Понятие об устойчивости параллельной работы энергосистем. Динамическая устойчивость энергосистемы

СТАТИЧЕСКАЯ УСТОЙЧИВОСТЬ

электроэнергетической системы - способность электроэнергетической системы восстанавливать исходное состояние (режим) после малых его возмущений. Нарушение С. у. может возникать при передаче больших мощностей через ЛЭП (как правило, протяжённые), при снижении напряжения в узлах нагрузки вследствие дефицита реактивной мощности, при работе генераторов электростанций в режиме недовозбуждения. Осн. меры обеспечения С. у.: увеличение номин. напряжения ЛЭП и снижение их индуктивного сопротивления; автоматическое регулирование возбуждения крупных синхронных машин, применение синхронных компенсаторов, синхронных электродвигателей и статич. компенсаторов реактивной мощности в узлах нагрузки. С. у. может быть повышена также при использовании в энергосистемах генераторов с регулированием возбуждения в продольной и поперечной обмотках ротора.


Большой энциклопедический политехнический словарь . 2004 .

Смотреть что такое "СТАТИЧЕСКАЯ УСТОЙЧИВОСТЬ" в других словарях:

    Характеристика устойчивости летательного аппарата, определяющая его тенденцию к возвращению без вмешательства лётчика в исходное положение равновесия под действием аэродинамического момента (см. Аэродинамические силы и моменты), вызываемого… … Энциклопедия техники

    статическая устойчивость - электрической системы; статическая устойчивость Способность электрической системы возвращаться к исходному режиму (или весьма близкому к нему) после малых возмущений режима …

    статическая устойчивость - statinis stabilumas statusas T sritis automatika atitikmenys: angl. static stability; steady state stability vok. statische Stabilität, f rus. статическая устойчивость, f pranc. stabilité statique, f … Automatikos terminų žodynas

    статическая устойчивость - statinis stabilumas statusas T sritis fizika atitikmenys: angl. static stability vok. statische Stabilität, f rus. статическая устойчивость, f pranc. stabilité statique, f … Fizikos terminų žodynas

    статическая устойчивость Энциклопедия «Авиация»

    статическая устойчивость - статическая устойчивость — характеристика устойчивости летательного аппарата, определяющая его тенденцию к возвращению без вмешательства лётчика в исходное положение равновесия под действием аэродинамического момента (см. Аэродинамические… … Энциклопедия «Авиация»

    статическая устойчивость электрической системы - статическая устойчивость электрической системы; статическая устойчивость Способность электрической системы возвращаться к исходному режиму (или весьма близкому к нему) после малых возмущений режима … Политехнический терминологический толковый словарь

    статическая устойчивость ТКК - статическая устойчивость ТКК: Угол наклона испытательной плоскости, при котором происходит подъем какого либо колеса ТКК над этой плоскостью. Источник: ГОСТ Р 52286 2004: Кресла каталки транспортные реабилитационные. Основные параметры.… …

    Статическая устойчивость энергосистемы - 48. Статическая устойчивость энергосистемы Способность энергосистемы возвращаться к установившемуся режиму после малых его возмущений. Примечание. Под малым возмущением режима энергосистемы понимают такое, при котором изменения параметров… … Словарь-справочник терминов нормативно-технической документации

    English: Energetic system static (resistance) stability Способность энергосистемы возвращаться к установившемуся режиму после малых его возмущений (по ГОСТ 21027 75) Источник: Термины и определения в электроэнергетике. Справочник … Строительный словарь

Книги

  • , В. Пышнов. Аэродинамика самолета. Часть вторая. Равновесие в прямолинейном полете и статическая устойчивость Воспроизведено в оригинальной авторской орфографии издания 1935 года (издательство`ОНТИ…
  • Аэродинамика самолета. Часть вторая. Равновесие в прямолинейном полете и статическая устойчивость , Пышнов В.С. Эта книга будет изготовлена в соответствии с Вашим заказом по технологии Print-on-Demand. Аэродинамика самолета. Часть вторая. Равновесие в прямолинейном полете и статическая устойчивость…

Под динамической устойчивостью понимается способность энергосистемы сохранять синхронную параллельную работу генераторов при значительных внезапных возмущениях, возникающих в энергосистеме (КЗ, аварийное отключение генераторов, линийу трансформаторов).

Для оценки динамической устойчивости применяется метод площадей. В качестве примера рассмотрим режим работы двухцепной электропередачи, связывающей электростанцию с энергосистемой, при КЗ на одной из линий с отключением поврежденной линии и ее успешным АПВ (рис. 10.3,а).

Исходный режим электропередачи характеризуется точкой 1, расположенной на угловой характеристике I, которая соответствует исходной схеме электропередачи (рис. 10.3,б).

Рис. 10.3. Качественный анализ динамической устойчивости при К3 на линии электропередачи: а - схема электропередачи; б - угловые характеристики электропередачи; в - изменение угла во времени

При К3 в точке К1 на линии W2 угловая характеристика электропередачи занимает положение II. Снижение амплитуды характеристики II вызвано значительным увеличением результирующего сопротивления между точками приложения . В момент К3 происходит сброс электрической мощности на величину за счет снижения напряжения на шинах станции (точка 2 на рис. 10.3,б). Сброс электрической мощности зависит от вида К3 и его места. В предельном случае при трехфазном К3 на шинах станции происходит сброс мощности до нуля. Под действием избытка механической мощности турбин над электрической мощностью роторы генераторов станции начинают ускоряться, а угол увеличивается. Процесс изменения мощности идет по характеристике II. Точка 3 соответствует моменту отключения поврежденной линии с двух сторон устройствами релейной защиты РЗ. После отключения линии режим электропередачи характеризуется точкой 4, расположенной на характеристике , которая соответствует схеме электропередачи с одной отключенной линией. За время изменения угла от до роторы генераторов станции приобретают дополнительную кинетическую энергию. Эта энергия пропорциональна площади, ограниченной линией , характеристикой II и ординатами в точках 1 и 3. Эта площадь получила название площадки ускорения . В точке 4 начинается процесс торможения роторов, так как электрическая мощность больше мощности турбин. Но процесс торможения происходит с увеличением угла . Увеличение угла будет продолжаться до тех пор, пока вся запасенная кинетическая энергия не перейдет в потенциальную.

Потенциальная энергия пропорциональна площади, ограниченной линией и угловыми характеристиками послеаварийного режима. Эта площадь получила название площадки торможения . В точке 5 по истечении некоторой паузы после отключения линии W2 срабатывает устройство АПВ (предполагается использование трехфазного быстродействующего АПВ с малой паузой). При успешном АПВ процесс увеличения угла будет продолжаться по характеристике (точка 6), соответствующей исходной схеме электропередачи. Увеличение угла прекратится в точке 7, которая характеризуется равенством площадок . В точке 7 переходный процесс не останавливается: вследствие того что электрическая мощность превышает мощность турбин, будет продолжаться процесс торможения по характеристике , но только с уменьшением, угла. Процесс установится в точке 1 после нескольких колебаний около этой точки. Характер изменения угла 5 во времени показан на рис. 10.3,в.

С целью упрощения анализа мощность турбин во время переходного процесса принята неизменной. В действительности она несколько меняется вследствие действия регуляторов частоты вращения турбин.

Таким образом, анализ показал, что в условиях данного примера сохраняется устойчивость параллельной работы. Необходимым условием динамической устойчивости является выполнение условий статической устойчивости в послеаварийном режиме. В рассмотренном примере это условие выполняется, так как мощность турбин не превышает предела статической устойчивости.

Устойчивость параллельной работы была бы нарушена, если бы в переходном процессе угол перешел значение, соответствующее точке 8. Точка 8 ограничивает справа максимальную площадку торможения. Угол, соответствующий точке 8, получил название критического . При переходе этой границы наблюдается лавинное увеличение угла , т.е. выпадение генераторов из синхронизма.

Запас динамической устойчивости оценивается коэффициентом, равным отношению максимально возможной площадки торможения к площадке ускорения:

При режим устойчив, при происходит нарушение устойчивости.

В случае неуспешного АПВ (включения линии на неустранившееся К3) процесс из точки 5 перейдет на характеристику II. Нетрудно убедиться, что в условиях данного примера устойчивость после повторного К3 и последующего отключения линии не сохраняется.

Устойчивость электрической системы, устойчивость электроэнергетической системы, способность электрической системы (ЭС) восстанавливать исходное (или практически близкое к нему) состояние (режим) после какого-либо его возмущения, проявляющегося в отклонении значений параметров режима ЭС от исходных (начальных) значений. В ЭС источниками электрической энергии обычно являются синхронные генераторы, связанные между собой электрически общей сетью, причём роторы всех генераторов вращаются синхронно; такой режим, называется нормальным, установившимся, должен быть устойчив, т. е. ЭС должна возвращаться в исходное (или практически близкое к нему) состояние всякий раз после отклонений от установившегося режима. Отклонения могут быть связаны, например, с изменением мощности нагрузки, короткими замыканиями, отключениями линий электропередачи и т.п. Устойчивость системы, как правило, уменьшается при увеличении нагрузки (мощности, отдаваемой генераторами) и понижении напряжения (росте мощности потребителей, снижении возбуждения генераторов); для каждой ЭС могут быть определены некоторые предельные (критические) значения этих или связанных с ними величин, характеризующих предел устойчивости. Надёжное функционирование ЭС возможно, если обеспечен определённый запас устойчивости ЭС, т. е. если параметры режима работы и параметры самой ЭС достаточно отличаются от критических. Для обеспечения У. э. с. предусматривают ряд мероприятий, таких, как обеспечение должного запаса устойчивости при проектировании ЭС, использование автоматического регулирования возбуждения генераторов, применение противоаварийной автоматики и т.д.

При анализе У. э. с. различают статическую, динамическую и результирующую устойчивость. Статическая устойчивость характеризует У. э. с. при малых возмущениях, т. е. таких возмущениях, при которых исследуемая ЭС может рассматриваться как линейная. Изучение статической устойчивости проводится на основе общих методов, разработанных А. М. Ляпуновым для решения задач об устойчивости. В инженерной практике исследование У. э. с. иногда проводят упрощённо, ориентируясь на практические критерии устойчивости, определяющие её наличие или отсутствие при некоторых вытекающих из практики допущениях (например, о невозможности т. н. самораскачивания системы, о неизменности частоты электрического тока в системе и др.). При исследовании статической устойчивости применяют цифровые и аналоговые вычислительные машины.



Динамическая устойчивость определяет поведение ЭС после сильных возмущений, возникающих вследствие коротких замыканий, отключении линий электропередач и т. и. При анализе динамической устойчивости (система, как правило, рассматривается как нелинейная) возникает необходимость интегрировать нелинейные трансцендентные уравнения высоких порядков. Для этого применяют аналоговые вычислительные машины и т. н. расчётные модели переменного тока; наиболее часто создают специальные алгоритмы и программы, позволяющие производить расчёты на ЦВМ. Состоятельность составленных программ проверяется сопоставлением результатов расчётов с результатами экспериментов на реальной ЭС либо на физической (динамической) модели ЭС.

Результирующая устойчивость характеризует У. э. с. при нарушении синхронизма части работающих генераторов. Последующее восстановление нормального режима работы происходит при этом без отключения основных элементов ЭС. Расчёты результирующей устойчивости производятся весьма приближённо (из-за их сложности) и имеют целью выявить недопустимые воздействия на оборудование, а также найти комплекс мероприятий, ведущих к ликвидации асинхронного режима работы ЭС.

Статическая У. э. с. может быть повышена в основном использованием сильного регулирования, динамическая – форсированием возбуждения генераторов, быстрым отключением аварийных участков, применением специальных устройств для торможения генераторов, отключением части генераторов и части нагрузки. Повышение результирующей устойчивости, обычно рассматриваемое как повышение живучести ЭС, достигается в первую очередь регулированием мощности, вырабатываемой выпавшими из синхронизма генераторами, и автоматическим отключением части потребителей (автоматической разгрузкой ЭС).

Метод площадей. Рассмотрим в качестве примера переход из нормального в аварийный и послеаварийный режимы простейшей системы, которая содержит генератор, работающий через трансформатор и двухцепную ЛЭП на шины бесконечной мощности (рис. 5.1). Смена состояний рассматриваемой системы представлена на рисунке через угловые характеристики активной мощности. Рабочая точка в нормальном установившемся режиме соответствует координатам (Р 0 , δ 0), отражающим равенство мощности, развиваемой первичным двигателем генератора, и мощности Р=Р m sin δ 0 , передаваемой генератором в сеть со сдвигом на угол δ 0 между эдс Е " и напряжением U. При появлении КЗ происходит сброс передаваемой мощности с Р доав (δ 0) до Р ав (δ 0) (на рисунке рабочий режим переходит из точки а в точку b), вследствие чего появляется избыточная мощность ∆Р ав =Р 0 – Р b , которая вызывает ускорение ротора генератора. Под действием этой избыточной мощности рабочая точка режима перемещается по угловой характеристике Р ав в направлении увеличения угла δ. На рис. 5.1 доаварийная, аварийная и послеаварийная мощности обозначены соответственно Р І ,Р ІІ ,Р ІІІ . . Если отключению повреждённой цепи соответствует угол δ откл, то ротор генератора во время ускорения запасает кинетическую энергию которая соответствует заштрихованной на рис. 5.1 площадке F авсd называемой площадью ускорения . Отключение повреждённого участка цепи электропередачи к возрастанию передаваемой в сеть мощности с Р с до Р е (на угловой характеристике Р Послеав). Так как Р е >Р с, то появляется тормозной момент на роторе генератора, соответствующий мощности ∆Рп. ав (δ)= Р п. ав – Р 0 , где δ >δ откл. Однако угол δ продолжает увеличиваться до тех пор, пока не будет израсходована запасённая во время ускорения кинетическая энергия ротора генератора. Рис. 5. 1. Угловые характеристики мощности для нормального, аварийного и послеаварийного режимов работы системы. Предельное значение энергии для изменения угла δ, равного δ откл – δ кр, определяется выражением Заштрихованная на рисунке площадь F def , называемая площадью торможения, соответствует кинетической и энергии, которая может быть израсходована вращающимся ротором во время торможения. Если рабочая точка режима возвратится в точку а , то говорят, что система динамически устойчива. Это возможно, если энергия ускорения меньше (равна) энергии торможения: А уск <А торм, Вытекающее из сравнения площади F abcd ускорения и площади торможения F def . Предельный угол отключения и предельное время отключения. Математически выражение равенства площадей ускорения и торможения записывается следующим образом: Из равенства (5.1) можно найти предельное по условию сохранения динамической устойчивости значения угла отключения повреждённого участка цепи ЛЭП: Предельное время отключения КЗ t откл.пред. соответствует полученному выше уравнению по предельному углу отключения. Для произвольного момента времени связь этих величин отражается уравнением движения Р т – Р эл =Т j (dω/dt)=T j α, Р т – Р эл =T j (d 2 δ/dt 2), где ω – угловая частота вращения ротора; α – угловое ускорение вращающихся масс. Аналитическое решение его возможно только для частного случая, а именно полного разрыва связи генератора с шинами приёмной системы, когда Р=Р ав (δ)=0, что происходит при трёхфазном КЗ на одной из цепе ЛЭП. При этом уравнение движения упрощается и принимает вид T j (d 2 δ/dt 2)=P 0 . Решение этого уравнения методом последовательного интегрирования при постоянных с 1 =(d δ/ dt) t=0 и с 2 = δ 0 позволяет получить выражение δ=Р 0 /(2Т j t 2)+ δ 0 , (5.3) откуда можно найти значение предельного времени отключения трёхфазного КЗ:

1.1. Понятие статической и динамической устойчивости в электроэнергетических системах

Под устойчивостьюсостояния электрической системы понимается ее способность восстанавливать исходный режим (или достаточно близкий к нему) после воздействия какого-либо возмущения («большого» или «малого»). Процесс нарушения устойчивости в электрических системах всегда связан с ограниченной пропускной способностью ее отдельных элементов - линий связи, трансформаторов и.т.п. Естественно, что при неизменных параметрах электрической системы предел передаваемой мощности зависит от уровней напряжений и потерь передаваемой мощности на сопротивлениях элементов. Нарушения устойчивости в электрических системах происходят в результате воздействия на ее работу возмущающих факторов, которые могут быть «большими» и «малыми». Протекание процесса при этом одинаково и сопровождается в любом случае резким снижением напряжения в узлах системы (возникновением «лавины» напряжения), увеличением тока в ее ветвях, изменением скорости вращения электрических машин. Нарушение устойчивости всегда заканчивается появлением асинхронного хода, связанного с неограниченным изменением скоростей вращения синхронных машин, и часто приводит к «развалу» системы - отключению нагрузки, генераторов станций, к делению системы на несинхронно работающие части. «Малые» возмущения опасны для работы электрических систем в тяжелых режимах, когда по ее элементам протекают потоки мощности, близкие к предельным. Тогда как «большие» возмущения могут вызвать нарушение устойчивости в нормальных режимах. В зависимости от причины, которая привела к нарушению устойчивости, выделяются три се вида: - статическая устойчивость - способность системы сохранять (восстанавливать) исходный (или близкий к нему) режим при действии «малых» возмущений. - динамическая устойчивость - способность системы восстанавливать длительно существующий установившийся режим при «больших» возмущениях. - результирующая устойчивость - способность системы возвращаться в длительно существующий установившийся режим после кратковременного нарушения устойчивости.

Статическая устойчивость синхронного генератора

Оценка статической устойчивости синхронного генератора, включенного на шины энергосистемы (рис.1), может быть выполнена при помощи второго закона Ньютона для вращающегося тела

где M в - вращающий момент на валу энергетического двигателя, кг.м; М с - момент сопротивления (тормозной момент) на валу генератора, кг.м; ω - угловая частота вращения вала агрегата, с -1 ;

Момент инерции, кг.м.с 2 ; GD 2 - маховые массы вращающихся частей, присоединенные к валам энергетического двигателя и генератора, кг.м 2 ; g = 9,81 м/с 2 -ускорение земного притяжения.

1. Схема электропередачи мощности от синхронного генератора в энергосистему и ее схема замещения: Т - турбина; Г - генератор; Т1 - трансформатор подстанции; Л1, Л2 - линии электропередачи; Т2 - трансформатор связи с энергосистемой; ЭС – энергосистема.

Статическая устойчивость синхронного агрегата оценивается при постоянной синхронной частоте вращения, при которой мощности на валу энергетического двигателя и синхронного генератора пропорциональны моментам, а в относительных единицах равны, т. е.

Статическая устойчивость оценивается при относительном движении ротора агрегата, т. е. при перемещении ротора относительно вектора вращающегося электромагнитного поля статора генератора (рис.2), при изменении угла вылета ротора. Скорость его изменения соответствует производной (1.1.2)

При относительном движении ротора генератора уравнение движения (1.1.1) можно представиться в следующем виде:

(1.1.3)


Рис. 2. Принципиальные конструктивные схемы синхронных генераторов: а - неявнополюсный; б - явнополюсный

Это уравнение - уравнение динамического равновесия, ибо при равенстве Р т = Р г угол вылета ротора 0 имеет постоянную величину. Если равенства мощностей нет, то имеет место либо ускорение агрегата при P т > P г , либо замедление при Р т < Р г, т. е. по знаку разности мощностей можно судить о характере движения вала агрегата. Поэтому целесообразно уравнение (1.1.3) использовать в таком виде

(1.1.4)

где ∆Р - избыточная мощность.Характеристика мощности энергетического двигателя в координатах Р, является прямой линией, так как мощность, развиваемая двигателем, не зависит от угла вылета ротора.

Характеристика мощности синхронного генератора в координатах Р, представляется синусоидальной угловой характеристикой (рис. 3), получаемой из векторной диаграммы:

для неявнополюсной машины (турбогенератора)

(1.1.5)

для явнополюсной машины (гидрогенератора)

(1.1.6)

где сопротивления генераторов в продольной и в поперечной осях с учетом сопротивлений схемы замещения (см. рис. 1)

Па рис. 3 показаны характеристики турбины и генератора. Характеристики имеют две точки взаимного пересечения 1 и 2. В соответствии с положением теоретической механики в точках

УСТОЙЧИВОСТЬ ЭНЕРГОСИСТЕМ

Устойчивость энергосистем - способность сохранять синхронизм между электростанциями, или, другими словами, возвращаться к установившемуся режиму после различного рода возмущений.

Связь - последовательность элементов, соединяющих две части энергосистемы. Данная последовательность может включать в себя кроме линий электропередачи трансформаторы, системы (секции) шин, коммутационные аппараты, рассматриваемые как сетевые элементы.

Сечение - совокупность таких сетевых элементов одной или нескольких связей, отключение которых приводит к полному разделению энергосистемы на две изолированные части.

Схема и режим энергосистемы

Исходя из требований к устойчивости, схемы энергосистемы подразделяются на нормальные, когда все сетевые элементы, определяющие устойчивость, находятся в работе, и ремонтные, отличающиеся от нормальной тем, что из-за отключенного состояния одного или нескольких элементов электрической сети (а при эксплуатации - также из-за отключенного состояния устройств противоаварийной автоматики) уменьшен максимально допустимый переток в каком-либо сечении.

Различают установившиеся и переходные режимы энергосистем.

К установившимся относятся режимы, которые характеризуются неизменными параметрами. Медленные изменения режима, связанные с внутрисуточными изменениями электропотребления и генераций, нерегулярными колебаниями мощностей, передаваемых по связям, работой устройств регулирования частоты и активной мощности и т. п., рассматриваются как последовательность установившихся режимов.

К переходным относятся режимы от начального возмущения до окончания вызванных им электромеханических процессов (с учетом первичного регулирования частоты энергосистемы).

При эксплуатации исходя из требований к устойчивости энергосистем перетоки мощности в сечениях в установившихся режимах подразделяются следующим образом:

нормальные (наибольший допустимый переток называется максимально допустимым);

вынужденные (наибольший допустимый переток называется аварийно допустимым).

Вынужденные перетоки допускаются для предотвращения или уменьшения ограничений потребителей, потери гидроресурсов, при необходимости строгой экономии отдельных видов энергоресурсов, неблагоприятном наложении плановых и аварийных ремонтов ос­новного оборудования электростанций и сети, а также в режимах минимума нагрузки при невозможности уменьшения перетока из-за недостаточной маневренности АЭС (кроме сечений, примыкающих к АЭС).

При проектировании перетоки мощности в сечениях при установившихся режимах подразделяются следующим образом:

нормальные (наибольший допустимый переток называется максимально допустимым),

утяжеленные.

Утяжеленным считается переток, характеризующийся неблаго приятным наложением ремонтов основного оборудования электростанций в режимах максимальных и минимальных нагрузок, если общая продолжительность существования таких режимов в течение года не превышает 10 %.

Наиболее тяжелые возмущения, которые учитываются в требованиях к устойчивости энергосистем, называемые нормативными возмущениями, подразделены на три группы: I, II и III. В состав групп входят следующие возмущения:

а) короткое замыкание (КЗ) с отключением элемента(ов) сети.

Таблица 1. Распределение по группам возмущений

Возмущения

Группы нормативных возмуще­ний в сетях с ном. напряжением, кВ

КЗ на сетевом элементе, кроме системы (секции) шин

Отключение сетевого элемента основ­ными защитами при однофазном КЗ с успешным АПВ (для сетей 330 кВ и выше - ОАПВ, 110-220 кВ - ТАПВ)

То же, но с неуспешным АПВ* 2

Отключение сетевого элемента основ­ными защитами при трехфазном КЗ с успешным и неуспешным АПВ* 2

Отключение сетевого элемента резерв ными защитами при однофазном КЗ с успешным и неуспешным АПВ* 2

Отключение сетевого элемента основ ными защитами при двухфазном КЗ на землю с неуспешным АПВ* 2

Отключение сетевого элемента действи­ем УРОВ при однофазном КЗ с отказом одного выключателя* 4

То же, но при двухфазном КЗ на землю

То же, но при трехфазном КЗ

КЗ на системе (секции) шин

Отключение СШ с однофазным КЗ, не связанное с разрывом связей между узлами сети

То же, но с разрывом связей

Примечание. Расчетная длительность КЗ принимается по верхней границе фактических значений. При проектировании должны приниматься меры, обеспечивающие при работе основной защиты длительности КЗ, не превышающие следующих значений:

Номинальное напряжение, кВ 110 220 330 500 750 1150

Время отключения КЗ, с 0,18 0,16 0,14 0,12 0,10 0,08

б) скачкообразный аварийный небаланс активной мощности по любым причинам: отключение генератора или блока генераторов с общим выключателем, крупной подстанции, вставки постоянного тока (ВПТ) или крупного потребителя и др.

Таблица 2. Распределение небалансов по группам возмущений

Кроме того, в группу III включаются следующие возмущения:

в) одновременное отключение двух ВЛ , расположенных в общем коридоре более чем на половине длины более короткой линии, в результате возмущения группы I в соответствии с табл. 1;

г) возмущения групп I и II с отключением элемента сети или генератора , которые вследствие ремонта одного из выключателей приводят к отключению другого элемента сети или генератора, подключенных к тому же распредустройству.

Коэффициент запаса устойчивости по активной мощности

Коэффициент запаса статической (апериодической) устойчивости активной мощности в сечении K р вычисляется по формуле:

где Р пр - предельный по апериодической статической устойчивости переток активной мощности в рассматриваемом сечении;

Р-переток в сечении в рассматриваемом режиме, Р > 0;

∆Р нк - амплитуда нерегулярных колебаний активной мощности в этом сечении (принимается, что под действием нерегуляр­ных колебаний переток изменяется в диапазоне Р ± ∆Рнк).

Запас устойчивости по активной мощности может быть задан также в именованных единицах, ∆Рзап = Рпр - (Р + ∆Рнк).

Значение амплитуды нерегулярных колебаний активной мощно­сти устанавливается для каждого сечения энергосистемы (в том чис­ле частичного) по данным измерений. При отсутствии таких данных расчетная амплитуда нерегулярных колебаний активной мощности сечения может быть определена по выражению:

где Р н1 , Р н2 - суммарные мощности нагрузки с каждой из сторон рас­сматриваемого сечения, МВт;

коэффициент К принимается равным 1,5 при ручном регулиро­вании и 0,75 при автоматическом регулировании (ограничении) пе­ретока мощности в сечении.

Амплитуда нерегулярных колебаний, найденная для сечения, может быть распределена по частичным сечениям в соответствии с коэффициентами распределения мощности в этом сечении.

Вычисление предельного по статической устойчивости перетока в сечении осуществляется утяжелением режима (увеличением перетока). При этом рассматриваются траектории утяжеления режима, представляющие собой последовательности установившихся режимов, которые при изменении некоторой группы параметров по­зволяют достичь границы области статической устойчивости.

Следует рассматривать увеличение перетока в сечении для ряда траекторий утяжеления, которые характерны для данной энергосис­темы и различаются перераспределением мощности между узлами, находящимися по разные стороны рассматриваемого сечения. Зна­чение Р п определяется по траектории, которой соответствует наи­меньшая предельная мощность.

Рассматриваются, как правило, сбалансированные по мощности способы утяжеления режима, т. е. такие, при которых частота оста­ется практически неизменной.

Перетоки, предельные по статической устойчивости, и перетоки, допустимые в послеаварийных режимах, определяются с учетом перегрузки оборудования (в частности по току ротора генераторов), допустимой в течение 20 мин. Большую перегрузку, допустимую в течение меньшего времени, можно учитывать, если она обеспечивается соответствующим обо­рудованием и если эта перегрузка оперативно или автоматически ликвидируется за допустимое время благодаря снижению перетока в сечении (автоматический пуск гидрогенераторов, перевод их из компенсаторного режима в активный и т. п.).

В эксплуатации для контроля соблюдения нормативных запасов устойчивости следует, как правило, использовать значения перетоков активной мощности.

При необходимости максимально допустимые и аварийно допу­стимые перетоки задаются как функции от режимных параметров (загрузки отдельных электростанций и/или числа работающих гене­раторов, перетоков в других сечениях, напряжений в узловых точках и др.). Такие параметры включатся в число контролируемых.

В зависимости от конкретных условий в качестве контролируе­мых могут использоваться и другие параметры режима энергосисте­мы, в частности, значения углов между векторами напряжений по концам электропередачи. Допустимые значения контролируемых параметров устанавливаются на основе расчетов.

Коэффициент запаса по напряжению

Значения коэффициента запаса по напряжению К ц отно­сятся к узлам нагрузки и вычисляются по формуле:

где U- напряжение в узле в рассматриваемом режиме;

Uкр- критическое напряжение в том же узле, соответствующее гра­нице статической устойчивости электродвигателей. Критическое напряжение в узлах нагрузки 110 кВ и выше при от­сутствии более точных данных следует принимать равным большей из двух величин: 0,7 Uном и 0,75 Uнорм, где Uнорм - напряжение в рассматриваемом узле нагрузки при нормальном режиме энергосистемы.

Для контроля за соблюдением нормативных запасов по на­пряжению в узле нагрузки в эксплуатационной практике могут ис­пользоваться напряжения в любых узлах сети энергосистемы. Допу­стимые значения напряжений в контролируемых узлах устанавлива­ются расчетами режимов энергосистемы.

ТРЕБОВАНИЯ К УСТОЙЧИВОСТИ ЭНЕРГОСИСТЕМ

По условиям устойчивости энергосистем нормируются ми­нимальные коэффициенты запаса статической апериодической ус­тойчивости по активной мощности в сечениях и по напряжению в узлах нагрузки. Кроме того, устанавливаются группы возмущений, при которых должны обеспечиваться как динамическая устойчивость, так и нормируемые коэффициенты запаса статической устойчивости в послеаварийных режимах.

В области допустимых режимов должно быть обеспечено отсут­ствие самораскачивания. Если самораскачивание проявляется, то должны приниматься меры по устранению его причин, а оперативно должно быть дополнительно разгружено сечение, в котором наблюдаются колебания, до исключения этих колебаний.

Допустимые перетоки определяются также допустимыми токо­выми нагрузками (перегрузками с учетом их длительности) обору­дования в заданном и в нормативных послеаварийных режимах и другими имеющимися ограничениями.

Таблица 3. Показатели устойчивости должны быть не ниже указанных:

Режим, переток в сечении

Минималь­ные коэффи­циенты запа­са по актив­ной мощно­сти

Минималь­ные коэф­фициенты запаса по напряже­нию

Группы возмущений, при которых должна обеспе­чиваться устойчивость энергосистемы

в нормаль­ной схеме

в ремонт­ной схеме

Нормальный Утяжеленный Вынужденный

При отключении элемента сети 750 кВ и выше, в том числе в результате неуспешного АПВ после однофазного КЗ, возможно применение ПА для обеспечения устойчивости, но без воздействия на разгрузку АЭС и при объеме нагрузки, отключаемой ПА, не более 5-7 % нагрузки приемной энергосистемы (большее число относится к энергосистеме, меньшее - к энергообъединению).При проектировании энергосистем в нормальной схеме и при нормальном перетоке устойчивость при возмущении группы I в сети 500 кВ и ниже должна обеспечиваться без применения ПА.

При эксплуатации энергосистем в нормальной схеме и при нор­мальном перетоке в случае возмущения группы I устойчивость дол­жна обеспечиваться без применения ПА, за исключением тех случа­ев, когда:

    выполнение требования приводит к необходимости ограничения потребителей, потери гидроресурсов или к ограничению загрузки (запиранию мощности) отдельных электростанций, в том числе АЭС;

    в результате возмущения предел статической устойчивости в се­чении уменьшается более чем на 25%.

В указанных случаях устойчивость должна обеспечиваться без воздействия ПА на разгрузку АЭС, если возможны другие управля­ющие воздействия.

Послеаварийный режим после нормативных возмущений должен удовлетворять следующим требованиям:

    коэффициенты запаса по активной мощности - не менее 0,08;

    коэффициенты запаса по напряжению - не менее 0,1;

    токовые перегрузки сетевых элементов и генераторов не превышают значений, допустимых в течение послеаварийного режима.

Длительность послеаварийного режима определяется временем, необходимым диспетчеру для восстановления условий нормального режима, не большим 20 мин. В течение этого времени возникновение дополнительных возму­щений (т. е. наложение аварии на аварию) не учитывается.

Динамическая устойчивость должна быть обеспечена для максимально допустимых перетоков в сечении, увеличенных на ∆.

Устойчивость может не сохраняться в следующих случаях: при возмущениях более тяжелых чем нормативные в данных схемно-режимных условиях;

    если при возмущении, приводящем к ослаблению сечения, пре­дел статической апериодической устойчивости в рассматриваемом сечении не превышает утроенной амплитуды нерегулярных колеба­ний мощности или уменьшается более чем на 70 %;

    если аварийный небаланс мощности приводит к приращению мощности в сечении, превышающем 50 % предела статической апе­риодической устойчивости в рассматриваемом сечении.

При не сохранении устойчивости деление по сечению должно не приводить к каскадному развитию аварии при правильной работе ПА или к погашению дефицитной по мощности подсистемы из-за недостаточности объема АЧР.

В эксплуатации любое отступление от требований, относящихся к нормальному перетоку (первая строка табл. 3) или к дли­тельности послеаварийного режима (20 мин), означает переход к вынужденному перетоку и должно быть разрешено высшей опера­тивной инстанцией, в ведении или управлении которой находятся связи этого сечения. Такое решение, как правило, принимается при планировании ре­жимов исходя из располагаемых оперативных резервов активной мощности.

Переход к вынужденному перетоку в сечении на время прохож­дения максимума нагрузки, но не более 40 мин (дополнительно к 20 мин, разрешенных для послеаварийного режима), или на время, необходимое для ввода ограничений потребителей и/или мобилиза­ции резерва, может быть выполнен оперативно по разрешению де­журного диспетчера указанной высшей оперативной инстанции.

При планировании режимов энергосистем должна быть ис­ключена работа сечений, обеспечивающих выдачу мощности АЭС, с вынужденными перетоками.

На связях, по которым возможны асинхронные режимы, пре­дусматриваются устройства ликвидации асинхронных режимов, дей­ствующих, в том числе, на деление энергосистем. Ресинхронизация, как с применением автоматических устройств, так и самопроизвольная, должна резервироваться делением.

Допустимая длительность асинхронного режима и способ его прекращения устанавливаются для каждого сечения с учетом необ­ходимости предотвращения повреждений оборудования энергосис­темы, дополнительных нарушений синхронизма и нарушений элек­троснабжения потребителей. При этом особое внимание следует уде­лять устойчивости электростанций и крупных узлов нагрузки, вблизи которых может оказаться центр качаний.

ОПРЕДЕЛЕНИЕ ДОПУСТИМЫХ РЕЖИМОВ, УДОВЛЕТВОРЯЮЩИХ НОРМАТИВНЫМ ТРЕБОВАНИЯМ (предыдущего раздела)

Расчеты устойчивости энергосистем и расчетная проверка мероприятий по ее обеспечению осуществляются при проектирова­нии и эксплуатации энергосистем.

Расчеты устойчивости выполняются для:

    выбора основной схемы энергосистемы и уточнения размеще­ния основного оборудования;

    определения допустимых режимов энергосистемы;

    выбора мероприятий по повышению устойчивости энергосисте­мы, включая средства ПА и параметры их настройки;

    определения параметров настройки систем регулирования и уп­равления, релейной защиты, АПВ и т. д.

Кроме того, расчеты устойчивости проводятся при разработке и уточнении требований к основному оборудованию энергосистемы, релейной защите, автоматике и системам регулирования по услови­ям устойчивости энергосистем.

Так как принимается, что переток в сечении под действием нерегулярных колебаний мощности меняется в диапазоне Р ± ∆Р нк, то требованиям к устойчивости должен соответство­вать переток Р м + ∆Р нк, где Р м - максимально допустимый переток.

Переток Р м должен соответствовать коэффициенту запаса устойчивости по активной мощности КР, не меньшему 20 % (см. табл. 3): РМ ≤0,8РПР - ∆РНК.

Переток Р м должен соответствовать коэффициенту запаса по напряжению, не меньшему 15 % во всех узлах нагрузки: Р м ≤ P(U) - ∆Р к, при U= UКР/0,85.

Зависимость перетока от наименьшего напряжения строится на основе численного моделирования при различных перетоках мощ­ности в рассматриваемом сечении. Это требование означает, что при исчерпании других возможностей регулирования напряжения необ­ходимый запас по напряжению обеспечивается за счет снижения пе­ретока мощности в сечении.

Переток Р м должен быть таким, чтобы во всех послеаварийных схемно-режимных условиях, которые могут возникнуть в результате нормативных возмущений (ослабление сечения и/или ава­рийный небаланс мощности) с учетом действия ПА и/или первично­го регулирования частоты, выполнялось требование:

При

где
- переток активной мощности в рассматриваемом сечении в доаварийном режиме;

- активной мощности в сечении в послеаварийном установившемся режиме, в том числе после аварийного небаланса мощности, приводящего к увеличению перето­ка в сечении;

- предельная мощность в сечении по апериодической стати­ческой устойчивости в послеаварийной схеме, которая, в частности, в случае аварийного небаланса мощности мо­жет совпадать с исходной (рассматриваемой) схемой или измениться в случае ослабления сечения при аварийном отключении сетевых элементов или его усиления за счет отключения шунтирующих реакторов и т. п.;

∆Р ПА - приращение допустимого перетока мощности в сечении за счет управляющих воздействий ПА долговременного действия на изменение мощности.

Переток в доаварийном режиме представляется в виде функции от перетока в послеаварийном режиме для возможности учета влия­ющих факторов, например, изменения потерь мощности или шунти­рующих связей, не включенных в рассматриваемое частичное сече­ние.

Приращение активной мощности в сечении, обусловленное ава­рийным небалансом мощности или управлением мощностью ПА, зависит от динамических харакгеристик всех параллельно работаю­щих энергосистем. Так как расчет указанного приращения по пол­ной модели может оказаться затруднительным, допускается его рас­чет по упрощенной формуле с использованием обобщенной инфор­мации о подсистемах:

где ∆Р сеч - приращение мощности в сечении за счет аварийного небаланса или применения ПА;

n = 1, 2, ..., N - подсистемы передающей части энергосистемы;

т = 1,2,..., М- подсистемы приемной части энергосистемы;

- аварийный избыток мощности (отключаемая гене­рация - с минусом) в передающей части;

- аварийный дефицит мощности (отключаемая нагруз­ка - с минусом) в приемной части;

Кfn, Kfm - соответственно коэффициент частотной статической характеристики подсистем: n - передающей и т -приемной частей энергосистемы;

Р н m , Р н n - соответственно суммарная нагрузка подсистем n и т.

4.2.4. В каждом из нормативных послеаварийных режимов во всех узлах нагрузки коэффициент запаса по напряжению должен быть не менее 10 %:

При

Зависимость перетока в исходном (доаварийном) режиме от наи­меньшего напряжения в установившемся послеаварийном режиме строится на основе численного моделирования нормативных возму­щений и действия ПА при различных исходных перетоках мощнос­ти в рассматриваемом сечении.

Максимально допустимый переток мощности в любом се­чении в рассматриваемом режиме должен не превышать предельно­го по динамической устойчивости перетока в том же сечении при всех нормативных возмущениях с учетом действия ПА:

Переток Р м в послеаварийных режимах не должен приводить к токовым перегрузкам, превышающим допустимые значения:

При

где
- ток в наиболее загруженном сетевом элементе в послеава­рийном установившемся режиме;

- допустимый ток с перегрузкой, разрешенной в течение 20 мин при заданной температуре окружающей среды в том же элементе.



Поделиться