Примеры химической и электрохимической коррозии. Что такое химическая коррозия и как ее устранить? Способы защиты от ржавления

Электрохимическая коррозия - самый распространенный вид коррозии. Электрохимическая возникает при контакте металла с окружающей электролитически проводящей средой. При этом восстановление окислительного компонента коррозионной среды протекает не одновременно с ионизацией атомов металла и от электродного потенциала металла зависят их скорости. Первопричиной электрохимической коррозии является термодинамическая неустойчивость металлов в окружающих их средах. Ржавление трубопровода, обивки днища морского суда, различных металлоконструкций в атмосфере - это, и многое другое, примеры электрохимической коррозии.

К электрохимической коррозии относятся такие виды местных разрушений, как питтинги , межкристаллитная коррозия , щелевая . Кроме того процессы электрохимической коррозии происходят в грунте , атмосфере , море .

Механизм электрохимической коррозии может протекать по двум вариантам:

1) Гомогенный механизм электрохимической коррозии:

Поверхностный слой мет. рассматривается как гомогенный и однородный;

Причиной растворения металла является термодинамическая возможность протекания катодного или же анодного актов;

К и А участки мигрируют по поверхности во времени;

Скорость протекания электрохимической коррозии зависит от кинетического фактора (времени);

Однородную поверхность можно рассматривать как предельный случай, который может быть реализован и в жидких металлах.

2) Гетерогенный механизм электрохимической коррозии:

У твердых металлов поверхность негомогенная, т.к. разные атомы занимают в сплаве различные положения в кристаллической решетке;

Гетерогенность наблюдается при наличии в сплаве инородных включений.

Электрохимическая коррозия имеет некоторые особенности: делится на два одновременно протекающих процесса (катодный и анодный), которые кинетически зависимы друг от друга; на некоторых участках поверхности электрохимическая коррозия может принять локальный характер; растворение основного мет. происходит именно на анодах.

Поверхность любого металла состоит из множества короткозамкнутых через сам металл микроэлектродов. Контактируя с коррозионной средой образующиеся гальванические элементы способствуют электрохимическому его разрушению.

Причины возникновения местных гальванических элементов могут быть самые разные:

1) неоднородность сплава

Неоднородность мет. фазы, обусловленная неоднородностью сплава и наличием микро- и макровключений;

Неравномерность окисных пленок на поверхности за счет наличия макро- и микропор, а также неравномерного образования вторичных продуктов коррозии;

Наличие на поверхности границ зерен кристаллов, выхода дислокации на поверхность, анизотропность кристаллов.

2) неоднородность среды

Область с ограниченным доступом окислителя будет анодом по отношению к области со свободным доступом, что ускоряет электрохимическую коррозию.

3) неоднородность физических условий

Облучение (облученный участок - анод);

Воздействие внешних токов (место входа блуждающего тока - катод, место выхода - анод);

Температура (по отношению к холодным участкам, нагретые являются анодами) и т. д.

При работе гальванического элемента одновременно протекает два электродных процесса:

Анодный - ионы металла переходят в раствор

Fe → Fe 2+ + 2e

Происходит реакция окисления.

Катодный - избыточные электроны ассимилируются молекулами или атомами электролита, которые при этом восстанавливаются. На катоде проходит реакция восстановления.

O 2 + 2H 2 O + 4e → 4OH - (кислородная деполяризация в нейтральных, щелочных средах)

O 2 + 4H + + 4e → 2H 2 O (кислородная деполяризация в кислых средах)

2 H + + 2e → H 2 (при водородной деполяризации).

Торможение анодного процесса приводит к торможению и катодного.

Коррозия металла происходит именно на аноде.

При соприкосновении двух электропроводящих фаз (например, мет. - среда), когда одна из них заряжена положительно, а другая отрицательно, между ними возникает разность потенциала. Это явление связано с возникновением двойного электрического слоя (ДЭС). Заряженные частицы располагаются несимметрично на границе раздела фаз.

Скачек потенциалов в процессе электрохимической коррозии может происходить из-за двух причин:

При достаточно большой энергии гидратации ионы металла могут отрываться и переходить в раствор, оставляя на поверхности эквивалентное число электронов, которые определяют ее отрицательный заряд. Отрицательно заряженная поверхность притягивает к себе катионы мет. из раствора. Так на границе раздела фаз возникает двойной электрический слой.

На поверхности металла разряжаются катионы электролита. Это приводит к тому, что поверхность мет. приобретает положительный заряд, который с анионами раствора образует двойной электрический слой.

Иногда возникает ситуация, когда поверхность не заряжена и, соответственно, отсутствует ДЭС. Потенциал, при котором это явление наблюдается называется потенциалом нулевого заряда (φ N). У каждого металла потенциал нулевого заряда свой.

Величина электродных потенциалов оказывает очень большое влияние на характер коррозионного процесса.

Скачок потенциала между двух фаз не может быть измерен, но при помощи компенсационного метода можно измерить электродвижущую силу элемента (ЭДС), который состоит из электрода сравнения (его потенциал условно принят за ноль) и исследуемого электрода. В качестве электрода сравнения берется стандартный водородный электрод. ЭДС гальванического элемента (стандартный водородный электрод и исследуемый элемент) называют электродным потенциалом. Электродами сравнения могут также выступать хлорсеребряный, каломельный, насыщенный медно-сульфатный.

Международной конвенцией в Стокгольме 1953г. решено при записях электрод сравнения всегда ставить слева. При этом ЭДС рассчитывать, как разность потенциалов правого и левого электродов.

E = Vп - Vл

Если положительный заряд внутри системы движется слева направо - ЭДС элемента считается положительной, при этом

E max =-(ΔG T)/mnF,

где F - число Фарадея. Если положительные заряды будут двигаться в противоположном направлении, то уравнение будет иметь вид:

E max =+(ΔG T)/mnF.

При коррозии в электролитах самыми распространенными и значимыми являются адсорбционные (адсорбция катионов или анионов на границе раздела фаз) и электродные потенциалы (переход катионов из металла в электролит или наоборот).

Электродный потенциал, при котором металл находится в состоянии равновесия с собственными ионами называется равновесный (обратимый). Он зависит от природы металлической фазы, растворителя, температуры электролита, активности ионов мет.

Равновесный потенциал подчиняется уравнению Нернста:

E=E ο + (RT/nF) Lnα Me n+

где, E ο - стандартный потенциал мет.; R - молярная газовая постоянная; n - степень окисления иона мет.; Т - температура; F - число Фарадея;α Me n+ - активность ионов мет.

При установленном равновесном потенциале электрохимическая коррозия не наблюдается.

Если по электроду проходит электрический ток - равновесное состояние его нарушается. Потенциал электрода изменяется в зависимости от направления и силы тока. Изменение разности потенц., приводящее к уменьшению силы тока, принято называть поляризацией. Уменьшение поляризуемости электродов называют деполяризацией.

Скорость электрохимической коррозии тем меньше, чем больше поляризация. Поляризация характеризуется величиной перенапряжения.

Поляризация бывает трех типов:

Электрохимическая (при замедлении анодного или катодного процессов);

Концентрационная (наблюдается, когда скорость подхода деполяризатора к поверхности и отвода продуктов коррозии мала);

Фазовая (связана с образованием на поверхности новой фазы).

Электрохимическая коррозия наблюдается также при контакте двух разнородных металлов. В электролите они образуют гальванопару. Более электроотрицательный из них будет анодом. Анод в процессе будет постепенно растворяться. При этом идет замедление или даже полное прекращение электрохимической коррозии на катоде (более электроположительном). Например, при контакте в морской воде дюралюминия с никелем интенсивно растворятся будет именно дюралюминий.

Коррозией называют процесс самопроизвольного разрушения поверхности материалов вследствие взаимодействия с окружающей средой. Ее причиной является термодинамическая неустойчивость химических элементов к определенным веществам. Формально коррозии подвержены полимеры, дерево, керамика, резина, но к ним чаще применяют термин «старение». Наиболее серьезный ущерб наносит ржавление металлов, для защиты которых разрабатываются высокотехнологичные контрмеры. Но об этом мы поговорим позже. Учеными различается коррозия металлов химическая и электрохимическая.

Химическая коррозия

Она возникает обычно при воздействии на металлическую структуру сухих газов, жидкостей или растворов, не проводящих электрический ток. Суть этого типа коррозии - прямое взаимодействие металла с агрессивной средой. Элементы химически корродируют во время термической обработки или в результате длительной эксплуатации при достаточно высоких температурах. Это касается лопаток газовых турбин, арматуры плавильных печей, деталей двигателей внутреннего сгорания и так далее. В результате на поверхности образуются определенные соединения: оксиды, нитриды, сульфиды.

Она является следствием контакта металла с жидкой средой, способной проводить электрический ток. Вследствие окисления материал претерпевает структурные изменения, приводящие к образованию ржавчины (нерастворимого продукта), либо частицы металла переходят в раствор ионов.

Электрохимическая коррозия: примеры

Ее разделяют на:

  • Атмосферную, которая возникает при наличии на поверхности металла жидкостной пленки, в которой газы, содержащиеся в атмосфере (например, О 2 , СО 2 , SO 2), способны растворяться с образованием электролитных систем.
  • Жидкостную, которая протекает в токопроводящей жидкой среде.
  • Грунтовую, что протекает под воздействием грунтовых вод.

Причины

Поскольку обычно любой металл, который используется для промышленных нужд, не является идеально чистым и содержит включения различного характера, то электрохимическая коррозия металлов возникает вследствие образования на поверхности железа большого количества короткозамкнутых локальных гальванических элементов.

Появление их может быть связано не только с наличием различных (особенно металлических) примесей (контактная коррозия), но и с неоднородностью поверхности, дефектами кристаллической решетки, механическими повреждениями и тому подобное.

Механизм взаимодействия

Процесс электрохимической коррозии зависит от химического состава материалов и особенностей внешней среды. Если так называемый технический металл покрыт влажной пленкой, то в каждом из указанных гальванических микроэлементов, которые образуются на поверхности, протекают две независимые реакции. Более активный компонент коррозионной пары отдает электроны (к примеру, цинк в паре Zn-Fe) и переходит в жидкую среду в качестве гидратированных ионов (то есть корродирует) по следующей реакции (анодный процесс):

М + nH 2 O = M z + * nH 2 O + ze.

Эта часть поверхности является отрицательным полюсом локального микроэлемента, где металл электрохимически растворяется.

На менее активном участке поверхности, которая является положительным полюсом микроэлемента (железо в паре Zn-Fe), электроны связываются за счет протекания реакции восстановления (катодный процесс) по схеме:

Таким образом, наличие окислителей в водяной пленке, которые способны связывать электроны, обеспечивает возможность дальнейшего хода анодного процесса. Соответственно, электрохимическая коррозия может развиваться только при условии одновременного протекания как анодного, так и катодного процессов. Вследствие торможения одного из них скорость окисления уменьшается.

Процесс поляризации

Оба вышеуказанных процесса вызывают поляризацию соответствующих полюсов (электродов) микроэлемента. Какие здесь есть особенности? Обычно электрохимическая коррозия металлов более существенно замедляется поляризацией катода. Поэтому она будет усиливаться под влиянием факторов, которые предотвращают эту реакцию и сопровождаются так называемой деполяризацией положительного электрода.

Во многих коррозионных процессах катодная деполяризация осуществляется разрядом ионов водорода либо восстановлением молекул воды и соответствует формулам:

  • В кислой среде: 2Н + + 2е = Н 2 .
  • В щелочной: 2Н 2 О + 2е = Н 2 + 2ОН - .

Диапазон потенциалов

Потенциал, который соответствует этим процессам, в зависимости от природы агрессивной среды, может изменяться от -0,83 до 0 В. Для нейтрального водного раствора при температурах, близких к стандартной, он равен примерно -0,41 В. Следовательно, ионы водорода, содержащиеся в воде и в нейтральных водных системах, могут окислять только металлы с потенциалом, меньшим, чем -0,41 В (расположенные в ряду напряжений до кадмия). Учитывая то, что некоторые из элементов защищены оксидной пленкой, число металлов, подверженных окислению в нейтральных средах ионами водорода, незначительное.

Если влажная пленка содержит растворенный кислород воздуха, то он способен, в зависимости от характера среды, связывать электроны эффектом кислородной деполяризации. В этом случае схема электрохимической коррозии выглядит следующим образом:

  • О 2 + 4е + 2Н 2 О = 4ОН - или
  • О 2 + 4е + 4Н + = 2Н 2 О.

Потенциалы указанных электродных реакций при температурах, близких к стандартной, изменяются от 0,4 В (щелочная среда) до 1,23 В (кислая среда). В нейтральных средах потенциал процесса восстановления кислорода при указанных условиях соответствует значению 0,8 В. Значит, растворенный кислород способен окислять металлы с потенциалом меньше 0,8 В (расположенные в ряду напряжений до серебра).

Важнейшие окислители

Виды электрохимической коррозии характеризуются окислительными элементами, важнейшими из которых являются ионы водорода и кислород. При этом пленка, содержащая растворенный кислород, в коррозионном отношении значительно опаснее, чем влага, где кислорода нет, и которая способна окислять металлы исключительно ионами водорода, так как в последнем случае количество видов материалов, способных корродировать, значительно меньше.

Например, в стали и в чугуне присутствуют примеси углерода преимущественно в виде карбида железа Fe 3 C. В этом случае механизм электрохимической коррозии с водородной деполяризацией для указанных металлов выглядит следующим образом:

  • (-) Fe - 2e + nH 2 O = Fe 2+ · nH 2 O (может образовываться ржавчина);
  • (+) 2Н + + 2е = Н 2 (в подкисленной среде);
  • (+) 2Н 2 О + 2е = Н 2 + 2ОН - (в нейтральной и щелочной среде).

Механизм коррозии железа, в котором содержатся примеси меди, в случае кислородной деполяризации катода описывается уравнениями:

  • (-) Fe - 2e + nH 2 O = Fe 2+ ·nH 2 O;
  • (+) 0,5О 2 + Н 2 О + 2е = 2ОН - (в подкисленной среде);
  • (+) 0,5О 2 + 2Н + + 2е = Н 2 О (в нейтральной и щелочной среде).

Электрохимическая коррозия протекает с разной скоростью. Этот показатель зависит от:

  • разности потенциалов между полюсами гальванического микроэлемента;
  • состава и свойств электролитной среды (рН, наличие ингибиторов и стимуляторов коррозии);
  • концентрации (интенсивности подачи) окислителя;
  • температуры.

Методы защиты

Электрохимическая защита металлов от коррозии достигается следующими способами:

  • Созданием антикоррозионных сплавов (легированием).
  • Увеличением чистоты индивидуального металла.
  • Нанесением на поверхность различных защитных покрытий.

Эти покрытия в свою очередь бывают:

  • Неметаллическими (краски, лаки, смазочные материалы, эмали).
  • Металлическими (анодные и катодные покрытия).
  • Образованными специальной обработкой поверхностей (пассивация железа в концентрированных серной или азотной кислотах; железа, никеля, кобальта, магния в растворах щелочей; образование оксидной пленки, например, на алюминии).

Металлическое защитное покрытие

Наиболее интересной и перспективной является электрохимическая защита от коррозии другим видом металла. По характеру защитного воздействия металлизированные покрытия подразделяют на анодные и катодные. Остановимся на этом моменте более подробно.

Анодным называется покрытие, образованное более активным (менее благородным) металлом, чем тот, что защищают. То есть осуществляется защита элементом, который стоит в ряду напряжений до основного материала (например, покрытие железа цинком или кадмием). При местных разрушениях защитного слоя корродировать будет менее благородный металл-покрытие. В зоне царапин и трещин образовывается локальный гальванический элемент, катодом в котором является ограждаемый металл, а анодом - покрытие, которое окисляется. Целостность такой защитной пленки значения не имеет. Однако чем она толще, тем медленнее будет развиваться электрохимическая коррозия, дольше будет длиться полезный эффект.

Катодным называется покрытие металлом с большим потенциалом, который в ряду напряжений стоит после защищаемого материала (например, напыление низколегированных сталей медью, оловом, никелем, серебром). Покрытие должно быть сплошным, так как при его повреждении образовываются локальные гальванические элементы, в которых основной металл будет анодом, а защитный слой - катодом.

Как уберечь металл от окисления

Электрохимическая защита от коррозии подразделяется на два типа: протекторную и катодную. Протекторная аналогична анодному покрытию. К материалу, который нужно защитить, присоединяют большую пластину более активного сплава. Образуется гальванический элемент, основной металл в котором служит катодом, а протектор - анодом (он корродирует). Обычно для этого типа защиты применяют цинк, алюминий или сплавы на основе магния. Протектор постепенно растворяется, поэтому его нужно периодически заменять.

Много неприятностей в коммунальном хозяйстве и в промышленности в целом доставляет электрохимическая коррозия трубопроводов. В борьбе с ней наиболее подходит метод катодной поляризации. Для этого металлическая конструкция, которая защищается от разрушительных процессов окисления, подключается к отрицательному полюсу какого-либо внешнего источника постоянного тока (она после этого становится катодом, при этом возрастает скорость выделения водорода, а скорость коррозии снижается), а к положительному полюсу присоединяют малоценный металл.

Электрохимические методы защиты эффективны в токопроводящей среде (яркий пример - морская вода). Поэтому протекторы часто используют, чтобы защитить подводные части морских судов.

Обработка агрессивной среды

Этот метод является эффективным, когда электрохимическая коррозия железа протекает в небольшом объеме токопроводящей жидкости. Справиться с разрушительными процессами в этом случае можно двумя способами:

  • Удалением из жидкости кислорода (деаэрация) в результате продувки инертным газом.
  • Введением в среду ингибиторов - так называемых замедлителей коррозии. Например, в случае если поверхность разрушается в результате окисления кислородом, добавляют органические вещества, молекулы которых содержат определенные аминокислоты (имино-, тио- и другие группы). Они хорошо адсорбируются на поверхности металла и существенно снижают скорость электрохимических реакций, приводящих к разрушениям поверхностного контактного слоя.

Вывод

Безусловно, коррозия химическая и электрохимическая приносит значительный ущерб и в промышленности, и в быту. Если бы металл не корродировал, срок службы многих предметов, деталей, агрегатов, механизмов значительно увеличился бы. Сейчас ученые активно разрабатывают альтернативные материалы, способные заменить металл, не уступающие по эксплуатационным характеристикам, однако полностью отказаться от его применения в ближайшей перспективе, наверное, невозможно. В этом случае на передний план выходят передовые методы защиты металлических поверхностей от коррозии.

На скорость химической (газовой) коррозии металлов и сплавов влияют внешние и внутренние факторы.

К внешним факторам относятся состав и давление газовой среды, скорость её движения, температура, режим нагрева.

Состав газовой среды . При высоких температурах металлы взаимодействуют с кислородом, парами воды, оксидом углерода (lV), оксидом серы (lV) по схеме

2М + О 2 = 2МО,

М + СО 2 = МО + СО,

М + Н 2 О = МО + Н 2 ,

3М + SО 2 = 2МО + МS.

Скорости этих химических реакций и защитные свойства образующихся плёнок различны, следовательно, скорости коррозии металлов в указанных средах также различны.

Из экспериментальных данных известно, что при 900 0 С ско-рость окисления Fe, Co, Ni возрастает в ряду

Н 2 О (П) ® СО 2 ® О 2 ® SО 2

В отличие от этих металлов Cu практически не корродирует в атмосфере SO 2 .

В приведенных выше газах скорость газовой коррозии металлов увеличивается в ряду

Cr ® Ni ® Co ® Fe

Вольфрам при 900 0 С наибольшую скорость коррозии имеет в атмосфере О 2 , а наименьшую ─ в СО 2 .

Загрязнение воздуха СО 2 , SО 2 , парами Н 2 О вызывает повышение скорости коррозии малоуглеродистой стали. Это связывают с увеличением несовершенств в оксидной плёнке.

При нагревании стали в атмосфере, содержащей О 2 , СО 2 , Н 2 О, помимо окисления, может происходить обезуглероживание (декарбонизация)

Fe 3 C + 1/2O 2 = 3Fe + CO,

Fe 3 C + CO 2 = 3Fe + 2CO,

Fe 3 C + H 2 O = 3Fe + CO + H 2 .

Наводороживание стали происходит при высоких температурах адсорбированными на её поверхности атомами водорода. При комнатной температуре молекулы Н 2 не диссоциируют, поэтому наводороживания стали не происходит. Наводороживание вызывает резкое уменьшение пластичности, понижает длительную прочность металлов. Склонен к наводороживанию титан.

Температура . Повышение температуры вызывает увеличение константы скорости химической реакции, а также рост скорости диффузии реагентов в плёнке продуктов коррозии. Это приводит к увеличению скорости газовой коррозии металлов и сплавов ─ Fe, Cu, и др.

Температура может оказывать влияние на состав образующихся плёнок и закон их роста (таблица 1).

Большое влияние на скорость окисления оказывает режим нагрева. Колебания температуры при нагреве и особенно попеременный нагрев и охлаждение вызывают разрушение плёнки вследствие возникновения больших внутренних напряжений, в результате чего скорость окисления металлов увеличивается.

Таблица 1 ─ Влияние температуры на состав и закон роста оксид-

ных плёнок



Давление газа . С повышением парциального давления кислорода скорость коррозии металлов возрастает.

Для некоторых металлов и сплавов при постоянной достаточно высокой температуре с увеличением парциального давления кислорода скорость окисления сначала растёт, а затем при достижении некоторого критического значения Ро 2 ─ резко уменьшается (рисунок 7) и в широком диапазоне давлений остаётся достаточно низкой.


Р О 2 КР Р О 2

Рисунок 7 - Влияние парциального давления кислорода на

скорость газовой коррозии

Явление уменьшения скорости газовой коррозии при повышении парциального давления кислорода называют высокотемпературной пассивацией. Пассивное состояние металла связывают с образованием на его поверхности совершенной плёнки.

Высокотемпературную пассивацию имеют хромистые стали, медь, титан, цинк и другие металлы и сплавы.

При значительном увеличении парциального давления кислорода выше критического, у целого ряда нержавеющих сталей, например, 08Х13 (Х13), 30Х13 (Х13), 12Х17 (Х17), 08Х18Н10Т (Х18Н10Т) происходит нарушение пассивного состояния («перепассивация»), что приводит к увеличению скорости окисления.

Увеличение скорости коррозии при высоких температурах может вызвать повышение скорости движения газовой среды.

К внутренним факторам, влияющим на скорость химической коррозии металлов относятся: природа, химический и фазовый состав сплава, механические напряжения и деформация, характер обработки поверхности.

Состав и структура сплава . Скорость окисления сталей при высоких температурах с повышением содержания углерода понижается. Уменьшается обезуглероживание сталей. Это связано с интенсификацией процесса образования оксида углерода (II). Сера и фосфор практически не влияют на скорость окисления стали.

На скорость коррозии стали, в кислородсодержащей среде влияют легирующие элементы. Хром (Cr), алюминий (Al) и кремний (Si) сильно замедляют процесс окисления стали. Это связано с обра-зованием плёнок с высокими защитными свойствами. При содержании приблизительно 30 % Cr, до 10 % Al, до 5 % Si, стали имеют высокую жаростойкость. Меньшее повышение жаростойкости дает легирование стали титаном (Ti), медью (Cu), кобальтом (Со) и бериллием (Be).

Элементы, образующие легкоплавкие или летучие оксиды, например, ванадий (V), молибден (Мо), вольфрам (W) ускоряют оки-сление стали.

Высокой жаростойкостью обладают сплавы никеля (Ni) c хромом (Сr) - нихромы. Типичные нихромы содержат 80 % Ni и 20 % Cr или 65 % Ni, 20 % Cr и 15 % Fe.

Скорость окисления меди (Cu) понижается при её легировании Al, Be, оловом (Sn) и цинком (Zn).

На скорость коррозии влияет также структура сплава . Установлено, что наиболее жаростойкой является сталь с аустенитной (однофазной) структурой. Хромоникелевые стали с двухфазной аустенитно-ферритной структурой менее устойчивы к окислению. С увеличением содержания ферритной составляющей скорость окисления стали повышается. Например, хромоникелевая аустенитная сталь 12Х18Н9Т (Х18Н9Т) имеет более высокую жаростойкость, чем двухфазная сталь Х12Н5Т с более высоким содержанием хрома. Это связывают с тем, что на двухфазных сталях образуются менее совершенные плёнки, чем на однофазных.

Жаростойкость чугуна зависит от формы графитовых выделений. При шаровидной форме графита жаростойкость чугуна выше.

Деформация металлов в процессе нагрева может вызвать нарушение сплошности плёнок и связанное с этим увеличение скорости окисления. Повышенная шероховатость поверхности металла способствует образованию защитных плёнок с дефектами, что ведет к увеличению скорости коррозии.

Тема №7: «КОРРОЗИЯ МЕТАЛЛОВ И СПЛАВОВ»

Вопросы лекции :

    Классификация коррозионных сред, разрушений и процессов. Показатели скорости коррозии.

    Химическая коррозия: виды и разновидности.

    Электрохимическая коррозия: причины и механизм возникновения.

    Термодинамика и кинетика газовой и электрохимической коррозии.

    Классификация коррозионных сред, разрушений и процессов. Показатели скорости коррозии.

Одним из весьма ощутимых проявлений окислительно–восстановительных процессов является коррозия - процесс окисления металлов под влиянием внешней среды.

Абсолютно коррозионно–стойких металлов нет. Золото - стойкое в обычных условиях - растворяется в растворах цианидов калия или натрия вследствие образования устойчивых комплексных ионов. В результате коррозии металлические изделия теряют свои ценные технические свойства, поэтому важное значение имеет антикоррозионная защита металлов и сплавов.

Коррозия (от латинского corrodo) - это разрушение конструкций и изделий из металлических материалов (металлов и сплавов), происходящее вследствие их физико–химического взаимодействия с окружающей средой, которую называют коррозионной (или агрессивной) , а образовавшиеся химические соединения - продуктами коррозии.

Коррозия сопровождается выделением энергии (процессы коррозии протекают самопроизвольно и сопровождаются убылью энергии Гиббса (∆ G < 0 ) и рассеиваем продуктов коррозии в окружающей среде. Процесс коррозии железа и его сплавов называют ржавлением .

Коррозионные среды бывают жидкими и газообразными, токопроводящими и неэлектролитами, естественными и искусственно созданными.

К газообразным относятся природная атмосфера и газы, образующиеся при сгорании топлива или выделяющиеся в различных химических производствах.

Жидкие - это жидкости-электролиты (водные растворы солей, кислот, щелочей, морская вода) и жидкости неэлектролиты (сернистая нефть, бензин, керосин и др.).

Естественными, кроме атмосферы, являются вода и почва, искусственными - многие химические вещества.

По характеру разрушения поверхности различают коррозию :

а) сплошную (общую) , при которой поражается вся поверхность изделия. Она бывает равномерной и неравномерной ;

б) локальную (местьную), при котрой поражаются лишь отдельные участки поверхности. Она проявляется в виде пятен, язв и питтинга (точечного разрушения на большую глубину).

Существуют и другие виды разрушений:

1. эрозия - механическое истирание, износ (т.е. разрушения, происходящие только вследствие физических причин);

2. кавитационная коррозия - разрушение при одновременном ударном (механическое воздействие) и коррозионном воздействиях среды (коррозия лопастей гребных винтов),

3. коррозионная эрозия (разрушение при одновременном воздействии сил трения и коррозионной среды - коррозия насосов, двигателей, турбин) и др.

Коррозия металлов всегда представляет собой процесс окисления:

Ме – ne → Ме n +

По механизму процесса коррозию подразделяют на химическую и электрохимическую. Причина коррозии металлов и сплавов состоит в их термодинамической неустойчивости, поэтому коррозионные процессы протекают самопроизвольно и сопровождаются убылью энергии Гиббса ((∆ G < 0) . Чем меньше (более отрицательно значение G коррозионного процесса, тем выше термодинамическая возможность (вероятность) его протекания. Для химической коррозии изменение стандартной энергии Гиббса G связано с константой равновесия соотношением ∆ G 0 = – RT ln Kp. В случае электрохимической коррозии G 0 связана со стандартной ЭДС (Е 0) уравнениемG 0 = nF·Е 0 .

Химическая и электрохимическая коррозия относятся к гетерогенным окислительно–восстановительным процессам, протекающим на поверхности металлов и сплавов (на границе раздела фаз материал - коррозионная среда).

Гетерогенный процесс состоит из последовательно протекающих стадий:

Диффузии частиц окислителя к поверхности металла,

Их адсорбции на ней,

Поверхностной химической реакции (в результате которой происходит окисление металла),

Десорбции продуктов с поверхности, их переноса в объем коррозионной среды.

Скорость коррозии определяется скоростью наиболее медленной (лимитирующей) в данных условиях стадии, которая может иметь как химическую (окисление металла), так и физическую (диффузия электролита или газа) природу.

Наиболее часто для характеристики скорости коррозии используют показатель убыли массы и глубинный показатель .

Показатель убыли массы r масс. указывает потерю массы в единицу времени τ с единицы поверхности S испытуемого образца:

r масс. = ∆m / τ·S

Глубинный показатель r глуб. определяется отношением средней глубины h разрушения металла в единицу времени τ:

r глуб. = h / τ

В справочной литературе r глуб. обычно приводится в мм/год.

    Химическая коррозия: виды и разновидности.

Химическая коррозия характерна для сред, преимущественно не проводящих электрический ток (иключение: опыт №1 из лабораторной работы - там химическая коррозия протекает в растворе HCl). В зависимости от вида этих сред различают:

    Химическую коррозию в жидкостях-неэлектролитах - неэлектропроводных жидких средах, обычно органического происхождения (сернистая нефть, керосин, бензол);

    Химическую газовую коррозию (в дальнейшем газовую), протекающую обычно при высоких температурах.

Эти два вида химической коррозии не сопровождаются возникновением электрического тока, т.е. представляют собой обычное окислительно-восстановительное (химическое) взаимодействие металла с окружающей средой.

Газовая коррозия является наиболее часто встречающимся видом химической коррозии и обычно протекает при высоких температурах в газах и парах агрессивных веществ, когда исключена возможность их конденсации на поверхности металла, поэтому ее называют высокотемпературной коррозией . Это коррозия сопел ракетных двигателей, лопаток газовых турбин, элементов электронагревателей и др . К газовым коррозионным агентам относятся О 2 , СО 2 , SO 2 , H 2 O , H 2 S , Cl 2 . Их агрессивность по отношению к различным металлам не является одинаковой, следовательно, и скорость коррозии различается.

Рассмотрим пример наиболее часто встречающейся на практике газовой коррозии:- коррозия железа, чугуна и сталей в атмосфере О 2 , СО 2 , и H 2 O :

При нагревании этих материалов происходит их окисление :

Fe + H 2 O → FeO + H 2

Fe + CO 2 → FeO + CO

2Fe + O 2 → 2FeO

Состав продуктов окисления определяется главным образом температурой газовой коррозионной среды.

Наряду с окислением, в сталях и чугуне протекает процесс обезуглероживания - обеднения поверхностного слоя углеродом вследствие взаимодействия карбида железа, содержащегося в них, с кислородом и кислородсодержащими реагентами:

Fe 3 C + O 2 → 3Fe + CO 2

Fe 3 C + CO 2 → 3Fe + 2CO

Fe 3 C + H 2 O → 3Fe + CO + H 2

При этом ухудшаются их механические и антикоррозионные свойства.

Обезуглероживание может происходить и в атмосфере водорода:

Fe 3 C + 2H 2 → 3Fe + CН 4

Этот вид газовой коррозии называют водородной . Наряду с обезуглероживанием одновременно осуществляется и наводороживание - проникновение атомарного водорода в материал и последующее его растворение в нем, что ведет к резкому снижению пластичности металла.

    Электрохимическая коррозия: причины и механизм возникновения .

На практике чаще всего приходится иметь дело с электрохимической коррозией. Она, в отличие от химической, сопровождается возникновением электрического тока и протекает, как правило, в средах с хорошей ионной проводимостью.

По условиям осуществления различают:

Коррозию в электролитах;

Атмосферную коррозию;

Электрокоррозию;

Коррозию под напряжением и др.

Причинами возникновения электрохимической коррозии служат различные виды неоднородностей как самой поверхности металла или сплава, так и коррозионной среды. В результате вся поверхность, соприкасающаяся с токопроводящей коррозионной средой, разделяется на катодные и анодные участки, которые имеют очень малые размеры и чередуются друг с другом. В такой среде они представляют собой совокупность огромного числа короткозамкнутых коррозионных гальванических элементов , вследствие чего электрохимическую коррозию часто называют гальванической коррозией .

В СИСТЕМАХ ВОЗМОЖНО ВОЗНИКНОВЕНИЕ КОРРОЗИОННЫХ НЕ ТОЛЬКО МИКРО-, НО И МАКРОЭЛЕМЕНТОВ, НАПРИМЕР, ПРИ КОНТАКТЕ С ЭЛЕКТРОЛИТОМ ДВУХ СОПРИКАСАЮЩИХСЯ ДЕТАЛЕЙ, ИЗГОТОВЛЕННЫХ ИЗ МЕТАЛЛОВ РАЗЛИЧНОЙ АКТИВНОСТИ (ТАК НАЗЫВАЕТАЯ КОНТАКТНАЯ КОРРОЗИЯ ).

Механизм электрохимической коррозии сводится к возникновению и функционированию коррозионных гальванических макро- и микро-элементов., поэтому ее процессы аналогичны процессам, протекающим в химических источниках тока: гальванических и топливных элементах, аккумуляторах. Основное отличие коррозионных процессов - отсутствие внешней цепи. Электроны в процессе коррозии не выходят из корродирующего металла, а перемещаются внутри него от анодных участков к катодным.

Процесс электрохимической коррозии представляет собой совокупность двух взаимосвязанных полуреакций., одновременно протекающих на поверхности металла:

а) анодной , сопровождающейся окислением атомов металла на анодных участках поверхности:

(–) А: Ме – ne → Ме n +

б) катодной, сопровождающейся восстановлением окислителя (окисленной формы компонента Оф) коррозионной среды (электролита) на катодных участках поверхности:

(+) К: Оф + ne → Вф

Окислители электрохимической коррозии называют деполяризаторами . К наиболее часто встречающимся деполяризаторам относятся молекулы О 2 , Н 2 О и ионы водорода Н + . Основными катодными реакциями с их участием при электрохимической коррозии являются:

      в аэрированных (насыщенных кислородом) коррозионных средах:

(+) К: О 2 + 2Н 2 О + 4е → 4ОН – (φ 0 = 0,401 В);

в кислотных (рН < 7)

(+) К: О 2 + 4Н + + 4е→ 2Н 2 О (φ 0 = 1,229 В);

      в деарированных (несодержащих растворенный кислород) коррозионных средах:

нейтральных и щелочных (рН ≥ 7)

(+) К: 2Н 2 О + 2е → Н 2 + 2ОН – (φ 0 = –0,828 В);

в кислотных (рН < 7)

(+) К: 2Н + + 2е→ Н 2 (φ 0 = 0 В);

Коррозию, сопровождающуюся восстановлением молекул кислорода (в аэрированных средах) называют коррозией с поглощением кислорода или коррозией с кислородной деполяризацией .

C кислородной деполяризацией протекают следующие виды электрохимической коррозии: атмосферная, подземная, в воде (пресной и морской), растворах солей. Коррозию, сопровождающуюся восстановлением молекул воды и ионов водорода называют коррозией с выделением водорода, или коррозией с водородной деполяризацией. В некоторых условиях электрохимическая коррозия может протекать одновременно и с водородной, и с кислородной деполяризацией - так называемый смешанный вид деполяризации .

Процессы, описываемые записанными выше уравнениями, называют первичными процессами, а их продукты - первичными продуктами коррозии . Кроме первичных при электрохимической коррозии протекают еще и вторичные процессы - химические взаимодействия первичных продуктов друг с другом, с компонентами электролитной коррозионной среды, с растворенными в ней газами и др. При этом образуются пленки малорастворимых вторичных продуктов , например, гидроксидов, фосфатов металлов, которые затрудняют доступ электролита к поверхности металла. В результате снижается скорость электрохимической коррозии, а иногда коррозия и совсем прекращается.

Рассмотрим наиболее характерные и часто встречающиеся на практике случаи электрохимической коррозии.

- Коррозионное разрушение сплава обусловлено его неоднородностью по химическому составу (пример из лабораторной работы, либо из контрольной работы).

Рис. 1 Схема контактной коррозии

-Контактная коррозия связана с конструктивными особенностями изделий и машин и имеет место при их эксплуатации в реальных условиях. Часто в одном узле контактируют детали из разных металлов. В возникающем в электролитной среде коррозионном гальваническом макро гальваноэлементе катодом является деталь, металл которой имеет больший потенциал, анодом - деталь, изготовленная из металла с меньшим потенциалом. На рис.1 показана схема контактной коррозии двух листов железа, соединенных медными заклепками. Функционирует коррозионный гальванический макроэлемент.

Скорость этой разновидности электрохимической коррозии в целом тем больше, чем дальше отстоят друг от друга в ряду напряжений металлы, из которых изготовлены детали, образующие макрогальваноэлемент.

- Коррозия под напряжением - разрушение деталей, находящихся в электролитной среде в механически напряженном состоянии. Механические напряжения изменяют потенциал металла: потенциал металла растянутой поверхности будет меньше потенциала металла без напряжения, а потенциал металла сжатой, наоборот, больше потенциала металла без напряжения. В связи с этим растянутая поверхность будет являться анодной, сжатая - катодной. Поэтому если пластину из стали, дюраля или титанового сплава согнуть и в таком состоянии поместить, например, в коррозионную среду с рН < 7, то растянутая поверхность начнет корродировать и на ней через короткое время появятся трещины, а сжатая будет оставаться без изменений (рис.2).

Рис.2 Коррозионное разрушение детали, находящейся в механически напряженном состоянии:

1– стальная пластина; 2– тефлоновая подставка; 3 – кислотная коррозионная среда.

- Коррозия под действием блуждающих токов (электрокоррозия) . Блуждающими называют токи, ответвляющиеся от своего основного пути. Это токи утечки из электрических цепей или любые токи, попадающие в землю от внешних источников (пути электропоездов, заземления линий тока, электрические кабели и т.п.).

Блуждающие токи вызывают коррозию газо– и нефтепроводов, электрокабелей, различных металлических подземных сооружений. Радиус их действия исчисляется десятками километров. Обычно коррозионные разрушения бывают локального типа и располагаются в местах выхода токов в землю или воду. Для подземных трубопроводов и путей электропоездов это, как правило, места изолированных сочленений и плохого контакта рельсов на стыках соответственно, а также места с недостаточной изоляцией от земли. Они являются анодными зонами и подвергаются усиленной коррозии (рис. 3).

Рассмотренные случаи не исчерпывают всего многообразия электрохимических коррозионных процессов, но дают представления об основных видах неоднородностей, характере взаимодействия изделий с коррозионной средой и причинах возникновения потенциалов в коррозионных средах.

Рис. 3. Схема возникновения блуждающих токов от трамвайной линии и механизм коррозионного разрушения ими рельсов и трубопровода.

3. Термодинамика и кинетика газовой и электрохимической коррозии

      Термодинамика и кинетика газовой коррозии.

На практике газовая коррозия чаще всего проявляется как коррозия металлических материалов при высокой температуре в атмосфере кислородсодержащих газов, поэтому ее помимо высокотемпературной коррозии нередко называют высокотемпературным окислением .

На поверхности изделий из металлов и сплавов в результате их взаимодействия с такой коррозионной средой образуется пленка продуктов, представляющих собой различные оксиды металлов . Процесс может быть описан следующим уравнением:

х Ме (т) + у О 2 (г) ↔ Ме х О у (т)

Реакция окисления обратима и ее константа равновесия:

К р = 1/ Р у/2 равн О2 (Р равн О2 – равновесное парциальное давление О 2)

Термодинамическую возможность протекания процесса окисления в конкретных условиях можно оценить с помощью уравнения:

∆G T = ∆G 0 T + RT ln 1/ Р у/2 равн О2

Если образовавшаяся на поверхности металла оксидная пленка препятствует дальнейшему проникновению коррозионной среды к поверхности металла, то ее называют защитной . Металл с защитной пленкой на поверхности становится химически неактивным, т.е. пассивным . Начальная стадия образования защитной оксидной пленки - исключительно химический процесс. Дальнейшее протекание процесса определяется скоростью встречной диффузии ионов металла и кислорода внутри оксидной пленки.

В оксидных пленках определенной толщины и совершенной структуры (без трещин, пор) процессы встречной диффузии прекращаются. Такие пленки и являются защитными. Чтобы обладать защитными свойствами, оксидная пленка должна удовлетворять следующим требованиям: быть сплошной, беспористой, химически инертной к агрессивной среде, иметь высокие твердость, износостойкость, адгезию (прилипаемость к металлу) и близкий к металлу коэффициент термического расширения. Главным требованием является условие сплошности Пиллинга –Бедвордса, согласно которому объем образовавшегося оксида должен быть больше израсходованного на окисление объема металла -

V МехОу > V Me

Отношение этих объемов называют фактором сплошности Пиллинга–Бедвордса α, который рассчитывают, используя молярную массу атомов М ме и плотность ρ ме металла, а также молярную массу М МехОу и плотность ρ МехОу его оксида:

а = V МехОу / V Me = М МехОу · ρ ме / ρ МехОу · m М ме

где m - число атомов металла в молекуле оксида. Величину α для многих металлов и их оксидов можно найти также в справочной литературе . Если а > 1, то формирование и рост толщины пленки при окислении происходит в условиях сжатия, поэтому она является сплошной . Если а < 1, то пленка в процессе своего формирования и роста испытывает растяжения, которые способствуют ее разрушению и появлению трещин, различных дефектов, вследствие чего кислород свободно проникает к поверхности металла.

По фактору сплошности Пиллинга–Бедвордса можно лишь приблизительно оценить защитные свойства оксидных пленок. В реальных условиях у сплошных пленок (а > 1) может и не быть защитных свойств, как, например, у FeO, MoO 3 , WO 3 . Поэтому очень ориентировочно считают, что если 1,0 < а < 2,5, то пленка сплошная и может обладать защитными свойствами. Причинами плохих защитных свойств у пленок с а > 2,5 могут быть летучесть оксида, напряжения разрушающие оксидную пленку, ее недостаточная пластичность и др.

Выполнение условия сплошности всегда является необходимым, но недостаточным требованием.

При формировании и росте защитной оксидной пленки важным является также и условие ее ориентационного соответствия металлу , т.е. максимального сходства кристаллическитх решеток металла и образующегося оксида.

Законы роста толщины оксидных пленок

Обычно скорость газовой коррозии, т.е. процесса окисления, выражают через скорость роста толщины δ оксидной пленки во времени τ:

Рост толщины, т.е. окисление поверхности металла, может проходить в соответствии с различными кинетическими зависимостями, или законами: линейным, параболическим, логарифмическим (рис. 4.)

Согласно линейному закону, скорость процесса окисления постоянна во времени. Этот закон выполняется как при полном отсутствии оксидной пленки на поверхности, так и при наличии тонкой или незащитной (пористой, несплошной) оксидной пленки, у которой а < 1. Во всех этих случаях доступ к поверхности свободен. По линейному закону происходит окисление щелочных и щелочноземельных металлов, а также ванадия, вольфрама и молибдена при высоких температурах. У первых оно обусловлено их разогревом из-за плохого отвода теплоты, вызванного образованием на поверхности рыхлых оксидных пленок, препятствующих ее оттоку, у вторых - летучестью их оксидов при высоких температурах.

В соответствии с параболическим законом скорость процесса окисления обратно пропорциональна толщине оксидной пленки. Этот закон соблюдается, когда на поверхности металла при его окислении образуется пленка, обладающая защитными свойствами, т.е. сплошная и непористая, для которой а > 1 Согласно параболическому закону, окисляются вольфрам, кобальт, никель (за исключением начальных участков), а также медь в интервале температур 300….1000°С и железо - 500…1000°С.

Логарифмический закон имеет место, когда происходит либо уплотнение защитной оксидной пленки, либо появление в ней дефектов в виде пузырей или расслоений, тормозящих процессы встречной диффузии ионов кислорода и металла. При этом наблюдается сильное затухание процесса окисления, и рост толщины оксидной пленки осуществляется медленнее, чем по параболическому закону. В соответствии с логарифмическим законом, окисляются медь при температуре ниже 100°С, тантал - ниже 400°С, а также алюминий, цинк и никель - ниже 3000°С. Скорость процесса окисления в этом случае обратно пропорционально времени его протекания.

Процесс окисления большинства металлов с изменением условий (температуры, состава газовой корроозионной среды, времени контакта) протекает по различным законам. Например, для титана:

Температура, °С < 350 630–830 > 850

Закон роста толщины

оксидной пленки… логарифмический параболический линейный

Помимо внутренних факторов (состояние оксидной пленки) на скорость газовой коррозии значительно большее влияние оказывают внешние факторы, такие как: состав, давление, температура и скорость движения газовой среды, время ее контакта, режим нагрева. При повышении температуры, с одной стороны, понижается термодинамическая возможность газовой коррозии, с другой, - увеличиваются константа скорости химической реакции и коэффициент диффузии, а также изменяются защитные свойства оксидной пленки. В целом с ростом температуры скорость коррозии увеличивается в соответствии с зависимостью, близкой к экспотенциальной. Колебания температуры, особенно попеременный нагрев и охлаждение, вызывают быстрое разрушение защитной пленки из-за возникновения больших внутренних напряжений.

Термодинамика и кинетика электрохимической коррозии.

Возможность электрохимической коррозии, как и любого химического процесса, определяют по изменению энергии Гиббса. Поскольку коррозия является самопроизвольно протекающим процессом, то сопровождается ее убылью, т.е. ∆G т < 0. Так как электрохимическая коррозия связана с функционированием коррозионного Г.Э., то возможность ее протекания можно оценить и по знаку ЭДС. Последняя связана с энергией Гиббса соотношением:

nFE 0 = – ∆G 0

Отрицательному значению ∆G т соответствует положительное значение ЭДС.

Общая скорость электрохимической коррозии определяется скоростью лимитирующей реакции (либо катодной, либо анодной). Но поскольку катодная и анодная реакции протекают взаимосвязано, то замедление одной тормозит другую.

Изменение температуры может ускорять или замедлять процесс электрохимической коррозии. Так, например с увеличением температуры уменьшается концентрация газообразных растворенных веществ (О 2 , Сl 2), участвующих в электродных процессах, но снижаются защитные свойства пленок из вторичных продуктов (малорастворимых солей, гидроксидов), может измениться и полярность (катодные или анодные) металлических защитных покрытий.

По влиянию кислотности раствора (рН среды) на скорость электрохимической коррозии все металлы подразделяются на пят групп, каждая из которых имеет свой вид зависимости (рис. 5):

      металлы с высокой коррозионной стойкостью в кислотных, нейтральных и щелочных растворах, такие как Ag, Au, Pt и др. Скорость их коррозии не зависит от рН раствора (рис. 5, а);

      металлы, устойчивые в кислотных растворах, но нестойкие в щелочных - Mo, Ta, W и др. (рис.5, б);

      металлы, малостойкие в кислотных растворах, но устойчивые в щелочных - Ni, Cd и др. (рис. 5, в);

      металлы, устойчивые в растворах, близких к нейтральным, но разрушающиеся в щелочных и кислотных из-за амфотерности - Zn, Al, Sn, Pb (рис. 5, г). Каждый их них имеет свое определенное значение рН, при котором скорость коррозии минимальна: 7(Al). 5(Pb). 9 (Sn), 10(Zn), 14(Fe);

      металлы, малостойкие в кислотных растворах, в интервале значений рН 4…8,5 имеют постоянную скорость коррозии, которая при рН > 10 резко уменьшается вследствие образования на их поверхности малорастворимых гидроксидов - Fe, Mg, Cu, Mn и др. (рис.5,д).

Материалы из металлов под химическим или электрохимическим воздействием окружающей среды подвергаются разрушению, которое называется коррозией. Коррозия металлов вызывается , в результате которых металлы переходят в окисленную форму и теряют свои свойства, что приводит в негодность металлические материалы.

Можно выделить 3 признака, характеризующих коррозию:

  • Коррозия – это с химической точки зрения процесс окислительно-восстановительный.
  • Коррозия – это самопроизвольный процесс, возникающий по причине неустойчивости термодинамической системы металл – компоненты окружающей среды.
  • Коррозия – это процесс, который развивается в основном на поверхности металла. Однако, не исключено, что коррозия может проникнуть и вглубь металла.

Виды коррозии металлов

Наиболее часто встречаются следующие виды коррозии металлов :

  1. Равномерная – охватывает всю поверхность равномерно
  2. Неравномерная
  3. Избирательная
  4. Местная пятнами – корродируют отдельные участки поверхности
  5. Язвенная (или питтинг)
  6. Точечная
  7. Межкристаллитная – распространяется вдоль границ кристалла металла
  8. Растрескивающая
  9. Подповерхностная
Основные виды коррозии

С точки зрения механизма коррозионного процесса можно выделить два основных типа коррозии: химическую и электрохимическую.

Химическая коррозия металлов

Химическая коррозия металлов — это результат протекания таких химических реакций, в которых после разрушения металлической связи, атомы металла и атомы, входящие в состав окислителей, образуют . Электрический ток между отдельными участками поверхности металла в этом случае не возникает. Такой тип коррозии присущ средам, которые не способны проводить электрический ток – это газы, жидкие неэлектролиты.

Химическая коррозия металлов бывает газовой и жидкостной.

Газовая коррозия металлов – это результат действия агрессивных газовых или паровых сред на металл при высоких температурах, при отсутствии конденсации влаги на поверхности металла. Это, например, кислород, диоксид серы, сероводород, пары воды, галогены. Такая коррозия в одних случаях может привести к полному разрушению металла (если металл активный), а в других случаях на его поверхности может образоваться защитная пленка (например, алюминий, хром, цирконий).

Жидкостная коррозия металлов – может протекать в таких неэлектролитах, как нефть, смазочные масла, керосин и др. Этот тип коррозии при наличии даже небольшого количества влаги, может легко приобрести электрохимический характер.

При химической коррозии скорость разрушения металла пропорциональна и той скорости с которой окислитель проникает сквозь пленку оксида металла, покрывающую его поверхность. Оксидные пленки металлов могут проявлять или не проявлять защитные свойства, что определяется сплошностью.

Сплошность такой пленки оценивают величине фактора Пиллинга-Бэдвордса: (α = V ок /V Ме) по отношению объема образовавшегося оксида или другого какого-либо соединения к объему израсходованного на образование этого оксида металла

α = V ок /V Ме = М ок ·ρ Ме /(n·A Me ·ρ ок) ,

где V ок — объем образовавшегося оксида

V Ме — объем металла, израсходованный на образование оксида

М ок – молярная масса образовавшегося оксида

ρ Ме – плотность металла

n – число атомов металла

A Me — атомная масса металла

ρ ок — плотность образовавшегося оксида

Оксидные пленки, у которых α < 1 , не являются сплошными и сквозь них кислород легко проникает к поверхности металла. Такие пленки не защищают металл от коррозии. Они образуются при окислении кислородом щелочных и щелочно-земельных металлов (исключая бериллий).

Оксидные пленки, у которых 1 < α < 2,5 являются сплошными и способны защитить металл от коррозии.

При значениях α > 2,5 условие сплошности уже не соблюдается , вследствие чего такие пленки не защищают металл от разрушения.

Ниже представлены значения α для некоторых оксидов металлов

металл оксид α металл оксид α
K K 2 O 0,45 Zn ZnO 1,55
Na Na 2 O 0,55 Ag Ag 2 O 1,58
Li Li 2 O 0,59 Zr ZrO 2 1.60
Ca CaO 0,63 Ni NiO 1,65
Sr SrO 0,66 Be BeO 1,67
Ba BaO 0,73 Cu Cu 2 O 1,67
Mg MgO 0,79 Cu CuO 1,74
Pb PbO 1,15 Ti Ti 2 O 3 1,76
Cd CdO 1,21 Cr Cr 2 O 3 2,07
Al Al 2 ­O 2 1,28 Fe Fe 2 O 3 2,14
Sn SnO 2 1,33 W WO 3 3,35
Ni NiO 1,52

Электрохимическая коррозия металлов

Электрохимическая коррозия металлов – это процесс разрушения металлов в среде различных , который сопровождается возникновением внутри системы электрического тока.

При таком типе коррозии атом удаляется из кристаллической решетки результате двух сопряженных процессов:

  • Анодного – металл в виде ионов переходит в раствор.
  • Катодного – образовавшиеся при анодном процессе электроны, связываются деполяризатором (вещество — окислитель).

Сам процесс отвода электронов с катодных участков называется деполяризацией, а вещества способствующие отводу – деполяризаторами.

Наибольшее распространение имеет коррозия металлов с водородной и кислородной деполяризацией .

Водородная деполяризация осуществляется на катоде при электрохимической коррозии в кислой среде

2H + +2e — = H 2 разряд водородных ионов

2H 3 O + +2e — = H 2 + 2H 2 O

Кислородная деполяризация осуществляется на катоде при электрохимической коррозии в нейтральной среде

O 2 + 4H + +4e — = H 2 O восстановление растворенного кислорода

O 2 + 2H 2 O + 4e — = 4OH —

Все металлы, по их отношению к электрохимической коррозии , можно разбить на 4 группы, которые определяются величинами их :

  1. Активные металлы (высокая термодинамическая нестабильность) – это все металлы, находящиеся в интервале щелочные металлы — кадмий (Е 0 = -0,4 В). Их коррозия возможна даже в нейтральных водных средах, в которых отсутствуют кислород или другие окислители.
  2. Металлы средней активности (термодинамическая нестабильность) – располагаются между кадмием и водородом (Е 0 = 0,0 В). В нейтральных средах, в отсутствии кислорода, не корродируют, но подвергаются коррозии в кислых средах.
  3. Малоактивные металлы (промежуточная термодинамическая стабильность) – находятся между водородом и родием (Е 0 = +0,8 В). Они устойчивы к коррозии в нейтральных и кислых средах, в которых отсутствует кислород или другие окислители.
  4. Благородные металлы (высокая термодинамическая стабильность) – золото, платина, иридий, палладий. Могут подвергаться коррозии лишь в кислых средах при наличии в них сильных окислителей.

Электрохимическая коррозия может протекать в различных средах. В зависимости от характера среды выделяют следующие виды электрохимической коррозии:

  • Коррозия в растворах электролитов — в растворах кислот, оснований, солей, в природной воде.
  • Атмосферная коррозия – в атмосферных условиях и в среде любого влажного газа. Это самый распространенный вид коррозии.

Например, при взаимодействии железа с компонентами окружающей среды, некоторые его участки служат анодом, где происходит окисление железа, а другие – катодом, где происходит восстановление кислорода:

А: Fe – 2e — = Fe 2+

K: O 2 + 4H + + 4e — = 2H 2 O

Катодом является та поверхность, где больше приток кислорода.

  • Почвенная коррозия – в зависимости от состава почв, а также ее аэрации, коррозия может протекать более или менее интенсивно. Кислые почвы наиболее агрессивны, а песчаные – наименее.
  • Аэрационная коррозия — возникает при неравномерном доступе воздуха к различным частям материала.
  • Морская коррозия – протекает в морской воде, в связи с наличием в ней растворенных солей, газов и органических веществ.
  • Биокоррозия – возникает в результате жизнедеятельности бактерий и других организмов, вырабатывающих такие газы как CO 2 , H 2 S и др., способствующие коррозии металла.
  • Электрокоррозия – происходит под действием блуждающих токов на подземных сооружениях, в результате работ электрических железных дорог, трамвайных линий и других агрегатов.

Методы защиты от коррозии металла

Основной способ защиты от коррозии металла – это создание защитных покрытий – металлических, неметаллических или химических.

Металлические покрытия.

Металлическое покрытие наносится на металл, который нужно защитить от коррозии, слоем другого металла, устойчивого к коррозии в тех же условиях. Если металлическое покрытие изготовлено из металла с более отрицательным потенциалом (более активный) , чем защищаемый, то оно называется анодным покрытием . Если металлическое покрытие изготовлено из металла с более положительным потенциалом (менее активный), чем защищаемый, то оно называется катодным покрытием .

Например, при нанесении слоя цинка на железо, при нарушении целостности покрытия, цинк выступает в качестве анода и будет разрушаться, а железо защищено до тех пор, пока не израсходуется весь цинк. Цинковое покрытие является в данном случае анодным .

Катодным покрытием для защиты железа, может, например, быть медь или никель. При нарушении целостности такого покрытия, разрушается защищаемый металл.

Неметаллические покрытия.

Такие покрытия могут быть неорганические (цементный раствор, стекловидная масса) и органические (высокомолекулярные соединения, лаки, краски, битум).

Химические покрытия.

В этом случае защищаемый металл подвергают химической обработке с целью образования на поверхности пленки его соединения, устойчивой к коррозии. Сюда относятся:

оксидирование – получение устойчивых оксидных пленок (Al 2 O 3 , ZnO и др.);

фосфатирование – получение защитной пленки фосфатов (Fe 3 (PO 4) 2 , Mn 3 (PO 4) 2);

азотирование – поверхность металла (стали) насыщают азотом;

воронение стали – поверхность металла взаимодействует с органическими веществами;

цементация – получение на поверхности металла его соединения с углеродом.

Изменение состава технического металла также способствует повышению стойкости металла к коррозии. В этом случае в металл вводят такие соединения, которые увеличивают его коррозионную стойкость.

Изменение состава коррозионной среды (введение ингибиторов коррозии или удаление примесей из окружающей среды) тоже является средством защиты металла от коррозии.

Электрохимическая защита основывается на присоединении защищаемого сооружения катоду внешнего источника постоянного тока, в результате чего оно становится катодом. Анодом служит металлический лом, который разрушаясь, защищает сооружение от коррозии.

Протекторная защита – один из видов электрохимической защиты – заключается в следующем.

К защищаемому сооружению присоединяют пластины более активного металла, который называется протектором . Протектор – металл с более отрицательным потенциалом – является анодом, а защищаемое сооружение – катодом. Соединение протектора и защищаемого сооружения проводником тока, приводит к разрушению протектора.

Категории ,

Поделиться