесс, его целесообразней охладить и вернуть обратно в котел. И так по замкнутому кругу. Зато с его помощью и с помощью теплообменников можно нагреть воду или произвести вторичный пар, которые спокойно продавать сторонним потребителям.

В общем-то именно таким образом мы с вами получаем тепло и электричество в свои дома, имея привычный комфорт и уют.

Ах, да. А для чего же все-таки нужны градирни?



Поделиться