Нечеткое управление. Нечеткие системы управления

Нечеткое управление заключается в реализации с помощью компьютера управления, аналогичного тому, которое выполняет квалифицированный рабочий, путем представления в виде модели методов его работы с использованием правил управления. Правила управления связывают оценку состояния объекта управления с последовательностью операций с помощью высказываний «если... то», осуществляют нечеткое разделение пространства входных переменных и в каждой локальной области указывают последовательность операций. При увеличении числа входных переменных неизбежно возрастает и число правил управления, что затрудняет их построение. Структурирование правил управления осуществляется на основе характеристик оборудования. Примеры структурирования показаны на рис. 3.35.

На рис. 3.35, а показан пример, в котором значения математической модели корректируются с помощью нечеткого вывода (например, управление впрыскиванием коагулянта на водоочистительной станции ), на рис. 3.35, б - пример, в котором эталонное значение на выходе системы управления и значение поправки определяются на основе нечеткого вывода (управление хлорированием на водоочистительной станции ). На рис. 3.35, в представлен пример, в котором значение на выходе системы управления определяется с использованием оценки состояния оборудования по нечеткому выводу первой ступени, а также измеренных значений. В этих методах структурирования объектом является значение на выходе системы управления. Среди методов, использующих правила управления, можно выделить метод нечеткого адаптивного управления.

Нечеткое адаптивное управление - это метод управления, который позволяет приспособиться к изменениям параметров оборудования путем изменения алгоритма управления. Значительный эффект можно получить в том случае, когда характеристики оборудования, например коэффициент усиления процесса и время простоя, изменяются в зависимости от рабочего состояния или когда необходимо согласовать в зависимости от ситуации несколько целей управления. Для параметра а, представляющего состояние оборудования, рассмотрим два состояния и обозначим параметры

(см. скан)

Рис. 3.35. Примеры структурирования нечеткого вывода.

(см. скан)

Рис. 3.35. Продолжение

правил управления в этих состояниях через Затем оценим параметр а, представляющий текущее состояние оборудования, и определим степень близости со его значения к состояниям Пусть о) равно 0 в случае состояния а, и 1 в случае состояния а между двумя состояниями о) принимает значения от 0 до 1. Параметр с правил управления в состоянии а определяется как взвешенное среднее с весами параметров правил управления в состояниях соответственно:

Как показано на рис. 3.36, параметр с правил управления меняется непрерывно от и пропорционально изменению параметра оборудования а от к Таким образом, нечеткое адаптивное управление - это метод управления, в котором осуществляется адаптация параметра правил управления на основе формулы (3.27) в соответствии с состоянием оборудования. В общем случае в качестве параметра правила управления используется параметр функции принадлежности. Следовательно, используется одно и то же правило управления, но для одной и той же нечеткой переменной

Рис. 3.36. Нечеткая адаптивная операция.

определяются две функции принадлежности в соответствии с состояниями

Выше был рассмотрен случай с одним параметром оборудования. Объясним это на конкретном примере. Характеристики оборудования часто меняются в зависимости от рабочего состояния. Например, часто при нагрузках 50 и 100% коэффициент усиления процесса и время простоя существенно различаются. В этом случае состояние нагрузки принимается за параметр оборудования. Кроме того, если по разным причинам состояние оборудования меняется, целесообразно с помощью нечеткого вывода, использующего эти причины в качестве входных значений, оценить параметр, характеризующий состояние оборудования. Сопоставляя этот параметр в пропорции с , по функции принадлежности правила управления для нагрузок 50 и 100% можно определить с использованием формулы (3.27) функцию принадлежности для произвольного состояния нагрузки. То, что при этом будет адаптироваться: функция принадлежности предпосылки или функция принадлежности заключения зависит от характеристик оборудования. Если, например, в зависимости от нагрузки меняются постоянная времени и время запаздывания, то адаптируется функция принадлежности предпосылки, а в случае изменения коэффициента усиления процесса - функция принадлежности заключения. Аналогичным методом по нагрузкам 50 и 100% можно осуществить согласованное управление при нескольких различных целях управления. В этом случае близость к некоторому состоянию выражается параметром со и адаптируется соответствующая целевая функция принадлежности.

Лекция № 6. ПРОЕКТИРОВАНИЕ НЕЧЕТКИХ АЛГОРИТМОВ УПРАВЛЕНИЯ ДИНАМИЧЕСКИМИ ОБЪЕКТАМИ

Общие принципы построения интеллектуальных систем управления на основе нечеткой логики

Как уже отмечалось выше, применение нечеткой логики обеспечивает принципиально новый подход к проектированию систем управления, "прорыв" в новые информационные технологии, гарантирует возможность решения широкого круга проблем, в которых данные, цели и ограничения являются слишком сложными или плохо определенными и в силу этого не поддаются точному математическому описанию.

Возможны различные ситуации, в которых могут использоваться нечеткие модели динамических систем:

Когда имеется некоторое лингвистическое описание, которое отражает качественное понимание (представление) процесса и позволяет непосредственно построить множество нечетких логических правил;

Имеются известные уравнения, которые (хотя бы грубо) описывают поведение управляемого процесса, но параметры этих уравнений не могут быть точно идентифицированы;

Известные уравнения, описывающие процесс, являются слишком сложными, но они могут быть интерпретированы нечетким образом для построения лингвистической модели;

С помощью входных/выходных данных оцениваются нечеткие логические правила поведения системы.

Первые результаты практического применения алгоритмов нечеткой логики к управлению реальными техническими объектами были опубликованы в 1974 г. в работах профессора Лондонского Королевского колледжа Э.Х. Мамдани, посвященных проблеме регулирования парогенератора для электростанции. В этих работах была предложена ставшая сегодня классической структурная схема системы нечеткого управления (рис. 3.1).

Под нечетким управлением (Fuzzy Control) в данном, случае понимается стратегия управления, основанная на эмпирически приобретенных знаниях относительно функционирования объекта (процесса), представленных в лингвистической форме в виде некоторой совокупности правил.

Рис. 5.1. Структурная схема системы нечеткого управления

На рис. 3.1 ДФ - динамический фильтр, выделяющий, помимо сигналов ошибок управления x 1 =r 1 -y 1 и х 3 =r 2 -у 2 , производные от этих сигналов и ;

РНЛ - регулятор на основе нечеткой логики ("нечеткий регулятор”, включающий в себя базу знаний (конкретнее - базу правил) и механизм логического вывода;

соответственно векторы задающих воздействий (уставок), входов и выходов РНЛ, а также выходов объекта управления (т.е. парогенератора); т - операция транспонирования вектора.

В качестве входов и выходов РНЛ выступают:

Отклонение давления в паровом котле (y 1) по отношению к и требуемому (номинальному) значению (r 1);

Скорость изменения Р Е;

Отклонение скорости изменения давления (у 2) по отношению к его заданному значению (r 2);

Скорость изменения SE;

u 1 =H c – изменение степени подогрева пара;

U 2 =: Тс - изменение положения дросселя.

Мамдани предложил рассматривать эти величины как лингвистические переменные, каждая из которых может принимать одно из следующих значений из множества

L= {NB,NM,NS,NO,PO,PS,PM,PB}.

Здесь 1-я буква в обозначении указывает знак числовой переменной и соответствует английскому слову Negative ("отрицательное") или Positive ("положительное"), 2-я буква говорит об абсолютном значении переменной: Big ("большое"), Middle ("среднее"), Small ("малое") или О ("близкое к нулю"). Например, символ NS означает "отрицательное малое".

В процессе работы ИСУ в каждый момент времени используется один из двух нечетких алгоритмов: по первому из них осуществляется регулирование давления в котле путем изменения подогрева пара Н c , по второму поддерживается требуемая скорость изменения давления с помощью изменения положения регулирующего дросселя Т с. Каждый из алгоритмов состоит из ряда правил – высказываний, записанных на естественном языке, типа:

"Если отклонение давления в котле большое, отрицательного знака и если это отклонение не убывает с большой или средней по величине скоростью, то степень подогрева пара необходимо сильно увеличить".

"Если скорость изменения давления чуть ниже нормы и в то же время эта скорость резко растет, то следует изменить положение дросселя на положительную, достаточно малую, величину".

Используя введенные выше обозначения, можно переписать эти правила в следующем виде:

"ЕСЛИ (P E =NB И C PE =HE (NB ИЛИ NM), ТО Н С =РВ";

"ЕСЛИ (S E =NO И C SE =PB), TO T C =PS".

Реализация предложенных алгоритмов нечеткого управления при этом принципиально отличается от классических ("жестких") алгоритмов, построенных на основе концепции обратной связи (Feed-back Control) и, по существу, просто воспроизводящих некоторую заданную функциональную зависимость или дифференциальное уравнение.

Нечеткий регулятор берет на себя те функции, которые обычно выполняются опытным и умелым обслуживающим персоналом. Эти функции связаны с качественной оценкой поведения системы, анализом текущей меняющейся ситуации и выбором наиболее подходящего для данной ситуации способа управления объектом. Данная концепция управления получила название опережающего (или упреждающего) управления (Feed-Forward Control).

Используя образное сравнение, можно сказать, что примерно так действует опытный теннисист, каждый раз варьируя свой удар, чтобы мяч летел по определенной, выбранной им траектории, тогда как теннисный автомат работает по жестко заданной программе, подавая мяч всегда в одну и ту же точку, по одной и той же траектории.

Блок - схема нечеткого регулятора в общем случае принимает вид, изображенный на рис. 3.2.

Как видно из данной схемы, формирование управляющих воздействий u 1 ,u 2 ,...,u m включает в себя следующие этапы:

а) получение отклонений управляемых координат и скоростей их изменения – х 1 ,x 2 ,...,х n ;

б) "фаззификация" этих данных, т.е. преобразование полученных значений к нечеткому виду, в форме лингвистических переменных;

в) определение нечетких (качественных) значений выходных переменных u 1 ,u 2 ,...,u m (в виде функций их принадлежности соответствующим нечетким подмножествам) на основе заранее формулированных правил логического вывода, записанных в базе правил;

г) "дефаззификация", т.е. вычисление реальных числовых значений выходов u 1 ,u 2 ,...,u m , используемых для управления объектом.

Рис. 3.2. Блок-схема нечеткого регулятора

Помимо представленного на рис. 3.1 варианта "чистого" использования нечеткого управления, существуют и другие варианты построения ИСУ с нечеткими регуляторами. Так, в классической теории регулирования широкое распространение получило использование ПИД - регулятора, выходной сигнал которого вычисляется по формуле

(3.1)

где параметры К п, К и и К д характеризуют удельный вес соответственно пропорциональной, интегральной и дифференциальной составляющей и, должны выбираться исходя из заданных показателей качества регулирования (время регулирования, перерегулирование, затухание переходных процессов).

Возможное использование нечеткого регулятора (НР) для автоматической настройки (адаптации) указанных параметров ПИД - регулятора показано на рис. 3.3,а. Другие варианты применения HP – формирование уставок обычных регуляторов (рис. 3.3,6); подключение параллельно ПИД - регулятору (рис. 3.3, в); управление с предварительной оценкой характеристик сигналов (ОХС), получаемых с датчиков, на основе интерпретации их значимости, выделения обобщенных показателей качества и т. п. с последующей обработкой с помощью алгоритмов нечеткой логики (рис. 3.3,г).

Рис. 3.3. Структуры ИСУ с нечеткими регуляторами

В качестве предпосылок к применению нечетких регуляторов обычно называются:

Большое число входных параметров, подлежащих анализу (оценке);

Большое число управляющих воздействий (многомерность);

Сильные возмущения;

Нелинейности;

Неточности математических моделей программы регулирования;

Возможность использования технических знаний "know - how".

Подводя итог сказанному, отметим еще раз те области применения, в которых использование нечетких регуляторов оказывается более эффективным по сравнению с традиционными алгоритмами управления. Это:

1) приложения, которые пока были не связаны с автоматизацией, требующие применения "know - how", например, пивоварение (где можно воспользоваться знаниями экспертов с целью повышения качества продукции), подъемные краны (для повышения производительности рабочего персонала) и т. п.;

2) приложения, в которых математические методы не работоспособны. Это очень сложные процессы, не поддающиеся математическому описанию, для управления которыми можно использовать, наряду с эмпирическими знаниями, также полученную измерительную информацию (например, о ходе химических процессов);

3) приложения, в которых стандартные регуляторы достаточно хорошо работают; однако управление на основе нечеткой логики предлагает в данном случае альтернативный способ решения задач регулирования, возможность работы с лингвистическими переменными, более широкие возможности для оптимизации.

Введение

Нечеткая логика основана на использовании оборотов естественного языка. Вы сами определяете необходимое число терминов и каждому из них ставите в соответствие некоторое значение описываемой физической величины. Для этого значения степень принадлежности физической величины к терму (слову естественного языка, характеризующего переменную) будет равна единице, а для всех остальных значений - в зависимости от выбранной функции принадлежности. Например, можно ввести переменную «возраст» и определить для нее термы «юношеский», «средний» и «преклонный». Диапазон ее применения очень широк - от бытовых приборов до управления сложными промышленными процессами. Многие современные задачи управления просто не могут быть решены классическими методами из-за очень большой сложности описывающих их математических моделей. Вместе с тем, чтобы использовать теорию нечеткости на цифровых компьютерах, необходимы математические преобразования, позволяющие перейти от лингвистических переменных к их числовым аналогам в ЭВМ.

Нечеткие системы управления

Нечеткая система (НС) -- это система, особенностью описания которой является:

· нечеткая спецификация параметров;

· нечеткое описание входных и выходных переменных системы;

· нечеткое описание функционирования системы на основе продукционных «ЕСЛИ…ТО…»правил.

Важнейшим классом нечетких систем являются нечеткие системы управления (НСУ). Одним из важнейших компонентов НСУ является база знаний, которая представляет собой совокупность нечетких правил «ЕСЛИ--ТО», определяющих взаимосвязь между входами и выходами исследуемой системы. Существуют различные типы нечетких правил: лингвистическая, реляционная, модель Takagi-Sugeno.

Для многих приложений, связанных с управлением технологическими процессами, необходимо построение модели рассматриваемого процесса. Знание модели позволяет подобрать соответствующий регулятор (модуль управления). Однако часто построение корректной модели представляет собой трудную проблему, требующую иногда введения различных упрощений. Применение теории нечетких множеств для управления технологическими процессами не предполагает знания моделей этих процессов. Следует только сформулировать правила поведения в форме нечетких условных суждений типа «ЕСЛИ-ТО».

Рис. 1. Структура нечеткой системы управления

Процесс управления системой напрямую связан с выходной переменной нечеткой системы управления, но результат нечеткого логического вывода является нечетким, а физическое исполнительное устройство не способно воспринять такую команду. Необходимы специальные математические методы, позволяющие переходить от нечетких значений величин к вполне определенным. В целом весь процесс нечеткого управления можно разбить на несколько стадий: фазификация, разработка нечетких правил и дефазификация.

Фа зификация (переход к нечеткости)

На данной стадии точные значения входных переменных преобразуются в значения лингвистических переменных посредством применения некоторых положений теории нечетких множеств, а именно - при помощи определенных функций принадлежности.

Лингвистические переменные

В нечеткой логике значения любой величины представляются не числами, а словами естественного языка и называются «термами». Так, значением лингвистической переменной «Дистанция» являются термы «Далеко», «Близко» и т. д. Для реализации лингвистической переменной необходимо определить точные физические значения ее термов. Допустим переменная «Дистанция» может принимать любое значение из диапазона от 0 до 60 метров. Согласно положениям теории нечетких множеств, каждому значению расстояния из диапазона в 60 метров может быть поставлено в соответствие некоторое число, от нуля до единицы, которое определяет степень принадлежности данного физического значения расстояния (допустим, 10 метров) к тому или иному терму лингвистической переменной «Дистанция». Тогда расстоянию в 50 метров можно задать степень принадлежности к терму «Далеко», равную 0,85, а к терму «Близко» - 0,15. Задаваясь вопросом, сколько всего термов в переменной необходимо для достаточно точного представления физической величины принято считать, что достаточно 3-7 термов на каждую переменную для большинства приложений. Большинство применений вполне исчерпывается использованием минимального количества термов. Такое определение содержит два экстремальных значения (минимальное и максимальное) и среднее. Что касается максимального количества термов, то оно не ограничено и зависит целиком от приложения и требуемой точности описания системы. Число 7 же обусловлено емкостью кратковременной памяти человека, в которой, по современным представлениям, может храниться до семи единиц информации.

Функции принадлежности

Принадлежность каждого точного значения к одному из термов лингвистической переменной определяется посредством функции принадлежности. Ее вид может быть абсолютно произвольным, однако сформировалось понятие о так называемых стандартных функциях принадлежности

Рис. 2. Стандартные функции принадлежности

Стандартные функции принадлежности легко применимы к решению большинства задач. Однако если предстоит решать специфическую задачу, можно выбрать и более подходящую форму функции принадлежности, при этом можно добиться лучших результатов работы системы, чем при использовании функций стандартного вида.

Сейчас, когда мы уже знаем, что такое нечеткие множества, попытаемся определить базовые операции (действия) над нечеткими множествами. Аналогично действиям с обычными множествами нам потребуется определить пересечение, объединение и отрицание нечетких множеств.

Пусть A нечеткое множество (интервал) «в районе 5 - 8» и B нечеткое множество (число) «около 4», как показано на рисунке.

Следующий пример иллюстрирует нечеткое множество «в районе 5 - 8» И (AND) «около 4» (синяя линия).

Нечеткое множество «в районе 5 - 8» ИЛИ (OR) «около 4» показано на следующем рисунке (снова синяя линия).

Следующий рисунок иллюстрирует операцию отрицания. Синяя линия - это ОТРИЦАНИЕ нечеткого множества A.

Нечеткое управление

Контроллеры нечеткой логики - наиболее важное приложение теории нечетких множеств. Их функционирование немного отличается от работы обычных контроллеров; для описания системы используются знания экспертов вместо дифференциальных уравнений. Эти знания могут быть выражены естественным образом с помощью лингвистических переменных, которые описываются нечеткими множествами.

Пример: Перевернутый маятник

Проблема состоит в балансировке вертикальной мачты, подвижно закрепленной нижним концом на тележке, которая может двигаться только в двух направлениях - влево или вправо. Разумное существо (человек), произведя серию экспериментов более или менее быстро овладевает искусством поддерживать равновесие мачты достаточно долгое время. Однако для традиционных систем автоматического управления такая постановка задачи является достаточно нетривиальной. Особенно когда отсутствует строгое математическое описание (математическая модель) объекта управления.

Попытаемся разработать алгоритм работы интеллектуальной системы управления , использую понятия нечеткой логики.

Этап 1. Фаззификация (переход от четких значений переменных к нечетким). Выполняется человеком - разработчиком контроллера в процессе его создания.

Мы должны определить (субъективно) что такое высокая скорость, низкая скорость и т.п. для тележки. Это делается описанием функции принадлежности для нечетких множеств:

    отрицательная высокая, neg.high (голубой)

    отрицательная низкая, neg.low (зеленый)

    нулевая, zero (красный)

    положительная низкая, pos.low (синий)

    положительная высокая, pos.high (розовый)

Тоже самое делается для угла между тележкой и мачтой маятника и для угловой скорости изменения этого угла.

Этап 2. Формулирование правил зависимости нечеткого значения управляющего воздействия от нечетких значений переменных состояния системы. Выполняется человеком - разработчиком контроллера в процессе его создания.

Определим несколько правил, которые определяют что делать в данной ситуации.

Положим, например, что мачта находится справа (угол равен нулю) и не двигается (угловая скорость - ноль). Очевидно, что это желаемое положение, и ничего предпринимать не надо (скорость равна нулю).

Рассмотрим другой случай: мачта находится справа, как и прежде, но движется с низкой скоростью в положительном направлении. Естественно необходимо компенсировать движение мачты, передвигая тележку в том же направлении с низкой скоростью.

Итак, получаем два правила, которые более формально представляются в следующей форме:

Если угол равен нулю И угловая скорость равна нулю, тогда скорость должна быть равна нулю.

Если угол равен нулю И угловая скорость положительная низкая, тогда скорость должна быть положительной низкой.

Сведем все полученные правила в таблицу:

Какой должна быть скорость тележки?

Угол наклона шеста

Угловая скорость шеста

где ОВ - Отрицательное Высокое (большое) значение, ОН - Отрицательное Низкое (малое) значение, 0 - нуль и т.д.

Этап 3. Дефаззификация (возврат от нечетких значений к четким). Выполняется автоматически нечетким контроллером в процессе управления объектом в соответствии с алгоритмом, определенным на этапе 2.

Для дальнейших расчетов определим численные значения для угла и угловой скорости. Рассмотрим следующую ситуацию:

Реальное значение угла:

Реальное значение угловой скорости:

Применим правило

Если угол равен нулю И угловая скорость равна нулю, тогда скорость равна нулю

к реальным значениям переменных.

Здесь представлена лингвистическая переменная "угол", отображаемая нечетким множеством "ноль" и реальный угол наклона маятника.

Проследим получение результата с помощью нечеткого вывода.

1. Если угол равен нулю И угловая скорость равна нулю тогда скорость равна нулю

Получаем, что реальное значение угла принадлежит нечеткому множеству "ноль" со степенью 0.75.

2. Если угол равен нулю И угловая скорость равна нулю тогда скорость равна нулю

Здесь представлена лингвистическая переменная "угловая скорость", отображаемая нечетким множеством "ноль" и реальная угловая скорость.

3. Если угол равен нулю И угловая скорость равна нулю тогда скорость равна нулю

Реальное значение угла принадлежит нечеткому множеству "ноль" со степенью 0.75.

Реальное значение угловой скорости принадлежит нечеткому множеству "ноль" со степенью 0.4.

4. Если угол равен нулю И угловая скорость равна нулю тогда скорость равна нулю

Так как две части условий правила объединяются по И, то вычисляем min (0.75, 0.4) = 0.4 и уменьшаем нечеткое множество "ноль" для переменной "скорость" до этого уровня (в соответствии с рассматриваемым правилом).

Только четыре правила приводят к результату. Объединим их в одно решение.

Таким образом результатом правила

Если угол равен нулю И угловая скорость равна нулю тогда скорость равна нулю

является:

Результатом правила

Если угол равен нулю И угловая скорость отрицательная низкая тогда скорость - отрицательная низкая

является:

Результатом правила

Если угол положительный малый И угловая скорость равна нулю тогда скорость - положительная низкая является:

Результатом правила

Если угол положительный малый И угловая скорость отрицательная низкая тогда скорость равна нулю

является:

Объединение этих четырех результатов дает общее решение:

Таким образом, решением контроллера нечеткой логики является нечеткое множество (для скорости). Далее необходимо выбрать одно значение для представления конечного выходного значения. Существует несколько эвристических методов (методов дефаззификации ), один из которых, например, предполагает выбирать в качестве конечного значения центр тяжести нечеткого множества:

Вся данная процедура получения решения называется контроллером Мамдани (Mamdani controller).

Приложения нечеткой логики

рекомендуется :

    для очень сложных процессов, когда не существует простой математической модели

    для нелинейных процессов высоких порядков

    если должна производиться обработка (лингвистически сформулированных) экспертных знаний

Использование нечеткого управления не рекомендуется , если:

    приемлемый результат может быть получен с помощью общей теории управления

    уже существует формализованная и адекватная математическая модель

    проблема неразрешима.



Поделиться