Основные светотехнические понятия. Световые величины

Основные искусственные источники света: конструкции, принцип действия, схема включения, типы, световые и электрические характеристики.

Искусственные источники света - устройства различной конструкции, преобразовывающие энергию в световое излучение. В источниках света используется в основном электроэнергия, но так же иногда применяется химическая энергия и другие способы генерации света.

Источники света, более часто применяемые для искусственного освещения, делят на три группы - газоразрядные лампы, лампы накаливания и светодиоды. Лампы накаливания относятся к источникам света теплового излучения. Видимое излучение в них получается в результате нагрева электрическим током вольфрамовой нити. В газоразрядных лампах излучение оптического диапазона спектра возникает в результате электрического разряда в атмосфере инертных газов и паров металлов, а также за счет явлений люминесценции, которое невидимое ультрафиолетовое излучение преобразует в видимый свет. Светодиод - это полупроводниковый прибор, преобразующий электрический ток в световое излучение. Специально выращенные кристаллы дают минимальное потребление электроэнергии.

Основные характеристики источников света: 1) номинальное напряжение питающей сети U, B; 2) электрическая мощность W, Вт; 3) световой поток Ф, лм; 4) световая отдача (отношение светового потока лампы к ее мощности) лм/Вт; 5) срок службы t, ч; 6) Цветовая температура Tc, К.

Характеристики светодиодов (световая отдача до 120 Лм/Вт, срок службы до 100 000 часов).

Сравнительная характеристика различных типов источников света. Выбор типа источника света.

Главным недостатком ламп накаливания является низкая световая отдача, при небольшём сроке службы; Низкая световая отдача объясняется тем, что 70–76% мощности излучения тела накала лежит в ИК-области спектра.

У разрядных лампах световая отдача в 5–10, а срок службы в 10–20 раз превышают световую отдачу и срок службы ламп накала. Наиболее массовыми являются люминисцентные лампы - за счет лучшей экономической эффективности.

Светодиоды - источники света, принципиально отличающиеся от тепловых или разрядных излучателей. Они характеризуются низким энергопотреблением, длинными сроками работы и низкой стоимостью обслуживания, однако гораздо дороже. Параметры: световая отдача - до 55 лм/Вт (белых), общий индекс цветопередачи белых - 85.

Выбор источников света определяется их характеристиками и требованиями к освещению. Применение газоразрядных ламп исключается, если питание осуществляется от сети постоянного тока или если возможно понижение напряжения более чем на 10 % от номинального. Необходимость быстрого включения ламп после кратковременного исчезновения напряжения не позволяет применять лампы ДРЛ. При температуре окружающей среды ниже +5 °С освещение с помощью люминесцентных ламп может оказаться неэффективным. Для местного освещения на напряжении 12-42 В применяют лампы накаливания. Светодиоды можно использовать без ограничения.

Требования, предъявляемые к осветительным установкам. Правила искусственного освещения.

Экономичность: Правильный выбор источников света, систем освещения, типа и расположения светильников.

Надежность: Выбор типа светильников и способа проводки в соответствии с условиями среды помещения.

Безопасность: Выбор сети в соответствии с требованиями ПУЭ. Применение в необходимых случаях светильников с недоступными токоведущими частями. Устройство заземления.

Достаточная яркость: Выбор освещенности согласно нормам и проектом осветительной установки.

Устройсва авырийного освещения.

Искусственное освещение помещений может быть двух систем - общее и комбинированное. Рабочее освещение следует предусматривать для всех помещений зданий, а также участков открытых пространств, предназначенных для работы, прохода людей и движения транспорта. Для искусственного освещения следует использовать экономичные источники света, отдавая предпочтение при равной мощности источникам света с наибольшей световой отдачей и сроком службы.

Светотехнические и электротехнические задачи проектирования осветительных установок.

Задачей светотехнического расчета является определение: необходимой освещенности в заданных точках, количество и тип светильников, а также контроль качественных характеристик.

При проектировании эл. части решаются следующие вопросы: расчёт эл. нагрузок; уровни напряжения; источники и схемы питания; надежность и бесперебойность эл. снабжения; способы управления освещением; расчет защит и выполнение осветительных систем; эл. безопасность при эксплуатации; используемое эл. оборудование.

Принцип действия и устройства печей сопротивления. Нагреватели и электрооборудование электропечей сопротивления.

Печь сопротивления, это печь, в которой тепло выделяется в результате прохождения тока через проводники с активным сопротивлением. Состоит из рабочей камеры, образованной из слоя огнеупорного кирпича, несущего на себе изделия и нагреватели и изолированного от металлического кожуха теплоизоляционным слоем. Работающие в камере печи детали и механизмы, а также нагревательные элементы выполняются из жаропрочных и жароупорных сталей и других жароупорных материалов. В электрических печах сопротивления с рабочими температурами до 700° С широко используется принудительная циркуляция газов с помощью вентиляторов, встраиваемых в печь или вынесенных из печи вместе с нагревателями в эл.калориферы. (прямого и косвенного действия)

Источники питания сварочной дуги. Требования к источникам питания сварочной дуги. Характеристики дуги и источников.

В качестве источника электрической дуги могут применяться сварочные трансформаторы на переменном токе, сварочные выпрямители и сварочные генераторы на постоянном токе.

Устойчивость сварочной дуги переменного тока по сравнению с дугой постоянного тока снижается в связи с переходом переменного тока через нуль с частотой 50 Гц. Электрическая дуга зажигается при напряжении 60–70 В и устойчиво горит при напряжении 20–30 В. Сварочный ток зависит от толщины или диаметра свариваемых деталей и находится в пределах 10–400 А.

Сварочные трансформаторы имеют две обмотки – первичную, включаемую в электрическую сеть с напряжением 380 или 220 В, и вторичную, которая соединяется со сварочной цепью. Обмотки расположены на магнитопроводе.

Сварочный генератор постоянного тока, в качестве двигателей могут применяться асинхронные эл.двигатели или ДВС. На статоре закреплены главные полюса с намагничивающими обмотками. Внутри статора расположен ротор. В пазах ротора обмотка, концы которой соединены коллектором. Вращающийся ротор с обмоткой называют якорем. При вращении якоря в обмотке наводится ЭДС. Сварочный ток снимается с коллектора щетками.

Сварочный выпрямитель содержит трансформатор и тиристорный блок. Тиристоры собираются по шестифазной схеме с уравнительным реактором. Выпрямитель подключается к сети напряжением 380 В. Для охлаждения тиристоров служит вентилятор с приводным асинхронным двигателем.

Требования, предъявляемые к крановому электрооборудованию. Особенности работы грузоподъемных кранов.

К надежности кранового электрооборудования должны предъявляться очень жесткие требования. Выход из строя любого элемента электрооборудования приводят к остановке крана, что вызывает простой и другого оборудования. Крановое электрооборудование должно обеспечивать надежную, безаварийную работу механизмов крана при любых температурных и метеорологических условиях, при наличии влаги и пыли, сильной вибрации, в широком диапазоне нагрузок. Циклический характер работы обусловливает необходимость рассчитывать крановое электрооборудование на тяжелые повторно-кратковременные режимы при числе включений до 500-600 в час. Схема управления эл.двигателями крана должна исключать: самозапуск эдвигателей после восстановления напряжения в сети. Самозапуск предотвращается нулевой блокировкой контроллеров. Выключатель главных троллейных проводов напряжением до 660 В должен быть закрытого типа и рассчитан на отключение рабочего тока всех кранов, установленных в одном пролете. Выключатель должен быть размещен в доступном месте и отключать троллейные провода только одного пролета

Особенности работы кранового оборудования: изменение нагрузки в широких пределах; режим работы повторно-кратковременный при большом числе включений в час; условия работы тяжелые (тряска, влажность, запыленность и колебания температуры).

Требования, предъявляемая к электрооборудованию лифтов.

Современный лифт является сложным эл.техническим автоматизированным устройством. Он относится к машинам повышенной опасности. Поэтому лифты должны быть спроектированы, изготовлены, смонтированы и введены в эксплуатацию, в соответствии с требованиями «Правил устройства и безопасной эксплуатации лифтов».

Наряду с общими требованиями в отношении надежности и безопасности работы, лифты должны удовлетворять еще и следующим специфическим требованиям: а ) точности остановки кабины на заданном этаже; б ) ограничения величин ускорения и замедления; в ) бесшумности в работе и отсутствия помех радиоприему.

Исполнение электрооборудования (IP, IM, IC).

Класс защиты IP степень защиты от проникновения твердых тел и жидкости, определяется кодом, который имеет вид IP XX, где ХХ - две цифры, первая из которых определяет степень механической защиты: от 0 до 6. Вторая цифра обозначает степень влагозащищенности оборудования: от 0 до 8.

Конструктивное исполнение эл.двигателей по способу монтажа (IM).

1-ая цифра обозначает группу по способу монтажа от 1до 9, наиболее распространена IM1- на лапах и с подшипниковыми щитами. IM2 – на лапах с двумя подшипниковыми щитами и фланцами. IM3 – без лап с фланцами на щитах.

2-ая цифра обозначает более детально 0 – обычные или приподнятые лапы

3-ая цифра обозначает характер направления конца вала

4-ая цифра обозначает исполнение конца вала (цилиндрический или конический)

Способ охлаждения эл.двигателей (IC) . Система охлаждения может включать в себя одну или две цепи циркулярного хладореагента.

Для каждой цепи циркуляций вводится группа знаков. Буква обозначает вид охлаждения: А – воздух, W – вода. 1-ая цифра от 0 до 9 обозначает устройство цепи циркуляции. 0 – свободная циркуляция. 2-ая цифра от 0 до 9 обозначает способ перемещения хладореагента. 0 – свободная циркуляция.

Световые свойства материалов: отражение, поглощение, пропускание света. Методы и свойства измерения световых величин.

Световой поток представляет собой видимую часть спектра электромагнитных излучений. Световой поток Р, падающий на материал, претерпевает ряд изменений: часть его Рр отражается от поверхности, часть Ра поглощается и часть Рх проходит через него.

Основными характеристиками световых свойств материалов служат коэффициенты: отражения Кр, поглощения Ка и пропускания Кт. Эти коэффициенты представляют собой отношение соответственно отраженного Рр, поглощенного Ра и пропущенного Рх потоков излучения к падающему потоку:

Кр = Рр/Р; Ка = Pа/P, Кх = Pх/P.

1) Визуальный метод (приемник - глаз). Основа метода – свойства глаза точно фиксировать равенство яркостей световых потоков.

2) Физический (приемник – фотоэлемент). Основа метода – использование фотоэлементов, преобразующих поглощенную энергию в электрическую, химическую, тепловую. Для световых измерений используют эталоны световых величин:

1) Первичный эталон – государственный эталон силы света (Кс).

2) Вторичный эталон – обладает устойчивыми и воспроизводимыми характеристиками, сила света которого определяется прямым сравнением с первичным эталоном.

3) Рабочий эталон – предназначен для текущих световых измерений, проходит периодическую проверку со вторичным эталоном. Эти эталоны хранятся в метрологическом учреждении.

ФОТР/Ф + ФПОГЛ/Ф + ФПРОП/Ф.

Световые свойства тел

Световой поток, падающий на тело, этим телом частично отражается, частично поглощается, преобразуясь в другие виды энергии, и частично пропускается (в случае просвечивающего тела). Количественно отражение, поглощение и пропускание светового потока телом оцениваются соответствующими коэффициентами.

Коэффициент отражения ρ Ф ρ , отраженного телом, к световому потоку Ф , падающему на него:

ρ = Ф ρ /Ф .

Коэффициент поглощения α равен отношению светового потока Ф α , поглощенного телом, к световому потоку Ф , падающему на него:

α = Ф α /Ф .

Коэффициент пропускания τ равен отношению светового потока Ф τ , прошедшего сквозь тело, к световому потоку Ф , падающему на него:

τ = Ф τ /Ф .

Ф = Ф ОТР + Ф ПОГЛ + Ф ПРОП.

Разделив все члены этого уравнения на Ф , получим:

r + a + t = 1.

Все эти коэффициенты являются функциями длины волны. Так, разные длины волн тело будет отражать в разной степени. Для характеристики этого свойства используется спектральный коэффициент отражения r λ .

По характеру распределения отраженного или пропущенного световых потоков в пространстве принято различать:

Направленное отражение под­чиняется известным законам физики:

Отраженный луч находится в одной плоскости с падающим лучом и перпендикуляром к отражающей поверхности в точке падения;

Угол отражения равен углу падения.

Зеркальным отражением обладают тела, имеющие такую чистоту обработки поверхности, что размеры шероховатостей на ней меньше длины волны падающего излучения;

2) рассеянное (диффузное) отражение (пропускание) (рис. 14).

Поверхность с таким отражением (пропусканием) кажется равно яркой во всех направлениях. Телесный угол, в котором распространяется световой поток, равен 2π.

ЯркостьL a = I a /S 1 cos a не будет зависеть от углаα, еслисила света по различным направлениям подчиняется закону косинуса:

I a = I 0 cos a .

ТогдаL a = I 0 /S 1 – постоянна. КСС представляет собой окружность, а фотометрическое тело – шар, лежащий на плоскости.

Светильники, обладающие диффузным отражением, называют косинусными.

Рассеянным отражением обладают тела, имеющие такие размеры шероховатостей на поверхности, которые значительно больше длины волны падающего излучения. К ним относятся уголь, чистый снег, неглазурованный фарфор, гипс, клеевая краска;

В природе нет тел, обладающих идеальными (зеркальным или рассеянным) отражениями. Реальные тела лишь в большей или меньшей степени приближаются к ним, обладая направленно-рассеянным отражением (пропусканием). При направленно-рассеянном отражении (травленые металлические поверхности, эмали, лакированные покрытия) световой поток отражается преимущественно в направлениях, примыкающих к направлению зеркального отражения. В случае направленно-рассеянного пропускания (матированные стекла) прошедший через тело световой поток распространяется пре­и­му­щест­венно в направлениях, близких к направлению падающего света.


Условия видимости объектов

То, как человек различает объекты, зависит от основных зрительных функций глаза. Различают три основные зрительные функции .

1. Контрастная чувствительность глаза – способность глаза человека различать объекты, имеющие разную яркость.

Эта зрительная функция определяется значениями пороговой раз­ности яркостей и коэффициентом видимости. Рассмотрим их подробнее.

Важнейшим фактором, влияющим на способность человека различать объекты, является контраст K объекта с фоном :

K = ôL об – L ф ô/L ф = DL/L ф,

где L об – яркость объекта;

L ф – яркость фона, на котором расположен объект.

Пороговая разность яркости – та минимальная разность яркости DL порог объекта и фона, которую способен различить глаз человека:

DL порОг = ôL об -L ф ô min = DL min .

Пороговый контраст (яркостный порог) – минимальный контраст, который способен различить глаз:

К порОг = DL порог /L ф .

Пороговый контраст не является постоянной величиной – он зависит от яркости фона (рис. 16) и увеличивается, если она мала (до 7 кд/м 2) или слишком велика (более 700 кд/м 2). В зоне наилучшей видимости (яркость фона от 7 до 700 кд/м 2) пороговый контраст не превышает 0,02.

Косвенным доказательством этого факта является то, что читать текст на белой бумаге значительно легче, чем на серой.

В абсолютной темноте человек способен различать объекты с яркостью 10 –6 кд/м 2 .

Формулу определения контраста объекта с фоном можно преобразовать, используя понятие пороговой разности яркости:

К = ôL об – L ф ô/L ф = u DL порог /L ф = u К порог ,

гдеu – количество пороговых разностей яркостей, укладывающихся между L об и L ф.

Коэффициент видимости u – отношение реального контраста к пороговому – показывает, сколько ступеней DL порог лежит между яркостями объекта и фона:

u = К/К ПОРОГ .

Чем больше u , тем лучше наблюдатель различает объект.

Блескостью называется свой­­ство ярких тел резко увеличивать пороговую разность яркости при попадании их в поле зрения наблюдателя. Принято различать прямую и отражённую блескость.

Ослеплённость – это состояние глаза под воздействием блескости.

2 . Острота зрения харак­те­ри­зует способность глаза раз­личать близко распо­ло­жен­ные объекты как раздельные.

Разрешающая способность глаза (величина обратная остроте) – отношение расстояния между двумя близко расположенными объектами, которые способен различать глаз, к расстоянию от них до глаза. У человека с нормальным зрением разрешающая способность глаз равна примерно 1/3500, что соответствует угловому размеру прост­ранства между объектами примерно в одну минуту. При хорошем освещении чело­век может отличать объекты с угло­выми размерами до 0,7…0,8 минут. Пороговый контраст тоже зависит от уг­ло­вых размеров объекта, умень­шаясь при их увеличении.

Острота зрения сущест­венно зависит от яркости фона и контраста объекта с фоном (рис. 17), увеличиваясь с их ростом. Особенно заметное снижение остроты зрения наблюдается при переходе от яр­костей фона 500 – 700 кд/м 2 к малым яркостям (доли кд/м 2).

3. Быстрота (скорость) различения объекта зависит от его освещенности. Она во многом определяет производительность труда. Это подтверждено проводившимися опытами по определению скорости чтения текста. Ско­рость чтения текста с листа бумаги при изменении осве­щенности от 20 до 100 лк увеличивается на 20 %; от 100 до 200 лк – еще на 9 %, и будет продолжать понемногу расти при росте освещенности до 1000 лк. Этот процесс сопровождается также уменьшением утомляемости зрения.

Скорость зрительного восприятия численно харак­те­ри­зуют значениями, обратными минимальным длительностям различения рассматриваемого объекта (рис. 18).

Подводя итог, следует подчеркнуть, что главными условиями, обеспечивающими близкое к оптимальному различение объектов, являются обеспечение оптимальной освещённости, создание высокого контраста объекта с фоном, желательно наибольшая светлота фона, увеличение угловых размеров объектов.

Цветовые свойства тел и восприятие цвета

Большинство реальных объектов является селективными отражателями, они по-разному отражают разные длины волн, т.е. их коэффициент отражения r(λ) является функцией длины волны, и его можно назвать спектральным коэффициентом отражения.

Восприятие цвета поверхности зависит от двух факторов:

‑ спектрального состава падающего на объект потока излучения;

‑ спектрального коэффициента отражения объекта.

Это можно наглядно проиллюстрировать конкретным примером (рис. 19) , в котором все графики построены в относительных единицах по отношению к их значениям при длине волны 555 нм. Перемножая ординаты двух кривых – спектрального коэффициента отражения поверхности (кривая 1) и относительной спектральной плотности потока излучения падающего дневного света (кривая 2) можно получить кривую 3 относительной спектральной плотности светового потока отражённого дневного света. Максимум отражённого излучения при этом лежит в голубой части спектра. Если на поверхность падает поток излучения лампы накаливания (кривая 4), то спектральный состав отражённого потока (кривая 5) будет отличаться от того состава отраженного света, который получается при освещении поверхности естественным дневным светом. Максимум отражённого излучения переместился в зелёную область спектра.

При изменении спектрального состава падающего излучения и при изменении отражающих свойств поверхности восприятие цвета будет разным , так как разными будут кривые, характеризующие отраженный данным объектом поток. При освещении лампой накаливания будет наблюдаться следующее изменение цветов по сравнению с естественным (дневным) светом: оранжевые цвета краснеют, голубые – зеленеют, синие и фиолетовые несколько краснеют и значительно темнеют.

Цветопередача – понятие, характеризующее восприятие цветных объектов человеком при освещении этих объектов различными источниками света, спектральный состав излучения которых не совпадает со спектром излучения эталонного источника.

Цветопередача тем лучше, чем ближе восприятие цвета объекта к восприятию, обеспечиваемому освещением его эталонным (опорным) источником света.

Индекс цветопередачи R – количественная характеристика, устанавливающая соответствие между цветопередачами, обеспечиваемыми реальным и эталонным источниками света. Международное обозначение индекса цветопередачи – CRI (Color Rendering Index).

Для ЛН в качестве эталонного источника используется абсолютно чёрное тело (АЧТ), а для разрядных ламп – так называемый эталонный источник D65 (аналог облачного неба). Индекс цветопередачи может принимать значения от 1 (наихудшая цветопередача) до 100 (наилучшая).

Определяется индекс цветопередачи путём сопоставления цвета восьми эталонных образцов (красного, синего, жёлтого, зелёного, цвета кожи человека, цвета листвы и т.д.). Для каждого из этих цветов находятся частные индексы, а их арифметическое усреднение даёт индекс общий .

Максимальный индекс цветопередачи равный 100 – у эталонного источника. Если R ≥ 85, то считается, что цветопередача высокая, если менее 70 – низкая.

В технических каталогах на производимые источники света (ИС) часто указывается группа цветопередачи : группе 1А соответствует R = 90…100, группе 1В – от 80 до 89, группе 2А – от 70…79, группе 2В – от 60 до 69, наконец группе 3 соответствуют индексы цветопередачи от 40 до 59.

Все излучения можно разделить на 2 группы:

1) хроматические – имеют цветовой оттенок;

2) ахроматические (серые) цветового оттенка не имеют, крайними в ряду ахроматических излучений являются белый и черный.

Ахроматические цвета в спектре отсутствуют. Они присущи телам, неизбирательно отражающим падающие излучения. Их можно получить при смешивании в разных пропорциях белого и чёрного. Эти цвета нельзя характеризовать какой-либо длиной волны – они отличаются друг от друга только количественно, т.е. яркостью. Тела, которые не излучают и не отражают свет, выглядят чёрными (чёрная бархатная бумага). Из бесконечного числа серых цветов (от белого до чёрного) глаз способен различать примерно триста.

Для характеристики хроматических излучений используются одна количественная (яркость) и две качественные характеристики:

1) цветовой тон – характеризуется длиной волны хроматического излучения, к которому необходимо добавить белый свет, чтобы получить данный цвет излучения.

2) чистота (насыщенность) цвета характеризует степень разбавления хроматического излучения белым светом.

Спектральные цвета, получающиеся при разложении света призмой, имеют чистоту 100 %, ахроматические – 0 %. Например, излучение ртутной лампы высокого давления имеет цветовой тон 489 нм и чистоту цвета 28 %, т.е. для получения цвета, совпадающего с цветом излучения этой лампы, надо смешать 28 % излучения длиной волны 489 нм и 72 % белого.

Сочетание цветового тона и чистоты цвета называется цветностью.

Для полной характеристики цвета надо знать не только цветность, но и яркость . Так, розовый цвет при малой яркости представляется как бордо, жёлтый – как коричневый, голубой – как синий.

1.7. Световые свойства тел

Длительное воздействие даже самых легких раздражителей на глаз человека, как показали исследования, вызывает в нем функциональные сдвиги и изменения. К числу раздражителей, постоянно находящихся в поле зрения человека, относятся световые и цветовые потоки, отражающиеся от стен и потолков производственных, бытовых помещений и оборудования.

Количественное и качественное влияние указанных раздражителей зависит главным образом от световых свойств тел, расположенных в поле зрения человека, а также от осветительных установок, создающих освещение. К световым свойствам тел относятся свойства: отражать, поглощать и пропускать падающий на них световой поток; перераспределять отраженный или прошедший через них световой поток; изменять спектральный состав падающего на них светового потока при его отражении или пропускании.

Все окружающие нас тела и предметы независимо от их состояния - твердого, жидкого или газообразного - разделяются на прозрачные и непрозрачные.

Прозрачными называются такие тела, через которые проходит большая часть световых лучей, таковы, например, стекло, вода, воздух и др. Непрозрачными называются тела и предметы, которые не пропускают видимого света. Однако резко разграничить все тела на прозрачные и непрозрачные нельзя. Все тела в большей или меньшей степени поглощают или пропускают свет. Есть тела, которые занимают промежуточное место. Они пропускают свет, но ясно видеть предметы через них нельзя. Такие тела называются просвечивающими . К ним относятся, например, матовое стекло, промасленная бумага и др.

Когда световой поток (свет) падает на прозрачные тела, часть его проходит сквозь тело, часть поглощается им, а остальная часть отражается от него. Когда же световой поток падает на непрозрачное тело, имеет место только поглощение и отражение света. Падающий на тело световой поток в большинстве случаев распределяется на три части: часть светового потока, падающего на тело, отражается последним и называется отраженным световым потоком Ф отр, часть пропускается им и называется прошедшим потоком Ф прош и та часть, которая поглощается, называется поглощенным потоком Ф погл. В соответствии с законом сохранения энергии их сумма всегда равна полному падающему на тело световому потоку

Ф пад =Ф отр +Ф погл +Ф прош.

Свойства разных тел отражать, пропускать и поглощать свет характеризуются коэффициентами отражения , поглощения а и пропускания τ. Характер распределения отраженного светового потока зависит от качества обработки (структуры) самой отражающей поверхности. Чем больше коэффициент отражения тела, тем более светлым кажется оно нам и, наоборот, чем меньше коэффициент отражения, тем более темным становится его цвет. В зависимости от характера пространственного распределения отраженного телом светового потока различают зеркальное, диффузное (равномерно диффузное) и смешанное отражение.

Зеркальное отражение (рис. 1.16, а ) получается при отражении света зеркальными поверхностями, размеры неровностей которых очень малы по сравнению с длиной волны падающего на них света, т. е. хорошо обработанными полированными поверхностями. Для зеркального отражения справедлив закон равенства угла падения лучей углу их отражения, причем падающий и отраженный лучи лежат в одной плоскости с перпендикуляром, восстановленным в точке падения света. Кроме того, зеркальное отражение характеризуется тем, что телесный угол падающего потока равен телесному углу отраженного светового потока.

Коэффициенты зеркального отражения некоторых материалов в процентах приведены ниже.


Яркость изображения предмета в зеркале равна яркости предмета, умноженной на коэффициент отражения зеркала. Тела с совершенно гладкой поверхностью отражают свет в одном направлении, с которого они кажутся очень яркими - блестят. С других направлений эти тела кажутся темными. Такие тела называют блестящими . При наличии в поле зрения поверхностей с зеркальным отражением необходимо принимать меры к защите глаз от отраженной блескости.

Диффузное отражение характеризуется тем, что телесный угол, в котором заключен падающий световой поток, меньше телесного угла, в котором он распространяется после отражения. Тела с шероховатой, негладкой поверхностью отражают свет диффузно (в разных направлениях). Свет, падающий на такое тело в одном направлении, падает на различные ничтожно малые площадки его поверхности под различными углами. От каждой точки поверхности свет отражается по тому же закону, но поскольку углы падения света на разные участки (площадки) поверхности тела в данном случае различны, постольку и отражается свет в разные стороны. Шероховатая поверхность специально выделывается при выработке материала. Шероховатость может быть точечной, сетчатой или линейной (рифленой).

Поверхности, диффузно отражающие свет, с разных направлений кажутся одинаково яркими. Они не имеют бликов, не блестят, их называют матовыми . Если матовую бумагу потереть кисточкой или ногтем, она начнет блестеть, потому что при натирании сглаживаются неровности ее поверхности. Помимо блестящих и матовых, выделяют еще группу глянцевых поверхностей, занимающих промежуточное положение между блестящими и матовыми. Различают два вида диффузного отражения - равномерно-диффузное и направленно-диффузное.

Равномерно-диффузное отражение характеризуется распространением отраженного светового потока в телесном угле, равном 2π, расположенном по одну сторону от отражающей этот поток поверхности (рис. 1.16, б ). Распределение отраженной силы света I α от таких поверхностей имеет форму сферы, касательной к поверхности в точке падения луча. В этом случае сила света по нормали к отражающей поверхности в точке падения луча имеет наибольшее значение I max , а во всех направлениях убывает пропорционально косинусу угла а между направлением наибольшей силы света и силой света в данном направлении

I α =I max cosα

Это соотношение называется законом косинуса.

Как видно из рис. 1.16, б , распределение отраженного потока от равномерно-диффузных поверхностей не зависит от направления падающего потока.

Яркость равномерно-диффузной поверхности одинакова во всех направлениях. Тела, имеющие одинаковую яркость по всем направлениям, а также для каждого участка поверхности излучающего тела называются равно-яркими излучателями. К числу таких излучателей относятся матовые отражающие поверхности (алебастр, ватманская бумага, белая клеевая покраска, молочные рассеивающие стекла и т. д.).

Световой поток, излучаемый равномерно-диффузной поверхностью, равен произведению силы света в перпендикулярном направлении на число π

Это выражение устанавливает связь между световым потоком и максимальной силой света, излучаемыми равномерно- диффузными поверхностями. Для равномерно-диффузных поверхностей коэффициент отражения

Ф отр /Ф пад =πI max /Ф пад =πLS/(ES)=πL/E,

где L - яркость поверхности, кд/м 2 ; E - освещенность поверхности, лк.

Отсюда можно получить соотношение, связывающее яркость и освещенность диффузных поверхностей,

Абсолютно белой рассеивающей поверхностью называется поверхность, обладающая равномерно-диффузным отражением и имеющая коэффициент отражения, равный единице. Для этой поверхности предыдущее выражение принимает вид

К материалам с равномерно-диффузным отражением относятся окись магния (=96%), алебастр (=92%), белая клеевая краска (=80%) и др. Только белые поверхности обладают способностью отражать падающие на них лучи одинаково для всех длин волн.

При освещении белой поверхности (сернокислый барий, ватманская бумага, снег) белым светом она кажется нам белой. При освещении белой поверхности цветным световым потоком она будет казаться того же цвета, что и падающий на поверхность световой поток.

При направленно-диффузном отражении происходит концентрация отраженного светового потока в некотором телесном угле, направление оси которого определяется законами зеркального отражения. Направленно-диффузным отражением обладают матированные поверхности металлов: матовое серебрение (=71÷75%), матовый алюминий (=55÷60%) и т. д.

Любая поверхность видна потому, что она отражает световой поток в направлении к глазу наблюдателя. Чтобы характеризовать распределение в пространстве отраженного от поверхности светового потока, пользуются понятием коэффициента яркости. Под коэффициентом яркости β понимается отношение истинной яркости поверхности L в заданном направлении к яркости равномерно-диффузной поверхности L 0 в случае, когда на указанные поверхности падает один и тот же световой поток

β=L/L 0 =L π /E

Если для поверхности известны ее освещенность и коэффициент яркости в данном направлении, яркость поверхности в этом направлении определяется

L=βL 0 =βE/π. (1.4)

Кривые коэффициентов яркости измеряются для различных поверхностей при разных углах падения света и по ним с помощью формулы (1.4) определяют яркость поверхности в том или ином направлении для заданных условий.

Смешанное отражение характеризуется наличием зеркального и диффузного отражений одновременно (рис. 1.16, в ). К материалам, обладающим смешанным отражением, относятся, например, фарфоровая эмаль, имеющая коэффициент рассеянного отражения =55÷60% и коэффициент направленного отражения =5÷6%, молочное стекло, имеющее соответственно =30÷60% и =5÷6%. При увеличении угла падения света на эмаль возрастает коэффициент направленного отражения. Ниже приведены коэффициенты отражения некоторых облицовочных материалов и красок в процентах.


Коэффициенты отражения даны для белого света. Коэффициенты отражения для красок не являются постоянными, поскольку они зависят от состава, количества нанесенных слоев и т. д. Они дают некоторое представление об отражающей способности красок.

Учитывая чувствительность глаза, следует отметить, что зеленые и желтые краски светлее, чем красные и фиолетовые.

При прочих равных условиях на практике в красную, фиолетовую и голубую краски нужно добавить больше белой краски, чем в зеленую и желтую, для того чтобы их коэффициенты отражения уравнялись. Напротив, добавление небольшого количества красной краски в белую дает ярко-розовый цвет, тогда как то же количество желтой лишь чуть изменит оттенок белой.

Коэффициенты отражения различных материалов зависят в большой мере от состава спектра падающего светового потока. Если на тело, которое неодинаково отражает свет разных длин волн, падает белый свет, то после отражения соотношение между излучениями этих длин волн изменится и тело будет иметь цвет, соответствующий его физическим свойствам. Коэффициенты отражения каких-либо поверхностей для однородных монохроматических световых потоков называются спектральными коэффициентами отражения .

Если построить в системе прямоугольных координат график, в котором по оси ординат откладывать значения спектральных коэффициентов отражения (λ), а по оси абсцисс - длины волн λ, мы получим зависимости спектральных коэффициентов отражения от длины волны. Эти зависимости обозначаются (λ)=f (λ) и называются спектральными характеристиками отражения. Эти же зависимости, представленные в виде кривых, называются кривыми спектрального отражения . На рис. 1.17 видно, что в спектре отражения пигментов находятся почти все длины волн видимого спектра, однако в разных соотношениях. Например, пигмент кобальта (см. рис. 1.17, а ) имеет в целом синий цвет с длиной волны 482 нм (цвет краски дан над кривой спектрального отражения), но кривая его спектрального отражения проходит в области и других длин волн, в том числе в области красных цветов (λ>620 нм). Аналогично кривая красно-оранжевого пигмента - киновари (см. рис. 1.17, б ) имеет наибольшие значения коэффициентов отражения в красной части спектра, однако она имеет и другие длины волн.

Следовательно, кривые спектрального отражения неоднозначно характеризуют цвет, так как одному и тому же цвету может соответствовать большое количество различных спектров отражения. Когда мы говорим, что поверхность имеет зеленый цвет (при освещении белым светом), то это значит, что данная поверхность отражает преимущественно зеленые лучи и незначительно все остальные лучи, составляющие белый свет. Таким образом, правильнее говорить не о цвете поверхности, а о цвете светового потока, отраженного от поверхности.

Если поверхность отражает световой поток так, что спектральные коэффициенты отражения всех длин волн видимой области спектра одинаковы, это значит, что поверхность неизбирательно (неселективно) отражает световой поток. Такие поверхности не изменяют при отражении света соотношения между излучениями различных длин волн. Для глаза поверхности, обладающие таким свойством, представляются лишенными цветового тона, а именно белыми или серыми. Если же отражение поверхностью неодинаково для различных длин волн видимой области спектра, то такое отражение является избирательным , т. е. некоторые монохроматические лучи отражаются больше, чем другие. Если, например, какое-нибудь вещество отражает только красные лучи, а все остальные поглощает, то при освещении белым светом оно, естественно, будет казаться насыщенно-красным. Точно так же вещество, отражающее только зеленые лучи, будет зеленым, отражающее синие лучи, - синим и т. д.

На практике вещества, которые отражали бы только один определенный участок спектра и полностью поглощали бы все остальные, не существуют. При отражении чаще всего в какой-то мере отражаются все лучи спектра. Однако при получении достаточно насыщенной окраски совсем не обязательно иметь изолированные лучи узкого участка спектра. Нужно, чтобы в некоторой части спектра отражение было несколько больше, чем в остальных. Поверхность, окрашенная киноварью и освещенная белым солнечным светом, представляется красной, потому что она хорошо отражает красные, оранжевые, желтые лучи и плохо все остальные (см. рис. 1.17, б ).

Цвет отраженного предмета тем насыщеннее, чем больше разница в отражении лучей разных частей спектра и чем уже область сильного отражения.

Поверхности, которые неодинаково отражают свет разных длин волн и имеют при освещении белым светом ту или иную окраску, соответствующую их физическим свойствам, называются цветными .

Способность тела пропускать падающий на него световой поток характеризуется коэффициентом пропускания

τ=Ф прош /Ф пад,

где Ф прош - прошедший световой поток; Ф пад - падающий световой поток.

Способность тела поглощать падающий на него световой поток характеризуется коэффициентом поглощения а

α=Ф погл /Ф пад,

где Ф погл - поглощенный телом световой поток.

В табл. 1.6 приведены коэффициенты отражения, пропускания и поглощения некоторых материалов.

Из сказанного ранее следует, что падающий световой поток Ф пад может быть выражен

Ф пад =Ф отр +Ф прош +Ф погл =Ф пад =(+τ+α)Ф пад,

откуда получим, что +τ+α=1, т. е. сумма коэффициентов отражения, пропускания и поглощения для любых тел и сред равна единице.

Коэффициенты пропускания и поглощения обычно даются для среды на единицу длины. Зная коэффициент пропускания на единицу длины, можно определить коэффициент пропускания среды для какого-то слоя толщиной d . Предположим, что надо определить коэффициент пропускания стекла толщиной d =4 мм при τ=0,9 на 1 мм. Если начально падающий световой поток обозначить Ф 0 , то на расстоянии 1 мм его величина уменьшается до 0,9 Ф 0 . На протяжении второго миллиметра ослабление света будет иметь такую же величину. В результате на расстоянии 2 мм прошедший световой поток:

0,9·0,9Ф 0 =0,81Ф 0

на расстоянии 4 мм

0,9 4 Ф 0 = 0,66Ф 0 .

В общем случае ослабление падающего светового потока при коэффициенте пропускания на единицу длины τ 1 и при толщине слоя d , мм, определяется τ=τ d 1 .

Аналогично рассчитываются коэффициенты отражения и поглощения.

Видимый цвет окрашенного тела, освещенного белым светом и наблюдаемого в диффузно-отраженном свете, зависит от отражательной способности поверхности тела и поглощения светового потока при проникновении света внутрь тела через окрашенную пленку. Свет в действительности проникает более или менее глубоко внутрь окрашенного вещества, прежде чем вернуться в наш глаз. Для примера рассмотрим тонкую стеклянную окрашенную пластинку, положив ее на лист белой бумаги. Ее цвет будет почти такой же, как если бы мы рассматривали в два раза более толстую пластинку в проходящем свете. Чем толще окрашенный слой тела, в который проникает свет, или чем больше концентрация красящего вещества, тем нагляднее получается окраска, отраженный свет становится все более насыщенным, а интенсивность его становится все меньше и меньше. В этом случае даже длина волны отраженного света может измениться.

Так, с увеличением концентрации раствора двухромокислого калия его цвет меняется с желтого до оранжевого. Это явление встречается довольно часто. Объясняется оно следующим: пусть на стеклянную цветную пластинку, имеющую при определенной толщине коэффициент пропускания 0,1 для красного света и 0,5 для зеленого, падает световой поток. При увеличении толщины стекла в два раза коэффициенты пропускания для красного и зеленого света составят соответственно 0,01 и 0,25. Если падающий свет белый, прошедший свет при удвоенной толщине пластинки будет гораздо зеленее, чем при одинарной толщине, так как удвоенная толщина пластинки относительно больше пропускает зеленого света, чем красного.

Коэффициенты отражения и поглощения света поверхностей в помещениях имеют существенное значение: они могут изменить впечатление об их геометрических размерах и освещенности.

Все тела по характеру распределения в пространстве отраженного и пропущенного световых потоков можно разделить на три группы. К первой группе относятся тела с направленным отражением (зеркальные поверхности) или пропусканием (оконное стекло), ко второй группе относятся тела с рассеянным (диффузным) отражением (гипс, мел) или пропусканием (молочное или матовое стекло). К третьей группе относятся тела со смешанным отражением и пропусканием. Зная световые свойства тел, можно выбрать наиболее рациональный материал для изготовления светильников, отделки стен и потолков.

В природе нет ни одного материала, у которого хотя бы один из трех коэффициентов был равен 1. Наибольшее диффузное отражение имеют свежевыпавший снег (1) и химически чистые сернокислый барий и окись магния (0,96). Наиболее зеркальное отражение у чистого полированного серебра (0,92) и у специально обработанного алюминия (0,95).

Величина коэффициента пропускания указывается в справочниках для толщины материала в 1 см. К наиболее прозрачным материалам можно отнести особо чистый кварц и некоторые марки органического стекла, у которых = 0,99 см.

Вещество с коэффициентом поглощения, равным 1, называется «абсолютно черным телом».

рабочая поверхность: Поверхность, на которой непосредственно выполняется работа.

расчетная рабочая поверхность: Условная горизонтальная поверхность, на которой рассчитывают среднюю освещенность при проектировании освещения.

Примечание - Исключая особые случаи, расчетная рабочая поверхность выбирается на расстоянии 0,85 м от пола (при особых случаях 0,7-0,75 м)

6 Расчет освещенностиот светящей линии

4 Конструкция,принцип действия ламп накаливания,галогенных ламп накал.

Лампы накаливания являются типичными теплоизлучателями. Важнейшие свойства лампы накаливания – световая отдача и срок службы – определяются температурой спирали. При повышении температуры спирали возрастает яркость, но вместе с тем и сокращается срок службы. Сокращение срока службы является следствием того, что испарение материала (вольфрама), из которого сделана нить, при высоких температурах происходит быстрее, вследствие чего колба темнеет, а нить накала становится все тоньше и тоньше и в определенный момент расплавляется, после чего лампа выходит из строя. Светоотдача ламп накаливания составляет примерно от 9 до 19 лм/Вт. Далеко от идеальной светоотдачи (683 лм/Вт).

Спектр излучения сплошной, что обеспечивает идеальную цветопередачу. Зажигание происходит моментально.

Рис. 2.2. Конструкция лампы накаливания общего назначения:1 – колба; 2 – спираль; 3 – кручки (держатели); 4 – линза; 5 – штабик; 6 – электроды; 7 – лопатки; 8 – штангель; 9 – цоколь; 10 – изолятор; 11 – нижний контакт. Материалы: а – вольфрам; б – стекло; в – молибден; г – никель; д – медь; ж – цокольная мастика; з – латунь, сталь;и – свинец, олово

Тело накала изготавливается из вольфрамовой проволоки. Вольфрам имеет большую температуру плавления около 3400°С (3600 К), формоустойчив при высокой рабочей температуре, устойчив к механическим нагрузкам, обладает высокой пластичностью в горячем состоянии, что позволяет получить из него нити весьма малых диаметров путем протяжки проволоки через калиброванное отверстие. Нить накала накаляется до температуры 2500…2800°С.

В зависимости от типа ламп вводы могут быть одно-, двух- и трехзвенными. Вводы и держатели являются частью, так называемой ножки. Это стеклянный конструктивный узел лампы, который кроме вводов и держателей включает в себя стеклянный штабик 5 с линзой 4 . Ножка служит опорой для тела накала лампы и в месте с колбой 1 обеспечивает герметизацию лампы.

Для обеспечения нормальной работы раскаленной вольфрамовой нити накала необходимо изолировать ее от кислорода воздуха. Для этого в колбе создается вакуум (такие лампы называются вакуумные) или заполняется инертным газом (аргон, криптон, ксенон с разным содержанием азота или галогенные с добавкой к наполняющему газу определенной доли галогенов, например йода) - газополные лампы.

Достоинства: непосредственное включение в сеть, т.е. для своей работы не требует дополнительных аппаратов;невысокая стоимость; удобство в эксплуатации; относительно небольшие первоначальные затраты на осветительную установку;

большой выбор по конструктивным особенностям;

широкая номенклатура по номинальному напряжению и мощности ламп; стабильность светового потока за срок службы.

Недостатки:малый срок службы (для ламп общего назначения средний срок службы составляет 1000 ч);низкая световая отдача (20 лм/Вт);неэкономичные (более 90% электроэнергии затрачивается на нагрев тела накала и выделяется в виде тепла).

Галогенные лампы По структуре и принципу действия сравнимы с лампами накаливания, но они содержат в газе-наполнителе незначительные добавки галогенов (бром, хлор, фтор, йод) или их соединения. С помощью этих добавок возможно в определенном температурном интервале практически полностью устранить потемнение колбы (вызванное испарением атомов вольфрама нити накала). Поэтому размер колбы в галогенных лампах накаливания может быть сильно уменьшен.

Конструктивно не отличаются от ламп накаливания, но обладают более высоким сроком службы. Между сроком службы и световой отдачей существует прямая зависимость – чем больше светоотдача – тем меньше срок службы. Срок службы увеличен в галогенных лампах за счет иодно-вольфрамового цикла, возвращающего испарившийся вольфрам обратно на спираль.

Принцип действия галогенных ламп заключается в образовании на стенке колбы летучих соединений – галогенидов вольфрама, которые испаряются со стенки, разлагаются на теле накала и возвращают ему, таким образом, испарившиеся атомы вольфрама. В результате увеличивается срок службы ламп. Галогенные лампы по сравнению с обычными лампами накаливания имеют более стабильный световой поток, значительно меньшие размеры, более высокую термостойкость и механическую прочность благодаря применению кварцевой колбы.

В качестве галогенных добавок применяется йод, бром, хлор, фтор. Работа по подбору новых летучих химических соединений галогенов продолжается.

Свет представляет собой видимые глазом электромагнитные волны оптического диапазона длиной 380 - 760 нм, воспринимаемые сетчатой оболочкой зрительного анализатора.

Чувствительность глаза к излучениям различных длин волн неодинакова. Свойства глаза по-разному оценивать одинаковую лучистую мощность различных длин волн видимого спектра называется спектральной чувствительностью глаза.

Глаз лучше всего воспринимает ощущение желто-зеленого цвета, а именно: лучи с длиной волны (λ) = 555 нм. Таким образом, если чувствительность глаза к излучению с длиной волны 555 нм принять за единицу, то чувствительность глаза к излучениям других волн видимого диапазона при одинаковой мощности будет меньше единицы.

Cветовой поток (Ф) - мощность лучистой энергии, оцениваемая по производимому ею зрительному ощущению. Измеряется в люменах (лм).

Единица светового потока - люмен (лм) - световой поток, испускаемый точечным источником в телесном угле (в 1 стерадиан при силе света 1 кандела). Световой поток можно оценивать в пространстве по силе света или на поверхности по освещенности.

Стерадиан (единица телесного угла) - телесный угол, вырезающий на поверхности сферы площадь, равную квадрату ее радиуса.

Кандела (кд) - единица силы света, равная силе света, испускаемого с площади 1/600 000 м 2 сечения полного излучателя в перпендикулярном к этому сечению направлении при температуре затвердевания платины (2042 К) и давлении 101325 н/м 2 .



Сила света - световой поток, распространяющийся внутри телесного угла, равного 1 стерадиану. Единица силы света - кандела (кд).

Освещенность (Е) представляет собой распределение светового потока (Ф) на поверхности площадью S и может быть выражена формулой E = Ф/S.

Единицей измерения освещенности является люкс (лк) - освещенность поверхности площадью 1 м 2 световым потоком в 1 лм (лм/м 2). Освещенность поверхности не зависит от ее световых свойств.

С точки зрения гигиены труда освещенность имеет существенное значение, по ней нормируются условия освещения в производственных помещениях и рассчитываются осветительные установки. В физиологии зрительного восприятия важное значение придается не падающему световому потоку, а уровню яркости освещаемых производственных и других объектов, которая отражается от освещаемой поверхности в направлении глаза. Зрительное восприятие определяется не освещенностью, а яркостью, под которой понимают характеристику светящихся тел, равную отношению силы света в каком-либо направлении к площади проекции светящейся поверхности на плоскость, перпендикулярную к этому направлению. Яркость измеряется в нитах (нт, 1 нт = 10 -4 Кд/см 2). Яркость освещенных поверхностей зависит от их световых свойств, степени освещенности и угла, под которым поверхность рассматривается.

Светимость - величина, полного светового потока, испускаемого единицей поверхности источника света. Светимость измеряется в люменах на квадратный метр (лм/м 2).

Световой поток, падающий на поверхность, частично отражается, поглощается или пропускается сквозь освещаемое тело. Поэтому световые свойства освещаемой поверхности характеризуются не только величиной падающего на нее светового потока, но и коэффициентами отражения ρ, пропускания r и поглощения а, причем во всех случаях ρ + r + а = 1.

Коэффициент отражения (ρ) - отношение отраженного телом светового потока (Ф р) к падающему:

Отражение светового потока поверхностями зависит от их окраски, состояния и строения. Так, коэффициент отражения светлой деревянной поверхности равен 35 - 40 %, чистого побеленного потолка – 75 - 80 %.

Коэффициент пропускания равен отношению светового потока, прошедшего через среду, к падающему.

Коэффициент поглощения равен отношению поглощенного телом светового потока к падающему. Поверхности, яркость которых в отраженном или пропущенном свете одинакова во всех направлениях, называются диффузными. Близки по свойствам к диффузным поверхностям и часто приравниваются к ним в отраженном свете матовые поверхности бумаги, ткани, дерева, необработанные металлы и др.; в проходящем свете - только молочные стекла.



Поделиться