Научная электронная библиотека.

Критерием оптимальности называется количественная оценка оптимизируемого качества объекта. Иным образом, критерий оптимальности – это главный признак, по которому судят о том, насколько хорошо функционирует технологическая система, работает данный процесс, и т.д., а также, насколько хорошо решена задача .

Критерий оптимальности является одним из выходов системы, и, к нему предъявляются следующие требования:

1. Критерий оптимальности должен выражаться количественно;

2. Критерий оптимальности должен быть единственным;

3. Величина критерия оптимальности должна изменяться монотонно (без разрывов и скачков);

4. Критерий оптимальности должен отражать наиболее существенные стороны процесса;

5. Желательно чтобы критерий оптимальности имел ясный физический смысл и легко рассчитывался.

На выбранного критерия оптимальности составляется целевая функция, представляющая собой зависимость критерия оптимальности от параметров, влияющих на ее значение. Вид критерия оптимальности или целевой функции определяется конкретной задачей . Таким образом, задача сводится к нахождению экстремума целевой функции.

Наиболее общей постановкой оптимальной задачи является выражение критерия оптимальности в виде экономической оценки (производительность, себестоимость продукции, прибыль, рентабельность). Однако в частных задачах , когда объект является частью технологического процесса, не всегда удается или не всегда целесообразно выделять прямой экономический показатель, который бы полностью характеризовал эффективность работы рассматриваемого объекта. В таких случаях критерием оптимальности может служить технологическая характеристика, косвенно оценивающая экономичность работы агрегата (время контакта, выход продукта, степень превращения, ). Например, устанавливается оптимальный температурный профиль, длительность цикла - " - регенерация" и т.п.. Однако, в любом случае критерий оптимальности имеет экономическую природу.

Различают простые и сложные критерии . Критерий оптимальности называется простым , если требуется определить экстремум целевой функции без задания условий на какие-либо другие величины. Такие критерии обычно используются при решении частных задач (например, определение максимальной целевого продукта, оптимального времени пребывания реакционной смеси в аппарате и др.).

Критерий оптимальности называется сложным , если необходимо установить экстремум целевой функции при некоторых условиях, которые накладываются на ряд других величин и ограничений. Таким образом, процедура решения задачи обязательно включает, помимо выбора управляющих параметров, еще и установление ограничений на эти параметры. Ограничения могут накладываться как по технологическим, так и по экономическим соображениям. Различают следующие основные ограничения:

1. По количеству и качеству сырья и продукции (состав сырья, качество продукции, производительность и др.);

2. По условиям технологии (размеры аппарата, время пребывания, зажигания и деструктурирования

Оптимальности заимствован из математического программирования и теории управления. Методологической основой теории оптимизации экономики является принцип народно-хозяйственной оптимальности, т. . изучение экономических явлений с позиций целого, с позиций всего народного хозяйства. К. о. призван помочь обосновать решение. Практические задачи обоснования решения можно условно подразделить на 3 типа. Сущность задач 1-го типа заключается в необходимости выбора наилучшего варианта действий, обеспечивающих достижение вполне определенного, т. е. заданного результата при минимальном расходе ресурсов. В задачах 2-го типа объем имеющихся ресурсов зафиксирован, нужно найти наилучший вариант их использования для получения максимального результата. Задачи, в которых поиск наилучшего варианта ведется при отсутствии жестких ограничений как по объему используемых ресурсов, так и по конечному результату, относятся к 3-му типу. При обосновании решений оперируют понятием степень достижения цели, которую характеризуют определенным показателем. Ресурсы, имеющиеся в распоряжении общества, отрасли или предприятия, ограничены, поэтому объем ресурсов, выделяемых на одну цель , в какой-то степени зависит от того, сколько их выделено на др. цели. Следовательно, любой вариант распределения ресурсов прямо или косвенно касается одновременно несколько целей и поэтому характеризуется несколькими показателями. Решение задачи любого типа в принципе сводится к рассмотрению множества альтернатив с последующей их сравнительной оценкой и выбором наилучшей. Примером задачи 1-го типа может служить т. . транспортная задача. В стране имеется n мест добычи угля, откуда он доставляется т потребителям, расположенным в различных городах страны. Известна стоимость доставки тонны угля из i-го места добычи (i = 1, 2,..., n) в j-й пункт потребления (j = 1, 2,..., m). Количество угля xj, необходимое каждому потребителю, также известно. Следует определить план доставки потребителям требующегося количества угля при минимуме затрат. Решение такой задачи методологически просто, поскольку значения всех показателей, характеризующих результаты действий, - xj зафиксированы (являются ограничениями в виде равенств). Каждый вариант плана обеспечения потребителей углем оценивается одним переменным показателем - затратами, являющимися К. о. Значительно сложнее решать задачи подобного типа, когда, кроме денежных затрат, приходится учитывать расход материальных, трудовых и др. ресурсов, которые иногда не удается выразить в денежной форме. Аналогичные трудности возникают в задачах 2-го типа, поскольку результаты распределения ресурсов характеризуются несколькими показателями, имеющими переменное значение . Случай , когда сравниваются различные варианты капиталовложений в развитие отрасли, производственные объединения или отдельные предприятия и соответствующие им конечные результаты работы, является примером задачи 3-го типа. С такими задачами чаще всего приходится встречаться в процессе планирования, когда нужно решить, что лучше - повысить производственные возможности за счет увеличения капиталовложений или, предположим, оставить те и др. на прежнем уровне. Результаты каждого решения характеризуются сочетанием значений нескольких показателей. Чтобы установить, какое из возможных решений лучше, нужно сравнить их по нескольким показателям. В этом случае может возникнуть необходимость в формировании К. о., который облегчит сравнительную оценку альтернатив. В качестве К. о. можно использовать величину, которая, как и отдельные показатели, измеряется в непрерывной или дискретной шкалах. Причем дискретные оценки могут быть порядковыми и метрическими. Порядковая шкала представляет собой последовательность различных сочетаний значений показателей, составленную исходя из соответствия этих сочетаний определенным целям. При использовании подобной шкалы для сравнения вариантов нельзя установить, насколько один результат лучше другого, можно только определить, какой из вариантов лучше других. Метрическая шкала, в отличие от порядковой, допускает оценку «расстояния» между двумя соседними порядками (рангами), т. е. позволяет установить, насколько одна альтернатива лучше другой. Примером порядковой шкалы для одного показателя могут быть словесные (качественные) определения степени достижения намеченной цели: полное удовлетворение какой-либо потребности , частичное удовлетворение потребности и т. . Показатель, выраженный в метрической шкале, может представлять собой объем продукции определенного назначения. На практике чаще всего приходится сравнивать альтернативы, различающиеся конечными результатами и затратами типа «лучше и дороже», «хуже и дешевле». Причем результаты характеризуются несколькими показателями. Задачи подобного типа иногда называют задачами векторной оптимизации. При этом компонентами вектора являются показатели, характеризующие степень достижения отдельных целей. Среди сравниваемых вариантов обычно выделяют рациональные, к числу которых относятся варианты, обеспечивающие достижение определенного результата при минимуме затрат или достижение максимального результата при определенных затратах. Выбор наилучшего (оптимального) варианта из числа рациональных может производиться с помощью соответствующих К. о. Объективная необходимость сравнивать варианты по нескольким несоизмеримым показателям является основной причиной трудностей, которые нужно преодолеть при формировании К. о. Нельзя считать лучшим вариант, при котором один показатель невозможно дальше увеличивать, не уменьшая значения хотя бы одного из остальных (т. н. оптимум или максимум по Парето). К. о. должен быть таким, чтобы в общем случае можно было сравнивать варианты, когда один из показателей (одна из компонент вектора) возрастает, а другой уменьшается. По-видимому, самое большое, на что можно рассчитывать при сравнении векторов (сочетаний значений нескольких показателей, характеризующих степень достижения различных целей),- это установление предпочтений между ними, т. е. оценка векторов с помощью порядковой шкалы. Следует заметить, что оценки векторов по порядковой шкале вполне достаточно для сравнения вариантов и выбора наилучшего из них. В условиях социалистического общества все решения, принимаемые на различных уровнях в системе планирования и управления, должны в максимально возможной степени соответствовать высшей цели - наиболее полному удовлетворению потребностей общества. Эта цель может быть достигнута при условии постановки и последующего достижения определенной совокупности социально-экономических целей, предусматривающих удовлетворение всех потребностей общества. Для удовлетворения потребностей общество должно производить различную продукцию. Необходимость в этой продукции зависит от уровня удовлетворения личных и др. непроизводственных потребностей сегодня и в будущем. Т. о., уровень развития производства можно рассматривать как аргумент , функцией которого является степень удовлетворения непроизводственных потребностей общества. Одна из задач планирования - определение наиболее рациональных пропорций в производстве различных продуктов. В процессе планирования должны быть рассмотрены варианты распределения трудовых и др. ресурсов, имеющихся в распоряжении общества, и выбран тот вариант, который в наибольшей степени отвечает потребностям общества. Маркс писал, что «общественная потребность, то есть потребительная стоимость в общественном масштабе, - вот что определяет здесь долю всего общественного рабочего времени, которая приходится на различные особые сферы производства» (Маркс К. и Энгельс Ф., Соч., 2 изд., т. 25, . 2, . 186). Т. о., сравнительная оценка вариантов народно-хозяйственного плана должна производиться по критерию, отражающему степень соответствия плана общественным потребностям. Планы реализуются во времени и пространстве. Следовательно, в общем случае значения отдельных показателей должны характеризовать изменения степени удовлетворения потребностей в разные годы периода планирования и в различных районах страны. Сравнение вариантов плана по большому числу показателей представляет значительные трудности. Чтобы уменьшить число показателей, прибегают к обобщению информации. Чем выше уровень планирующего органа, тем больше степень обобщения. Так, для принятия решения на высшем уровне степень удовлетворения определенной потребности населения, по-видимому, можно представить как отношение планируемого объема производства продуктов некоторого вида к количеству продуктов (услуг), обеспечивающему данную потребность в соответствии с платежеспособным спросом населения, а также за счет общественных фондов. При этом степень удовлетворения потребности будет характеризоваться одним показателем W. Чтобы избежать необходимости оперировать значениями этого показателя в разные годы, можно учитывать его значение на конец планируемого периода. Это допустимо, если предполагается равномерное увеличение значения показателя по годам. Если исходить из необходимости удовлетворения n потребностей общества, то каждый вариант народно-хозяйственного плана будет характеризоваться, как минимум , сочетанием значений n показателей W1, W2,..., Wn. Сравнительная оценка вариантов плана, разрабатываемого на любом уровне, может производиться либо непосредственно по сочетанию значений показателей, либо по специально сформированному К. о. Главным требованием, которому должен отвечать К. о., используемый на любом уровне, является возможность обеспечить оценку вариантов исходя из поставленной цели. Одним из способов отражения соответствия различных сочетаний значений нескольких показателей высшей цели является упорядоченная последовательность этих сочетаний. Выбор или формирование К. о. - главный вопрос сравнительной оценки альтернатив. При этом основным методологическим принципом является системный подход к оценке возможных решений. Сущность системного подхода заключается в том, что целесообразность тех или иных изменений объекта определяется с учетом его взаимосвязей, исходя из интересов системы, составной частью которой является рассматриваемый объект . Нельзя дать заранее какие-либо рекомендации относительно конкретного содержания К. о. Они могут быть сделаны только после рассмотрения общих целей и установления степени соответствия различных сочетаний значений показателей, характеризующих объект, целям, которые стоят перед системой. При обосновании решений особое значение имеет учет неопределенности, например, характеристик разрабатываемой техники, ее стоимости, условий, в которых она будет использоваться, и т. п. Существует формальная «теория принятия решений», которая рассматривает различные способы формирования критерия оценки альтернатив в условиях неопределенности: критерий максимина, критерий минимаксного сожаления и т. п. Сравнение альтернатив нужно всегда проводить по одному критерию. Однако это не исключает возможности поочередной оценки вариантов сначала по одному, а затем по другому критерию. Вопросам количественного обоснования решений в условиях неопределенности уделено значительное внимание в литературе по анализу систем. Анализ систем представляет собой метод оценки альтернатив в условиях неопределенности при наличии нескольких противоречивых целей. Применение этого метода облегчает обоснование целей действий, а также выявление преимуществ и недостатков альтернативных вариантов действия. Однако окончательный выбор осуществляется руководителем, ответственным за принятие решения. Лит.: Льюс Р. Д., Райфа Х., Игры и решения, пер. с англ., М., 1961; Пугачев . Ф., Оптимизация планирования (теоретические проблемы), М., 1968; Федоренко Н. П., О разработке системы оптимального функционирования экономики, М., 1968; Солнышков . С., Как обосновать решение, М., 1972. Ю. С. Солнышков.

Рис.4

Рис.1

Измененное устройство выдает информацию (в том числе и управляющему устройству) о текущем состоянии объекта. В случае если на основании вектора измерений бывают найдены значения всœех координат состояния , не бывают найдены при известном значении вектора измерений , то система будет не полностью наблюдаемой. Управляющее устройства вырабатывает управляющее воздействие . Таких управляющих воздействий будет несколько, в связи с этим полагаем, что вектором - мерный

На вход управляющего устройства поступает задающее воздействие , ĸᴏᴛᴏᴩᴏᴇ содержит инструкцию о том, каково должно быть состояние объекта - так называемое ʼʼжелаемое состояниеʼʼ.

На объект управления может поступать возмущающие воздействие , представляющие нагрузку или помеху. Измерение координат объекта измерительным устройством может производиться с некоторыми случайными погрешностями , называемыми шумами измерения.

Задачей управляющего устройства является выработка такого управляющего воздействия , чтобы качество функционирования САУ в целом было бы наилучшим в некотором смысле.

В дальнейшем будем рассматривать только те объекты, которые являются управляемыми, ᴛ.ᴇ. вектор состояния которых можно изменять требуемым образом путем соответствующего измерения вектора управления. Вместе с тем, объект предполагается полностью наблюдаемым, ᴛ.ᴇ. в данном случае, очевидно, можно не делать разницы между векторами и .

Отметим, что в дальнейшем измеряемые внешние воздействия и при рассмотрении задач управления для упрощения задачи не учитывается. Кроме того мы ограничимся рассмотрением объектов, динамика которых описывается обыкновенными дифференциальными уравнениями. С учетом всœего сказанного функциональная схема САУ должна быть приведены к виду рис.2

рис.2

Уточним и конкретизируем постановку задачи оптимального управления. Ранее при обсуждении типовых задач ОУ 5 и 6, речь шла об несколько абстрактных понятиях – управления связи.

, где

и задавалось начальное и конечное значения вектора .

Существует много различных путей решения рассматриваемой задачи. Но только один способ управления объектом дает наилучший в некотором смысле результат. Этот способ управления и реализующую его систему называют оптимальными.

Чтобы иметь количественные основания для предпочтения одного способа управления всœем другим, крайне важно определить цель управления, а затем ввести меру, характеризующую эффективность достижения цели –критерий оптимальности управления. Обычно критерий оптимальности- это числовая величина, зависящая от изменяющихся во времени и пространстве координат и параметров системы так, что каждому закону управления соответствует определœенное значение критерия. В качестве критерия оптимальности бывают выбраны различные технические и экономические показатели рассматриваемого процесса.

Иногда к системе управления предъявляются различные, подчас противоречивые требования. Законы управления, который одновременно наилучшим образом удовлетворял бы каждому требованию, не существует.

По этой причине из всœех требований нужно выбрать одно главное, ĸᴏᴛᴏᴩᴏᴇ должно удовлетворяться наилучшим образом. Другие требования играют роль ограничений.

Следовательно, выбор критерия оптимальности должен производиться, только на основании изучения технологии и экономики рассматриваемого объекта и среды. Эта задача выходит за рамки теории ОУ.

В качестве критерия, характеризующего качество процесса управления, чаще всœего выбирается функционал

или

Относительно подынтегральной функции будем предполагать, что она непрерывна по всœем аргументам и имеет непрерывные частные производные по переменным .

Для выполнения задачи управления мы располагаем ограниченными энергетическими и материальными ресурсами. Учёт ограничений, естественно, стесняет выбор закона управления и одновременно делает задачу более определœенной. Некоторые задачи более определœенной. Некоторые задачи, сформулированные без учета ограничений, вообще не имеют смысла.

К примеру, задача о предельном воздействии в линœейной системе (в случае с нажимным устройством прокатного стана) при неограниченных управляющих воздействиях лишена смысла. Время процесса в данном случае будет равно нулю, а воздействия бесконечны.

Математически ограничения часто имеют вид неравенств, относящихся к координатам, управляющим воздействиям или их функциям. К примеру, используемая нами ранее в типовой задаче ʼʼ6ʼʼ запись

Носит достаточно абстрактный характер, говорит лишь о том, что соответствующая величина не может или не должна выходить за допустимые границы, вид которой здесь конкретизирован. Чаше всœего эта граница задается многомерным параллелœепипедом

Так, к примеру, для параллелœепипед предстает прямоугольником, за границы которого конец вектора управления не должен выходить. Такое управление принято называть допустимым.

Максимально допустимые значения координат или воздействий определяются характеристиками технологического процесса и оборудования. Заметим, что учет ограничений – существенно влияет на постановку задачи об оптимальном управлении.

Основную задачу определœения оптимального управления можно сформировать следующим образом.

В фазовом пространстве заданы начальное и конечное состояния ОУ. Среди всœех допустимых управлений , для которых соответствующих траектории проходят через начальное и конечное состояния (если такие управления существуют), крайне важно выбрать такое , для которого функционал (2) принимал минимальное (максимальное) значение.

Проиллюстрируем сказанное. Рассмотрим два пространства- управлений и состояний для .

Отметим в них начальное и конечное состояние векторов состояние управления

Кривые в пространстве управлений есть фазовые траектории вектора управления фазовые траектории вектора управления. Траектории допустимые траектории 5,6 –недопустимые т.к. выходят за область ограничений. Аналогично в пространстве состоящие фазовые траектории состояний допустимые, а недопустимые. Предполагается, что фазовой траектории под определœенным номером в пространстве управлений соответствует фазовая траектория в пространстве состояний под тем же номером. Требуется из допустимых управлений (кривая 4 не рассматривается, т.тк.ая 4 нерассматривается авлений ом. тствует фазовая траекттория к. она вызывает недопустимую траекторию состояния 4) выбрать такую, которая, вызывает допустимые траектории состояния доставляет экстремум функционалу (2).

Это шестая типовая задача у управления, как уже отмечалось выше, принято называть неклассической вариационной задачей оптимального управления. В случае если же ограничения на координаты и управления (3) отсутствуют, и всœе вектора управления и состояния являются допустимыми, то возникает пята я типовая задача или классическая вариационная задача оптимального управления, (исследованию которой и посвящена настоящая глава).

Второй важной задачей оптимального управления является синтез оптимального регулятора, ᴛ.ᴇ. определœение оптимального управления как функции либо вектора наблюдения , либо вектора состояния объекта , а не , как мы только что рассматривали.

Выше уже говорилось, что в теории оптимального управления в качестве критериев оптимальности, как правило, применяются интегральные функционалы вида (2). Учитывая зависимость отвида подынтегральной функции бывают получены различные критерии оптимизации, применяемые в практике проектирования оптимальных САУ.

Одним из наиболее распространенных критериев, для которого методика синтеза оптимального управления достаточно хорошо разработана, является время переходного процесса объекта управления из начального состояния в конечное . Этот критерий представляет собой частный случай функционала (2) при тогда

Казалось бы логично пользоваться интегральным критерием вида

, где

Отклонения регулируемой координаты от нового установившегося значения, ĸᴏᴛᴏᴩᴏᴇ она будут иметь после завершения переходного процесса.

Геометрически интеграл (5) интегрируется как площадь под кривой . Эта площадь, а, следовательно, и величина критерия оптимальности, будет тем меньше, чем быстрее затухает переходной процесс и чем меньше величина отклонения в совокупности. Значит управление системой нужно выбирать так, что минимизировать критерий (5). Неудобством этой интегральной оценки является то, что она годится только для монотонных процессов, когда не меняется . В случае если же имеет место колебательный процесс рис.5, то при вычислении интеграла (5) площади будут складываться алгебраически и минимум этого интеграла может соответствовать колебаниям с малым затуханием или вообще без затухания. Что избежать риски подобных ситуаций, следует использовать квадратичный, интегральный функционал

который не зависит от знаков отклонений, а значит и от формы переходного процесса (монотонный или колебательный).

В случае если при проектировании системы оптимального управления ставится задача ограничить резкие изменения выходной переменной во время изменения переходного процесса, при которых 1-ая производная может принимать достаточно большие значения, используется функция:

, где

Весовой коэффициент.

Минимизация этой формулы означает, что составляющая запрещает значительные отклонения от установившегося значения, составляющая запрещает существование больших производных . Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, получается не только быстрый, но и плавный, без разных колебаний переходной процесс. Иногда для этих целœей применяется и более сложные оценки вида:

Выбор того или иного функционала определяется техническими показателями и условиями работы проектируемой САУ и во многом зависит от инструкции и опыта инженера – проектировщика.

Критерий оптимальности - понятие и виды. Классификация и особенности категории "Критерий оптимальности" 2017, 2018.

Оптимизационные задачи

Примером задачи многопараметрической (двухпараметрической) оптимизации будет задача выбора диаметра трубопровода с горячей жидкостью или паром, так как одновременно выбирается диаметр трубопровода и толщина тепловой изоляции при постоянстве остальных. При этом оба параметра дискретны, так как существуют как сортамент труб , так и типовые параметры готовых теплоизоляционных сегментов . Оптимизации подлежат параметры многих технологических процессов , объёмы производства предприятий , уровни надёжности продукции и мн. др.

Большие сложности вызывают «неисчисляемые» критерии оптимальности, которые касаются, например, гуманитарных вопросов, художественного впечатления, изменения ландшафта и т. п. (например, максимум удобства, красоты). Для учёта таких критериев могут применяться экспертные оценки .

Наиболее разработаны методы однокритериальной оптимизации, в большинстве случаев позволяющие получить однозначное решение. В задачах многокритериальной оптимизации абсолютно лучшее решение выбрать невозможно (за исключением частных случаев), так как при переходе от одного варианта к другому, как правило, улучшаются значения одних критериев, но ухудшаются значения других. Состав таких критериев называется противоречивым, и окончательно выбранное решение всегда будет компромиссным. Компромисс разрешается введением тех или иных дополнительных ограничений или субъективных предположений. Поэтому невозможно говорить об объективном единственном решении такой задачи.

Часто многокритериальную задачу сводят к однокритериальной применением «свёртки» критериев в один комплексный, называемый целевой функцией (или функцией полезности). Например, в конкурсных процедурах выбора подрядчиков и поставщиков целевая функция рассчитывается на основе балльных критериев. В ряде случаев успешно применяются ранжирование и последовательное применение критериев оптимальности, метод анализа иерархий .

Иногда общим методом для многокритериальных задач называют оптимальность по Парето , которое позволяет найти ряд «неулучшаемых» решений, однако этот метод не гарантирует глобальной оптимальности решений. Менее известна «оптимальность по Слейтеру».

Нормирование критериев

Для удобства и однозначности восприятия критерии K i (где i = 1,…, m ; m - число критериев) нормируют , то есть обычно приводят к следующему виду:

  • K i ≥ 0;
  • критерии K i убывают с улучшением решения, с ростом качества проектируемого объекта (встречается и обратное требование).
Например, минимальная цена, потери энергии (равны 1- КПД);
  • предпочтительно критерии приводить к безразмерному виду.
например, относительная цена (по отношению к цене самого дорогого варианта);
  • как следствие, наилучшее значение критерия равно нулю. Решения, у которого все критерии нулевые (K i = 0), соответствует идеальному конечному результату (ИКР ), когда объекта нет, но его функция выполняется.

См. также

  • Квалиметрия

Примечания

Литература

  1. Вентцель Е.С. Исследование операций: задачи, принципы, методология. - М .: Наука, 1988. - С. 206.
  2. Черноруцкий И.Г. Методы оптимизации в теории управления. - СПб. : Питер, 2004. - С. 256. - ISBN 5-94723-514-5
  3. Штойер Р. Многокритериальная оптимизация: теория, вычисления и приложения. - М .: Радио и связь, 1992. - С. 504.

Wikimedia Foundation . 2010 .

Смотреть что такое "Критерий оптимальности" в других словарях:

    критерий оптимальности - Наиболее существенный признак оценок, определяющих условия достижения цели какой либо деятельности; К.о. стремится к экстремальному значению [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)] критерий оптимальности… … Справочник технического переводчика

    Критерий оптимальности - фундаментальное понятие современной экономики (которая переняла его из математического программирования и математической теории управления); применительно к той или иной экономической системе это один из возможных критериевЭкономико-математический словарь

    Количественный или порядковый показатель, выражающий предельную меру экономического эффекта принимаемого решения для сравнительной оценки возможных решений (альтернатив) и выбора наилучшего. В экономике, напр., критериями оптимальности могут быть … Большой Энциклопедический словарь

    Критерий, согласно которому функционирование системы признается наилучшим из всех возможных вариантов. Словарь бизнес терминов. Академик.ру. 2001 … Словарь бизнес-терминов

    Количественный или порядковый показатель, выражающий предельную меру экономического эффекта принимаемого решения для сравнительной оценки возможных решений (альтернатив) и выбора наилучшего. В экономике, например, критериями оптимальности могут… … Энциклопедический словарь

    Признак, на основании которого производится сравнительная оценка возможных решений (альтернатив) и выбор наилучшего. Содержание К. о. объективно обусловлено многими факторами: характером общественного строя, экономическими законами,… … Большая советская энциклопедия

    Наиболее существенный признак оценок, определяющих условия достижения цели какой либо деятельности; К.о. стремится к экстремальному значению (Болгарский язык; Български) критерий за оптималност (Чешский язык; Čeština) kritérium optimálnosti… … Строительный словарь

    КРИТЕРИЙ ОПТИМАЛЬНОСТИ - признак, по которому функционирование системы признается наилучшим из возможных вариантов. Применительно к конкретным экономическим решениям К.о. показатель, выражающий предельную меру экономического эффекта принимаемого хозяйственного решения… … Большой бухгалтерский словарь

    КРИТЕРИЙ ОПТИМАЛЬНОСТИ - признак, по которому функционирование системы признается наилучшим из возможных вариантов. Применительно к конкретным экономическим решениям К.о. – показатель, выражающий предельную меру экономического эффекта принимаемого хозяйственного решения… … Большой экономический словарь

    Критерий оптимальности радиоэлектронной схемы - Глобальная оптимизация 46. Критерий оптимальности радиоэлектронной схемы Правило, служащее для сравнительной оценки качества вариантов радиоэлектронных схем одинакового целевого назначения

Обычно оптимизируемая величина связана с экономичностью работы рассматриваемого объекта (аппарат, цех, завод). Оптимизируемый вариант работы объекта должен оцениваться какой-то количественной мерой - критерием оптимальности .

Критерием оптимальности называется количественная оценка оптимизируемого качества объекта.

На основании выбранного критерия оптимальности составляется целевая функция , представляющая собой зависимость критерия оптимальности от параметров, влияющих на ее значение. Вид критерия оптимальности или целевой функции определяется конкретной задачей оптимизации. Таким образом, задача оптимизации сводится к нахождению экстремума целевой функции.

Наиболее общей постановкой оптимальной задачи является выражение критерия оптимальности в виде экономической оценки (производительность, себестоимость продукции, прибыль, рентабельность). Однако в частных задачах оптимизации, когда объект является частью технологического процесса, не всегда удается или не всегда целесообразно выделять прямой экономический показатель, который бы полностью характеризовал эффективность работы рассматриваемого объекта. В таких случаях критерием оптимальности может служить технологическая характеристика, косвенно оценивающая экономичность работы агрегата (время контакта, выход продукта, степень превращения, температура). Например, устанавливается оптимальный температурный профиль, длительность цикла "реакция-регенерация".

Рассмотрим более подробно требования, которые должны предъявляться к критерию оптимальности.

1. Критерий оптимальности должен выражаться количественно.

2. Критерий оптимальности должен быть единственным.

3. Критерий оптимальности должен отражать наиболее существенные стороны процесса.

4. Желательно чтобы критерий оптимальности имел ясный физический смысл и легко рассчитывался.

Любой оптимизируемый объект схематично можно представить в соответствии с рис. 2.

При постановке конкретных задач оптимизации желательно критерий оптимальности записать в виде аналитического выражения.

В том случае, когда случайные возмущения невелики и их воздействие на объект можно не учитывать, критерий оптимальности может быть представлен как функция входных , выходных и управляющих параметров:

Так как , то при фиксированных можно записать:
.

Математическое программирование ("планирование") – это раздел математики, занимающийся разработкой методов отыскания экстремальных значений функции, на аргументы которой наложены ограничения. Методы математического программирования используются в экономических, организационных, военных и др. системах для решения так называемых распределительных задач . Распределительные задачи возникают в случае, когда имеющихся в наличии ресурсов не хватает для выполнения каждой из намеченных работ эффективным образом и необходимо наилучшим образом распределить ресурсы по работам в соответствии с выбранным критерием оптимальности.


Временем рождения линейного программирования принято считать 1939г., когда была напечатана брошюра Леонида Витальевича Канторовича "Математические методы организации и планирования производства". Американский математик А. Данциг в 1947 году разработал весьма эффективный конкретный метод численного решения задач линейного программирования (он получил название симплекс метода ).

Линейное программирование - это метод математического моделирования, разработанный для оптимизации использования ограниченных ресурсов. ЛП успешно применяется в военной области, индустрии, сельском хозяйстве, транспортной отрасли, экономике, системе здравоохранения и даже в социальных науках. Широкое использование этого метода также подкрепляется высокоэффективными компьютерными алгоритмами, реализующими данный метод. На алгоритмах линейного программирования базируются оптимизационные алгоритмы для других, более сложных типов моделей и задач исследования операций (ИО), включая целочисленное, нелинейное и стохастическое программирование.

Оптимизационная задача – это экономико-математическая задача, которая состоит в нахождении оптимального (максимального или минимального) значения целевой функции, причем значения переменных должны принадлежать некоторой области допустимых значений.

В самом общем виде задача линейного программирования математически записывается следующим образом:

где X = (x 1 , x 2 , ... , x n) ; W – область допустимых значений переменных x 1 , x 2 , ... , x n ;f(Х) – целевая функция.

Для того чтобы решить задачу оптимизации, достаточно найти ее оптимальное решение, т.е. указать такое, что при любом .

Оптимизационная задача является неразрешимой, если она не имеет оптимального решения. В частности, задача максимизации будет неразрешимой, если целевая функция f(Х) не ограничена сверху на допустимом множестве W .

Методы решения оптимизационных задач зависят как от вида целевой функции f(Х) , так и от строения допустимого множества W . Если целевая функция в задаче является функцией n переменных, то методы решения называют методами математического программирования.

Характерные черты задач линейного программирования следующие:

  • показатель оптимальности f(X) представляет собой линейную функцию от элементов решения X = (x 1 , x 2 , ... , x n) ;
  • ограничительные условия, налагаемые на возможные решения, имеют вид линейных равенств или неравенств.

Задачей линейного программирования называется задача исследования операций, математическая модель которой имеет вид:

(2)
(3)
(4)
(5)

При этом система линейных уравнений (3) и неравенств (4), (5), определяющая допустимое множество решений задачи W , называется системой ограничений задачи линейного программирования, а линейная функция f(Х) называется целевой функцией или критерием оптимальности .

При описании реальной ситуации с помощью линейной модели следует проверять наличие у модели таких свойств, как пропорциональность и аддитивность . Пропорциональность означает, что вклад каждой переменной в целевой функции и общий объем потребления соответствующих ресурсов должен быть прямо пропорционален величине этой переменной. Например, если, продавая j -й товар в общем случае по цене 100 рублей, фирма будет делать скидку при определенном уровне закупки до уровня цены 95 рублей, то будет отсутствовать прямая пропорциональность между доходом фирмы и величиной переменной x j . Т.е. в разных ситуациях одна единица j -го товара будет приносить разный доход. Аддитивность означает, что целевая функция и ограничения должны представлять собой сумму вкладов от различных переменных. Примером нарушения аддитивности служит ситуация, когда увеличение сбыта одного из конкурирующих видов продукции, производимых одной фирмой, влияет на объем реализации другого.

Допустимое решение – это совокупность чисел (план ) X = (x 1 , x 2 , ... , x n) , удовлетворяющих ограничениям задачи. Оптимальное решение – это план, при котором целевая функция принимает свое максимальное (минимальное) значение.

На следующем шаге рассмотрим построение модели линейного программирования на примере .



Поделиться