Кпд механизма. Цель работы

Энергия, подводимая к механизму в виде работы движущих сил А дв.с . и моментов за цикл установившегося движения, расходуется на совершение полезной работы А п.с . , а также на совершение работы А Fтр , связанной с преодолением сил трения в кинематических парах и сил сопротивления среды.

Рассмотрим установившееся движение. Приращение кинетической энергии равно нулю, т.е.

При этом работы сил инерции и сил тяжести равны нулю А Ри = 0 , А G = 0 . Тогда для установившегося движения работа движущих сил равна

А дв.с. =А п.с. + А Fтр .

Следовательно, за полный цикл установившегося движения работа всех движущих сил равна сумме работ сил производственных сопротивлений и непроизводственных сопротивлений (сил трения).

Механический коэффициент полезного действия η (КПД) – отношение работы сил производственных сопротивлений к работе всех движущих сил за время установившегося движения :

η = . (3.61)

Как видно из формулы (3.61), КПД показывает, какая доля механической энергии, приведенной к машине, полезно расходуется на совершение той работы, для которой машина создана.

Отношение работы сил непроизводственных сопротивлений к работе движущих сил называется коэффициентом потерь :

ψ = . (3.62)

Механический коэффициент потерь показывает, какая доля механической энергии, подведенной к машине, превращается в конечном счете в теплоту и бесполезно теряется в окружающем пространстве.

Отсюда имеем связь между КПД и коэффициентом потерь

η =1- ψ .

Из этой формулы вытекает, что ни в одном механизме работа сил непроизводственных сопротивлений не может равняться нулю, поэтому КПД всегда меньше единице (η <1 ). Из этой же формулы следует, что КПД может равняться нулю, если А дв.с =А Fтр . Движение, при котором А дв.с = А Fтр называетсяхолостым . КПД не может быть меньше нуля, т.к. для этого необходимо, чтобы А дв.с <А Fтр . Явление, при котором механизм находится в покое и при этом удовлетворяется условие А дв.с <А Fтр, называется явлением самоторможения механизма . Механизм, у которого η = 1, называется вечным двигателем .

Таким образом, коэффициент полезного действия находится в пределах

0 £ η < 1 .

Рассмотрим определение КПД при различных способах соединения механизмов.

3.2.2.1. Определение КПД при последовательном соединении

Пусть имеется n последовательно соединенных между собой механизмов (рисунок 3.16).

А дв.с. 1 А 1 2 А 2 3 А 3 А n-1 n A n

Рисунок 3.16 - Схема последовательно соединенных механизмов

Первый механизм приводится в движение движущими силами, которые совершают работу А дв.с . Так как полезная работа каждого предыдущего механизма, затрачиваемая на производственные сопротивления, является работой движущих сил для каждого последующего механизма, то КПД первого механизма будет равняться:


η 1 =А 1 /А дв.с ..

Для второго механизма КПД равняется:

η 2 =А 2 /А 1 .

И, наконец, для n-го механизма КПД будет иметь вид:

η n =А n /А n-1

Общий коэффициент полезного действия равен:

η 1 n =А n /А дв.с.

Величина общего КПД может быть получена, если перемножить КПД каждого отдельного механизма, а именно:

η 1 n = η 1 η 2 η 3 …η n = .

Следовательно, общий механический коэффициент полезного действия последовательно соединенных механизмов равняется произведению механических коэффициентов полезного действия отдельных механизмов, составляющих одну общую систему :

η 1 n = η 1 η 2 η 3 …η n .(3.63)

3.2.2.2 Определение КПД при смешанном соединении

На практике соединение механизмов оказывается более сложным. Чаще последовательное соединение сочетается с параллельным. Такое соединение называется смешанным. Рассмотрим пример сложного соединения (рисунок 3.17).

Поток энергии от механизма 2 распределяется по двум направлениям. В свою очередь от механизма 3 ¢¢ поток энергии распределяется также по двум направлениям. Общая работа сил производственных сопротивлений равна:

А п.с. = A ¢ n + A ¢ ¢ n + A ¢ ¢¢ n .

Общий КПД всей системы будет равен:

η =А п.с /А дв.с = (A ¢ n + A ¢ ¢ n + A ¢ ¢¢ n )/А дв.с . (3.64)

Чтобы определить общий КПД, нужно выделить потоки энергии, в которых механизмы соединены последовательно, и рассчитать КПД каждого потока. На рисунке 3.17 показаны сплошной линией I-I, штриховой линией II-II и штрих- пунктирной линией III-III три потока энергии от общего источника.

А дв.с. А 1 А ¢ 2 А ¢ 3 … А ¢ n-1 A ¢ n

II А ¢¢ 2 II

А ¢¢ 3 4 ¢¢ А ¢¢ 4 А ¢¢ n-1 n ¢¢ A ¢¢ n

Всякий механизм, совершающий работу, должен откуда-то получать энергию, за счет которой эта работа производится. В простейших случаях механизм лишь передает механическую работу от источника энергии к потребителю. Так действуют простые машины и все передаточные или приводные механизмы, представляющие собой различные комбинации простых машин; например, ременный привод передает работу от двигателя, вращающего ведущий, шкив, через ведомый шкив потребителю (станку).

Такой приводной механизм лишь передает определенную мощность от источника к потребителю. Однако при этом не вся работа, а значит и не вся мощность, получаемая механизмом от источника, передается потребителю.

Дело в том, что во всяком механизме действуют силы трения, на преодоление которых затрачивается часть работы, потребляемой механизмом. Эта работа превращается в тепло и обычно является бесполезной. Отношение мощности, которую механизм передает потребителю, ко всей мощности, подводимой к механизму, называется коэффициентом полезного действия данного механизма (сокращенно; к. п. д.).

Если подводимую к механизму мощность обозначить через , а отдаваемую механизмом потребителю - через , то к. п. д. механизма будет равен

При этом часть мощности, равная , теряется в самом механизме. Отношение этих потерь мощности в механизме ко всей мощности, подводимой к механизму, связано с к. п. д. простым выражением:

.

Так как потери мощности неизбежны во всяком механизме, то всегда и к. п. д. всякого механизма всегда меньше единицы; его обычно выражают в процентах. Всякий механизм стремятся сделать таким, чтобы бесполезные потери энергии в нем были по возможности малы, т. е. чтобы к. п. д. был возможно ближе к единице. Для этого уменьшают насколько возможно силы трения и всякие вредные сопротивления в механизме. В наиболее совершенных механизмах эти потери удается снизить настолько, что к. п. д. оказывается лишь на несколько процентов меньше единицы.

Многие машины получают или отдают энергию не в виде механической энергии, а в каком-либо другом виде. Например, паровая машина использует энергию, которой обладает нагретый и сжатый пар; двигатель внутреннего сгорания - энергию, которой обладают горячие и сжатые газы, образовавшиеся при сгорании горючей смеси. Электрический двигатель использует работу, совершаемую электромагнитными силами. Наоборот, генератор электрического тока получает энергию в виде механической, а отдает в виде электромагнитной энергии. Во всех этих случаях, помимо потерь на трение, могут возникать и другие потери, например нагревание проводников протекающим по ним электрическим током. Понятие к. п. д. и в этих случаях сохраняет прежний смысл: к. п. д. машины называют отношение мощности, отдаваемой машиной, к мощности, потребляемой машиной, независимо от того, в виде какой энергии эта мощность потребляется и отдается.

109.1 . В двойном блоке, имеющем радиусы 40 и 5 см, к веревке, навитой на меньший блок, приложена сила 1000 Н. Для того, чтобы преодолеть силы трения в блоке и поддерживать постоянной скорость его движения, ко второму концу блока приложена сила 130 Н. Каков к. п. д. блока?

109.2. Какую работу нужно произвести, чтобы, пользуясь полиспастом, к. п. д. которого равен 65%, поднять груз массы 250 кг на высоту 120 см?

109.3. Найдите к. п. д. установки, состоящей из электрического мотора, приводящего в движение водяной насос, который подает на высоту 4,7 м 75 л воды в секунду, если электромотор потребляет мощность 5 кВт.

109.4. Электромотор, имеющий к. п. д. 90%, приводит в действие насос, к. п. д. которого равен 60%. Каков к. п. д. всей установки?

109.5. Электропоезд движется равномерно со скоростью 60 км/ч. Двигатели электропоезда потребляют при этом мощность 900 кВт. Определите силу сопротивления, испытываемого всем поездом при движении, если известно, что общий к. п. д двигателей и передающих механизмов составляет 80% .

109.6. Можно ли поднимать груз массы 50 кг со скоростью 3 м/с при помощи электромотора, потребляющего электрическую мощность 1,4 кВт?

Определение

Математически определение КПД может быть записано в виде:

η = A Q , {\displaystyle \eta ={\frac {A}{Q}},}

где А - полезная работа (энергия), а Q - затраченная энергия.

Если КПД выражается в процентах, то он вычисляется по формуле:

η = A Q × 100 % {\displaystyle \eta ={\frac {A}{Q}}\times 100\%} ε X = Q X / A {\displaystyle \varepsilon _{\mathrm {X} }=Q_{\mathrm {X} }/A} ,

где Q X {\displaystyle Q_{\mathrm {X} }} - тепло, отбираемое от холодного конца (в холодильных машинах холодопроизводительность); A {\displaystyle A}

Для тепловых насосов используют термин коэффициент трансформации

ε Γ = Q Γ / A {\displaystyle \varepsilon _{\Gamma }=Q_{\Gamma }/A} ,

где Q Γ {\displaystyle Q_{\Gamma }} - тепло конденсации, передаваемое теплоносителю; A {\displaystyle A} - затрачиваемая на этот процесс работа (или электроэнергия).

В идеальной машине Q Γ = Q X + A {\displaystyle Q_{\Gamma }=Q_{\mathrm {X} }+A} , отсюда для идеальной машины ε Γ = ε X + 1 {\displaystyle \varepsilon _{\Gamma }=\varepsilon _{\mathrm {X} }+1}

Наилучшими показателями производительности для холодильных машин обладает обратный цикл Карно : в нём холодильный коэффициент

ε = T X T Γ − T X {\displaystyle \varepsilon ={T_{\mathrm {X} } \over {T_{\Gamma }-T_{\mathrm {X} }}}} ,

где T Γ {\displaystyle T_{\Gamma }} , T X {\displaystyle T_{\mathrm {X} }} -

Механический коэффициент полезного действия, равный отношению среднего эффективного давления к среднему индикаторному, оценивает механические потери в двигателе:

Механический к. п. д. можно выразить и через мощности двигателя:

Таким образом, механический к. п. д. показывает в долях единицы или в процентах ту часть индикатор­ной мощности, которая передается на фланец коленчатого вала.

Анализ механических потерь в двигателе, выполненный нами ранее, позволяет сделать заключение, что значение механического к. п. д. двига­теля зависит: от степени быстроходности двигателя, от величины давления газов цикла и динамики его изменения, от качества изготовления и сборки деталей двигателя, от качества смазочного масла, от теплового состояния двигателя и режима загрузки его, от мощности навешенных вспомогатель­ных механизмов и от сопротивлений во впускной и выпускной системах двигателя.

При прочих равных условиях механический к. п. д. двигателя является функцией отношения среднего эффективного давления к максимальному давлению цикла; чем больше это отношение, тем выше механический к. п. д.

При уменьшении нагрузки на двигатель (сохраняя при этом число оборотов вала неизменным) мощность механических потерь N mex примерно остается постоянной, а потому относительное ее значение возрастает и ме­ханический к. п. д. падает.

На рис. 105 приведены кривые изменения механического к. п. д. ? т при полной нагрузке (сплошные кривые) и при 30 % нагрузки (пунктирные кри­вые) двигателя с воспламенением от сжатия (кривая В; ? = 16) и двигателя с воспламенением от искры (кривая А; ? = 6). Данные кривые показывают, что при уменьшении нагрузки на двигатель при неизменном числе оборотов? т значительно падает. Следует заметить, что при холостом ходе двигателя N e == 0) из формулы (139а)

Таким образом, режим работы холостого хода можно охарактеризовать как режим, при котором механический к. п. д. равен нулю.

При одном и том же р е (как это видно из рис. 105) с увеличением числа оборотов двигателя (скоростная характеристика) ? т падает, что объясняется более интенсивным относительным ростом мощности механических потерь N мех , чем эффективной мощности двигателя.

При работе двигателя с наддувом значение? т изменяется в зависимо­сти от системы и степени наддува. Если двигатель переводится на работу с газотурбинным наддувом, то, как показывают опытные данные, мощность механических потерь N мех при этом остается неизменной. Обозначим отно­шение? н = p ? н / p ? , (степень наддува), где р а - давление в цилиндре в начале сжатия без наддува, а р -с наддувом. Можно принять, что отношение N in / N i также равно? н , где N in - индикаторная мощность двигателя с наддувом, а N i - без наддува.

Если двигатель имел до наддува механический к. п. д. т. ? m , то при газо­турбинном наддуве он будет иметь:

Полученная формула показывает, что с повышением степени наддува при газотурбинном наддуве механический к. п. д. двигателя возрастает.

В том случае, когда газотурбонагнетатель кинематически связан с валом самого двигателя, отношение? К = N к / N i может быть больше, меньше или равно отношению? T = N T / N i в зависимости от степени использования энергии отработавших газов двигателя. Здесь N к - мощность, потребляе­мая наддувочным компрессором, а N T -мощность, развиваемая турбиной.

В этом случае, т. е. когда газотурбонагнетатель связан кинематически: валом двигателя, условный механический к. п. д. будет равен

где? т д -механический к. п. д. собственно двигателя.

При? T > ? К разность (? Т - ? К ) называется положительным небалансом, а при? т к (? к - ? Т ) называется отрицательным небалансом.

Судовые дизели имеют следующие значения механического к. п. д.

Известно, что вечный двигатель невозможен. Это связано с тем, что для любого механизма справедливо утверждение: совершённая с помощью этого механизма полная работа (в том числе на нагревание механизма и окружающей среды, на преодоление силы трения) всегда больше полезной работы.

Например, больше половины работы двигателя внутреннего сгорания совершается впустую тратится на нагревание составных частей двигателя; некоторое количество теплоты уносят выхлопные газы.

Часто необходимо оценивать эффективность механизма, целесообразность его использования. Поэтому, чтобы рассчитывать, какая часть от совершённой работы тратится впустую и какая часть с пользой, вводится специальная физическая величина, которая показывает эффективность механизма.

Эта величина называется коэффициентом полезного действия механизма

Коэффициент полезного действия механизма равен отношению полезной работы к полной работе. Очевидно, коэффициент полезного действия всегда меньше единицы. Эту величину часто выражают в процентах. Обычно её обозначают греческой буквой η (читается «эта»). Сокращённо коэффициент полезного действия записывают КПД.

η = (А_полн /А_полезн) * 100 %,

где η КПД, А_полн полная работа, А_полезн полезная работа.

Среди двигателей наибольший коэффициент полезного действия имеет электрический двигатель (до 98 %). Коэффициент полезного действия двигателей внутреннего сгорания 20 % - 40 %, паровой турбины примерно 30 %.

Отметим, что для увеличения коэффициента полезного действия механизма часто стараются уменьшить силу трения. Это можно сделать, используя различные смазки или шарикоподшипники, в которых трение скольжения заменяется трением качения.

Примеры расчета КПД

Рассмотрим пример. Велосипедист массой 55 кг поднялся на велосипеде массой 5 кг на холм, высота которого 10 м, совершив при этом работу 8 кДж. Найдите коэффициент полезного действия велосипеда. Трение качения колёс о дорогу не учитывайте.

Решение. Найдём общую массу велосипеда и велосипедиста:

m = 55 кг + 5 кг = 60 кг

Найдем их общий вес:

P = mg = 60 кг * 10 Н/кг = 600 Н

Найдём работу, совершённую на подъём велосипеда и велосипедиста:

Aполезн = РS = 600 Н * 10 м = 6 кДж

Найдём КПД велосипеда:

А_полн /А_полезн * 100 % = 6 кДж / 8 кДж * 100 % = 75 %

Ответ: КПД велосипеда равен 75 %.

Рассмотрим ещё один пример. На конец плеча рычага подвешено тело массой m. К другому плечу прилагают силу F, направленную вниз, и его конец опускается на h. Найдите, насколько поднялось тело, если коэффициент полезного действия рычага равен η %.

Решение. Найдём работу, совершённую силой F:

η % от этой работы совершено на то, чтобы поднять тело массой m. Следовательно, на поднятие тела затрачено Fhη / 100. Так как вес тела равен mg, тело поднялось на высоту Fhη / 100 / mg.



Поделиться