Развитие тепловых электростанций.

Перспективы развития теплоэнергетики в России

Итоги экспертного опроса

Москва, январь 200 7

ПРЕАМБУЛА

Осенью 2006 г. специализированный Интернет-портал «Информационный центр реформы ЖКХ» (http://www.gkh-reforma.ru/) и Некоммерческое партнерство «Российское теплоснабжение» () провели вторую серию экспертных исследований по проблематике энергетики и ЖКХ. Центральной темой этого экспертного опроса стала ситуация в российской тепловой энергетике, и исследование получило название «Перспективы развития теплоэнергетики в России» .

Целью исследования стало изучение мнений представителей экспертного сообщества о состоянии дел в российской теплоэнергетике в период системных реформ в энергетике в целом, формирования рыночных отношений в этом секторе. Основной ракурс исследования был направлен на выявление позиций экспертов по наиболее острым проблемам теплоэнергетики: законодательное регулирование, создание современной инфраструктуры, формирование конкуренции, инвестиционная привлекательность отрасли, соблюдение интересов потребителей.

Участниками исследования выступили представители профессиональных объединений в теплоэнергетике, органов власти, теплоснабжающих и энергетических компаний, эксперты, консультанты и аналитики рынка.

Мы выражаем благодарность всем участникам исследования за содействие в проведении экспертного опроса и надеемся, что подобные инициативы будут способствовать развитию коммуникации и дискуссиям внутри экспертного сообщества.

1. СОСТОЯНИЕ РОССИЙСКОЙ ТЕПЛОЭНЕРГЕТИКИ. СИСТЕМНЫЕ ПРОБЛЕМЫ

В числе главных проблемных зон, наиболее остро обозначившихся на сегодняшний день в тепловой энергетике, участники экспертного опроса выделили следующие.

1. Износ фондов.

2. Дисбаланс позиций электро- и теплоэнергетик.

3. Кадровый вопрос.

4. Отсутствие стратегии развития отрасли.

5. Тепло- и ресурсосбережение.

1.1. Износ фондов

Эта острая проблема присуща практически всем инфраструктурным отраслям российской экономики, в том числе и теплоэнергетической сфере. Участники экспертного опроса приводят приблизительные масштабы износа мощностей, которые оцениваются на уровне 60%. Этот уровень износа характерен и для «большой» энергетики, и для сферы жилищно-коммунального хозяйства. При этом эксперты отмечают приблизительный характер этих цифр, поскольку точный уровень износа оборудования установить очень сложно:

  • Оборудование устарело на 60-70%. Это экспертная оценка, тут расчетов математических не существует.

Эксперты выделили основные составляющие и «производные» износа фондов в тепловой энергетике:

Устаревшее оборудование генерации тепла, транспортировки и потребления;

Морально устаревшее и изношенное оборудование ТЭС и котельных, что вызывает низкий КПД при их работе и нарастающее число отказов с соответствующими отрицательными последствиями.

Велико количество аварий и утечек, конструкция теплопроводов устарела, вследствие чего возникают высокие тепловые потери.

Особо отмеченный острый фактор - износ тепловых сетей:

  • В России примерно до 200 тысяч км коммунальных сетей. Из них более половины уже исчерпало свой амортизационный срок. Изношенность этих сетей достигла 60-70%, а примерно 25-30% вообще в аварийном состоянии. Поэтому сегодня надо менять минимум 10-12% труб каждый год. А меняется 1% по России. Самая сегодня острая проблема в теплоснабжении.

1.2. Электроэнергетика и теплоэнергетика: неравенство позиций

Часть экспертов, принимавших участие в исследовании, высказала точку зрения на положение тепловой энергетики по отношению к «большой» энергетике, как неравноправное, или «ущемленное». Это выражается в ряде факторов. С одной стороны, нормативно-правовая база функционирования электроэнергетики и тепловой энергетики сформирована «под электроэнергетику» с учетом интересов последней, тогда как нормативное регулирование многих аспектов деятельности тепловой энергетики выстроено невыгодным образом для нее. Кроме того, неравное положение «большой» и «малой» энергетики заключается в отсутствии или недостаточности учета интересов тепловой энергетики в ходе реформы электроэнергетической отрасли России. Так, при создании отдельных механизмов рыночной системы в отрасли (НП «Администратор торговой системы» /НП АТС/), жизненно важные для тепловой энергетики вопросы, в частности, комбинированное производство тепла и электричества (когенерация), не были отражены должным образом.

  • Реформа электроэнергетики РАО «ЕЭС» не предусматривает направлений радикального улучшения ситуации с теплоэнергетикой.
  • Нормативно-правовая база сильно подготовлена монополистом - РАО «ЕЭС России». Вот по «Администратору торговой системы». Только электроэнергия. А комбинированное производство тепла, теплоэнергию, они не рассматривают. Для них это на заднем плане, вторсырье какое-то.

1.3. Кадры

По оценкам экспертов, кадровая проблема может быть отнесена к перечню наиболее острых. И по своей специфике она сходна с кадровой проблемой в электроэнергетике . С одной стороны - дефицит кадров и новых специалистов, с другой - перекос в сторону от «профессионалов» к «менеджерам», от профессиональных энергетиков к «управленцам»:

  • Нас, технарей, специалистов, отодвинули на задний план. Впереди менеджеры, экономисты, кадровики, бездарные, безграмотные, но сильно уверенные. Но они не чувствуют ни технологию, ни смысл этого.
  • Нет программы, политики подготовки кадров. Мы выпускаем студентов. Но мы этих студентов не готовим, методику не даем. Поверхностные знания. А это должна быть техническая учеба на энергетических станциях.Нет базовой практики как таковой.

1.4. Отсутствие стратегии развития тепловой энергетики

Участники исследования обратили внимание на то обстоятельство, что тепловая энергетика в настоящий момент функционирует фактически без какой-либо системы долгосрочного планирования развития. Если раньше, в советское время в рамках системы Госплана на годы вперед планировалось развитие мощностей, сетей и т.д., то с распадом прежней политической системы тепловая энергетика оказалась вынуждена практически 10 лет работать без какой-либо серьезной системы планирования развития.

  • Существовал Госплан, и в городах разрабатывали программы развития города. На этой основе разрабатывались генеральные планы развития инженерных систем, в том числе и теплоснабжение. Эти планы корректировались раз в 5 лет. И под эти планы Госплан выделял средства на строительство, на реконструкцию. В перестройку вся эта система рухнула.
  • Вся тепловая энергетика была брошена на муниципальную власть. Плановая экономика в момент рухнула, каждый выбирается, как может.

Кроме того, по мнению многих представителей отрасли, сегодня назрела жизненная необходимость решения проблемы стратегического планирования. В этой ситуации эксперты считают актуальным говорить о необходимости создания структуры, курирующей вопросы стратегического развития и планирования (тепловой энергетики, или промышленности и экономики в целом), и уже отмечаются примеры подобных инициатив и предложений на уровне государственной власти.

  • Губернатор Красноярского края предложил создание стратегического центра, по сути, прообраз Госплана. Жизнь требует создания такого органа. А Минрегион предложил свой вариант - перераспределить все функции и финансовые возможности. Так или иначе вопрос должен быть решен. В том или ином варианте. Мы активно готовы подключаться.

1.5. Тепло- и ресурсосбережение

Нерешенность проблемы сбережения тепла и энергоресурсов, требующихся для его производства, влечет за собой другие негативные явления, неблагоприятно сказывающиеся как на отрасли, так и на потребителе. Одна из них - рост тарифов. По мнению участников опроса, одной из существенных причин роста тарифов на тепло являются тепловые потери, возникающие, главным образом, вследствие устаревшего и изношенного оборудования. Схематично цепочка выглядит следующим образом: «Дешевое/устаревшее оборудование - высокие потери - возмещение потерь тепловыми предприятиями - рост тарифов».

Эксперты приводят пример зарубежных стран, где тарифы на тепло практически не растут (или же растут довольно медленно и незначительно), в том числе и потому, что минимизированы потери. В России же потери при транспортировке компенсируются за счет роста тарифов. При этом, по мнению экспертов, специальных надзорных органов недостаточно, необходимо еще стимулировать/вынуждать тех, кто транспортирует тепло, на внедрение современных конструкций, предотвращающих тепловые потери. Сегодняшней российской действительности, отмечают эксперты, в значительной мере свойственно отсутствие стимула беречь ресурсы, в т.ч. тепло и электричество, внедрять энергосберегающие технологии и оборудование. Это вызвано и низкими внутренними ценами на энергоресурсы, с одной стороны, и высокой стоимостью внедрения энергосберегающих технологий, с другой. При такой ситуации само энергосбережение теряет смысл.

Тепловая часть электростанций на каждом этапе своего развития определяется прежде всего техническим уровнем основных агрегатов теплоэнергетического оборудования: паровых котлов и паровых двигателей.

В зависимости от мощности, параметров и габаритов этого оборудования решались вопросы компоновки станций, в развитии которых можно выделить 4 этапа.

Первый этап характеризуется применением ручных топок со слоевым сжиганием топлива на плоских колосниковых решетках, расположенных под котлами разных типов - от жаротрубных до горизонтальных водотрубных. Паропроизводительность водотрубных котлов 3 т/ч и мощность паровых двигателей до 5000 кВт. Применяли пар давлением до 15 атм. с перегревом до 300 °С.

Этот этап для наиболее развитых в экономическом отношении стран относится в основном к концу XIX века.

Первая четверть XX века характеризуется качественными изменениями в трех направлениях:

Механизация топок, так как ручная загрузка становится непосильной при возросшей производительности: для бурых углей разработана конструкция ступенчатых топок, для каменных - топок с цепными решетками;

Переход к водотрубным котлам с меньшими диаметрами барабанов и большим количеством труб в связи с ростом давления пара и производительности котла. Основные типы котлоагрегатов в этот период -горизонтально и вертикально водотрубные котлы;

Замена паровой машины паровой турбиной. Количественные характеристики значительно возрастают: паропроизводительность достигает 30 т/ч, мощность турбогенераторов - 30 000 кВт. Качественные характеристики: давление пара до 40 атм., перегрев до 420 °С.

Для второго этапа характерно соотношение между числом турбин и котлов 1: 5 -г 1: 8. Необходимость установки 5-8 котлов на одну турбину сказывалась прежде всего на компоновке тепловой части электростанций с 2-х рядным размещением котлов.

На третьем этапе наблюдался переход к факельному сжиганию угольной пыли в громадных камерных топках, экранированных для защиты облицовки радиационными поверхностями нагрева, которые увеличивали удельную паропроизводительность. Стремление интенсифицировать процесс горенья вызывает введение воздухоподогревателей. Паропроизводительность котлов достигает 400 т/ч, мощность турбогенераторов - 120 ООО кВт. Давление пара возрастает до 125 атм., что вынуждает применять промежуточный перегрев пара во избежание слишком большого его увлажнения на последних дисках конденсационных турбин. Температура пара перед турбиной достигает 525°С.

Для этого периода характерно применение однобарабанных и безбарабанных котлов. Их количество на турбину снижается и доходит до одного, а котельные становятся однорядными, расположенными параллельно машинному залу. Так происходит возникновение «блочных» станций (блок: котел-турбина).


Развитие блочных установок характеризует четвертый этап. Современный этап отличается высокой паропроизводительностью котлоагрегатов (до 2 500 т/ч и больше), способных снабжать паром находящуюся в блоке турбину мощностью 300, 500 и 800 МВт. Сверхкритические параметры пара требуют осуществления его двойного промежуточного перегрева .

Основными типами тепловых электростанций являются: паротурбинные конденсационные (КЭС) и теплофикационные (ТЭЦ).

Основными направлениями их развития всегда являлось укрупнение мощности устанавливаемого на них энергетического оборудования.

При этом если в 20 - 30 годы XX века единичная мощность энергетического оборудования ограничивалась размерами возможного резерва -в энергетической системе ограниченной мощности выход из строя крупного агрегата мог повлечь за собой весьма серьезные последствия для всей системы, то теперь, по мере создания крупнейших объединенных энергетических систем, эти ограничения были сняты - теперь мощность одного агрегата ограничивается не возможностями электроэнергетики, а достигнутым уровнем металлургической и машиностроительной промышленности.

В последние годы развитие конденсационных электростанций во всех развитых странах идет по блочной схеме (самый современный блок - один котел и одновальная турбина). Мощность таких блоков уже достигает 800 МВт (Славянская ГРЭС), а мощность самих электростанций достигает 3000 - 4000 МВт.

Все большее распространение в мировой теплоэнергетике получают теплофикационные электростанции. Их особенность состоит в том, что пар, отбираемый из нескольких участков проточной части паровых теплофикационных турбин, отдает свое тепло воде, проходящей через ряд водоподогревателей и затем отправляемой в теплофикационную сеть для использования промышленными и городскими потребителями.

В области комбинированного производства тепловой и электрической энергии наша страна всегда занимала ведущие позиции. Первой такой электростанцией была электростанция №3 в Ленинграде (1924 г.).

Мощность одной теплоэлектростанции достигает 1000 МВт и более. Однако мощность ТЭЦ не может возрастать выше определенной величины, которая ограничивается потребностями не в электроэнергии, подаваемой в энергетическую систему, а потребностями в тепловой энергии и допустимыми протяженностями тепловых сетей. Например, в городах с населением менее 1 млн чел. целесообразно сооружать ТЭЦ с турбоагрегатом мощностью 250 МВт.

Все более заметную роль в современной электроэнергетике играют атомные станции.

Первая промышленная атомная электростанция (АЭС) мощностью 5 МВт вступила в строй в июне 1954 года в городе Обнинске.

Опыт работы атомных электростанций у нас и в таких густонаселенных странах, как Англия, Франция, Германия, Япония, показывает, что при выполнении ряда определенных технических требований соблюдается полная радиационная безопасность для персонала станций и населения близлежащих районов.

Для АЭС не требуется строить громоздкие склады топлива и предусматривать большие территории для золо- и шлакоотвалов.

По техническим и экологическим соображениям следует ожидать быстрого прогресса в строительстве АЭС .

Достижение нового уровня развития какой - либо отрасли техники всегда порождает и новые проблемы. Так, наращиванье мощности электростанций за счет ввода крупных блоков при сверхкритических параметрах пара сделало актуальным решение проблемы регулирования суточных графиков нагрузок. Для покрытия пиков нагрузок велись разработки новых типов электростанций и агрегатов. За последние годы в теплоэнергетике началось использование газотурбинных и парогазовых установок.

В газотурбинных установках (ГТУ) роль генераторов газа повышенного давления играют турбореактивные двигатели, в частности отработавшие свой ресурс авиационные и судовые двигатели. Они весьма маневренны, запускаются за несколько минут, значительно проще в эксплуатации и дешевле паротурбинных. Отсутствие котельных агрегатов и ряда вспомогательных систем, а также указанные выше достоинства делают ГТУ экономичными и перспективными.

Другим примером нового достижения на пути повышения экономической эффективности теплового цикла и маневренности являются парогазовые установки (ПГУ), соединяющие в себе преимущества ГТУ (высокие начальные температуры цикла) и паротурбинных (низкие конечные температуры).

К числу новых способов использования природных энергетических источников можно отнести строительство геотермальных электростанций. В 1966 году на Камчатке был введен в эксплуатацию экспериментальный турбогенератор мощностью 2 500 кВт. Однако в ближайшем будущем широких масштабов строительства геотермальных электростанций не предвидится, в частности, из-за большого количества минеральных солей, содержащихся в геотермальных водах, с отложениями которых весьма трудно бороться.

Напротив, исключительно большие преимущества открываются в новейшей области энергетики высоких температур: использование плазмы в целях преобразования тепловой энергии в электрическую, минуя обычный тепловой цикл. Ближайшая реализация этого направления состоит в использовании магнитогидродинамических генераторов (МГД -генераторов).

В МГД - генераторе поток "горячих" электропроводящих газов направляется в межполюсное пространство мощных электромагнитов. Движение такого газа равносильно движению якоря с проводниками в магнитном поле, только ЭДС наводится в "мысленных" проводниках, образованных в слое газа. При помощи электродов, установленных по всей длине канала, электрическая энергия отводится во внешнюю цепь. Таким образом преобразование тепловой энергии происходит без турбины, без каких либо вращающихся частей.

Работа при высоких температурах (~2500 °С) позволяет весь цикл сделать исключительно экологичным. Применение МГД - генераторов в большой энергетике позволит примерно в 1,5 раза сократить затраты топлива на производство электроэнергии по сравнению с обычными тепловыми станциями. Замечательной особенностью МГД - генераторов является то, что они не требуют охлаждения водой и, следовательно, не загрязняют водоемы, а меньший относительный расход топлива и более полное его сгорание уменьшают загрязнения атмосферы. У нас уже работает МГД - генератор на 200 кВт, сооружается промышленная электростанция с МГД - генератором мощностью 25 МВт .

Дальнейшим развитием применения плазмы является создание термоядерного генератора, в котором будет использован сверхнагретый поток водорода в сверхсильном магнитном поле, образованном электромагнитами со сверхпроводником в качестве обмотки возбуждения.

Негативные экологические и социальные последствия строительства крупных ГЭС заставляют внимательно посмотреть на их возможное место в электроэнергетике будущего.

Будущее ГЭС

Большие гидроэлектростанции выполняют следующие функции в энергосистеме:

  1. производство электроэнергии;
  2. быстрое согласование мощности генерации с потребляемой мощностью, стабилизация частоты в энергосистеме;
  3. накопление и хранение энергии в форме потенциальной энергии воды в поле тяготения Земли с преобразованием в электроэнергию в любое время.

Выработка электроэнергии и маневр мощностью возможны на ГЭС любого масштаба. А накопление энергии срок от нескольких месяцев до нескольких лет (на зиму и на маловодные годы) требует создания больших водохранилищ.

Для сравнения: автомобильный аккумулятор массой 12 кг напряжением 12 В и емкостью 85 амперчасов может хранить 1,02 киловатт-часа (3,67 МДж). Чтобы запасти такое количество энергии и преобразовать ее в электрическую в гидроагрегате с КПД 0,92, нужно поднять 4 тонны (4 куб.м) воды на высоту 100 м. или 40 тонн воды на высоту 10 м.

Чтобы ГЭС мощностью всего 1 МВт работала на запасенной воде 5 месяцев в году по 6 часов в день на запасенной воде, нужно на высоте 100 м накопить и затем пропустить через турбину 3,6 миллиона тонн воды. При площади водохранилища 1 кв.км понижение уровня составит 3,6 м. Такой же объем выработки на дизельной электростанции с КПД 40% потребует 324 т солярки. Таким образом, в холодном климате запасение энергии воды на зиму требует высоких плотин и больших водохранилищ.

Кроме того, на бо льшей части территории России в зоне вечной мерзлоты малые и средние реки зимой промерзают до дна. В этих краях малые ГЭС зимой бесполезны.

Большие ГЭС неизбежно находятся на значительном расстоянии от многих потребителей, и следует учитывать затраты на строительство линий электропередачи и потери энергии а нагрев проводов. Так, для Транссибирской (Шилкинской) ГЭС стоимость строительства ЛЭП-220 до Транссиба протяженностью всего 195 км (очень мало для такой стройки) превышает 10% всех затрат. Затраты на строительство сетей электропередачи столь существенны, что в Китае мощность ветряков, до сих пор не подключенных к сети, превышает мощность всей энергетики России к востоку от Байкала.

Таким образом, перспективы гидроэнергетики зависят от прогресса технологий и производства, и хранения и передачи энергии в совокупности.

Энергетика – очень капиталоемкая и потому консервативная отрасль. До сих пор работают некоторые электростанции, особенно ГЭС, построенные в начале двадцатого века. Поэтому для оценки перспективы на полвека вместо объемных показателей того или иного вида энергетики важнее смотреть на скорость прогресса в каждой технологии. Подходящие показатели технического прогресса в генерации – КПД (или процент потерь), единичная мощность агрегатов, стоимость 1 киловатта мощности генерации, стоимость передачи 1 киловатта на 1 км, стоимость хранения 1 киловатт-часа в сутки.

Аккумулирование энергии

Хранение электроэнергии – новая отрасль в энергетике. Долгое время люди хранили топливо (дрова, уголь, потом нефть и нефтепродукты в цистернах, газ в емкостях под давление и подземных хранилищах). Потом появились накопители механической энергии (поднятой воды, сжатого воздуха, супермаховики и др.), среди них лидером остаются гидроаккумулирующие электростанции.

Вне зон вечной мерзлоты тепло, накопленное солнечными водонагревателями, уже можно закачивать под землю для отопления домов зимой. После распада СССР прекратились опыты по использованию энергии солнечного тепла для химических превращений.

Известные химические аккумуляторы имеют ограниченное количество циклов заряд-разряд. Суперконденсаторы имеют намного бо льшую долговечность, но их емкость пока недостаточна. Очень быстро совершенствуются накопители энергии магнитного поля в сверхпроводящих катушках.

Прорыв в распространении накопителей электроэнергии произойдет, когда цена снизится до 1 долл. за киловатт-час. Это позволит широко использовать виды электрогенерации, не способные работать непрерывно (солнечная, ветровая, приливная энергетика).

Альтернативная энергетика

Из технологий генерации быстрее всего сейчас происходят перемены в солнечной энергетике. Солнечные батареи позволяют производить энергию в любом потребном количестве – от зарядки телефона до снабжения мегаполисов. Энергии Солнца на Земле в сотню раз больше, чем остальных видов энергии вместе взятых.

Ветроэлектростанции прошли период снижения цен и находятся на этапе роста размеров башен и мощности генераторов. В 2012 году мощность всех ветряков мира превзошла мощность всех электростанций СССР. Однако в 20-е годы 21 века возможности улучшения ветряков будут исчерпаны и двигателем роста останется солнечная энергетика.

Технология больших ГЭС миновала свой «звездный час», с каждым десятилетием больших ГЭС строят все меньше. Внимание изобретателей и инженеров переключается на приливные и волновые электростанции. Однако приливы и большие волны есть не везде, поэтому их роль будет невелика. В 21 веке еще будут строить малые ГЭС, особенно в Азии.

Получение электроэнергии за счет тепла, идущего из недр Земли (геотермальная энергетика) перспективно, но лишь в отдельных районах. Технологии сжигания органического топлива еще несколько десятилетий будут составлять конкуренцию солнечной и ветровой энергетике, особенно там, где мало ветра и солнца.

Быстрее всего совершенствуются технологии получения горючего газа путем брожения отходов, пиролиза или разложения в плазме). Тем не менее, твердые бытовые отходы всегда перед газификацией будут требовать сортировки (а лучше раздельного сбора).

Технологии ТЭС

КПД парогазовых электростанций превысил 60%. Переоборудование всех газовых ТЭЦ в парогазовые (точнее, газопаровые) позволит увеличить выработку электроэнергии более чем на 50% без увеличения сжигания газа.

Угольные и мазутные ТЭЦ намного хуже газовых и по КПД, и по цене оборудования, и по количеству вредных выбросов. Кроме того, добыча угля требует больше всего человеческих жизней на мегаватт-час электроэнергии. Газификация угля на несколько десятилетий продлит существование угольной отрасли, но вряд ли профессия шахтера доживет до 22 века. Очень вероятно, что паровые и газовые турбины будут вытеснены быстро совершенствующимися топливными элементами в которых химическая энергия преобразуется в электрическую минуя стадии получения тепловой и механической энергии. Пока же топливные элементы очень дороги.

Атомная энергетика

Коэффициент полезного действия АЭС последние 30 лет рос медленнее всего. Совершенствование ядерных реакторов, каждый из которых стоит несколько миллиардов долларов, происходит очень медленно, а требования безопасности приводят к росту стоимости строительства. «Ядерный ренессанс» не состоялся. С 2006 г. в мире ввод мощностей АЭС меньше не только ввода ветровых, но и солнечных. Тем не менее, вероятно что некоторые АЭС доживут до 22 века, хотя из-за проблемы радиоактивных отходов их конец неизбежен. Возможно, в 21 веке будут работать и термоядерные реакторы, но их малое число, безусловно, «погоды не сделает».

До сих пор остается неясной возможность реализации «холодного термояда». В принципе, возможность термоядерной реакции без сверхвысоких температур и без образования радиоактивных отходов не противоречит законам физики. Но перспективы получения таким способом дешевой энергии очень сомнительны.

Новые технологии

И немного фантастики в чертежах. Сейчас в России проходят проверку три новых принципа изотермического преобразования теплоты в электричество. У этих опытов очень много скептиков: ведь нарушается второе начало термодинамики. Пока получена одна десятая микроватта. В случае успеха, сначала появятся батарейки для часов и приборов. Потом лампочки без проводов. Каждая лампочка станет источником прохлады. Кондиционеры будут вырабатывать электроэнергию вместо того чтобы потреблять ее. Провода в доме станут не нужны. Когда фантастика станет явью – судить рано.

А пока провода нам нужны. Больше половины цены киловатт-часа в России приходится на стоимость строительства и содержания линий электропередач и подстанций. Более 10% вырабатываемой электроэнергии уходит на нагрев проводов. Снизить затраты и потери позволяют «умные сети», автоматически управляющие множеством потребителей и производителей энергии. Во многих случаях для снижения потерь лучше передавать постоянный ток, чем переменный. Вообще избежать нагрева проводов можно, сделав их сверхпроводящими. Однако сверхпроводники, работающие при комнатной температуре, не найдены и неизвестно, будут ли найдены.

Для малонаселенных территорий с высокими затратами на транспортировку также важна распространенность и общедоступность источников энергии.

Наиболее распространена энергия Солнца, но Солнце видно не всегда (особенно за Полярным кругом). Зато зимой и ночью часто дует ветер, но не всегда и не везде. Тем не менее, ветросолнечные электростанции уже сейчас позволяют в разы снизить расход солярки в отдаленных поселках.

Некоторые геологи уверяют, что нефть и газ образуются почти повсеместно и в наши дни из углекислого газа, попадающего с водой под землю. Правда, использование гидроразрыва пластов («фрекинга») разрушает естественные места, где нефть и газ могут скапливаться. Если это верно, то небольшое количество нефти и газа (в десятки раз меньше, чем сейчас) можно добывать почти везде без ущерба для геохимического кругооборота углерода, вот только экспортировать углеводороды – значит, лишать себя будущего.

Разнообразие природных ресурсов в мире означает, что устойчивое получение электроэнергии требует сочетания разных технологий применительно к местным условиям. В любом случае, неограниченное количество энергии на Земле получить нельзя и по экологическим, и по ресурсным причинам. Поэтому рост производства электроэнергии, стали, никеля и других материальных вещей на Земле в ближайшем столетии неизбежно сменится ростом производства интеллектуального и духовного.

Игорь Эдуардович Шкрадюк

Перспективы развития ТЭС и АЭС

В начале XXI века вопрос модернизации и развития энергетики России крайне обострился с учетом следующих факторов:

Износ оборудования электростанций, тепловых и электрических сетей к концу первого десятилетия мог превысить 50 %, а это означало, что к 2020 году износ мог достигнуть 90 %;

Технико-экономические характеристики производства и транспорта энергии изобилуют многочисленными очагами непроизводительных затрат первичных энергоресурсов;

Уровень оснащения объектов энергетики средствами автоматики, защит и информатики находится на уровне значительно более низком, чем на объектах энергетики стран Западной Европы и США;

Первичный энергоресурс на ТЭС России используется с КПД не превышающим 32 – 33 %, в отличие от стран, применяющих передовые технологии паросилового цикла с КПД до 50% и выше;

Уже в первом пятилетии XXI века по мере стабилизации экономики России стало очевидным, что энергетика из «локомотива» экономики может превратится в «полосу препятствий». К 2005 г. энергосистема Московского региона стала дефицитной;

Изыскание средств для модернизации и развития энергетической базы России в условиях рыночной экономики и реформирования энергетики, исходя из рыночных принципов.

В этих условиях были созданы несколько программ, однако их дополнения и «развитие» продолжаются.

Вот одна из программ созданных в конце прошлого века (табл. 6).

Таблица 6. Вводы мощностей электростанций, млн. кВт.

Таблица 7. Инвестиционные потребности электроэнергетики, млрд. долл.

Острота положения дел с энергоснабжением экономики России и социальной сферы по оценкам специалистов РАО «ЕЭС России» иллюстрируется появлением энергодефицитных регионов (в осеннее-зимний период максимума нагрузок потребления).

Так возникла энергопрограмма ГОЭЛРО-2. Следует заметить, что в различных источниках приводятся значительно отличные друг от друга показатели. Именно поэтому в предыдущих таблицах (табл. 6, табл. 7) нами приведены максимальные из опубликованных показателей. Очевидно, что этот «потолочный» уровень прогнозов может быть использован как ориентир.

В число основных направлений следует включить:

1. Ориентация на создание ТЭС на твердом топливе. По мере приведения цен на природный газ к уровню мировых, ТЭС на твердом топливе будут экономически обоснованы. Современные методы сжигания угля (в циркулирующем кипящем слое), а далее угольные технологии комбинированного цикла с предварительной газификацией угля или его сжигание в котлах кипящего слоя под давлением позволяют сделать ТЭС на твердом топливе конкурентными на «рынке» ТЭС будущего.

2. Применение «дорогого» природного газа на вновь сооружаемых ТЭС будет обосновано лишь при использовании установок комбинированного цикла, а также при создании мини-ТЭС на базе ГТУ и т.п.

3. Техническое перевооружение существующих ТЭС из-за нарастающего физического и морального износа останется приоритетным направлением. Следует заметить, что при замене узлов и агрегатов появляется возможность внедрения совершенных технических решений, в том числе и в вопросах автоматизации и информатики.

4. Развитие атомной энергетики в ближайшей перспективе связано с завершением строительства блоков высокой готовности, а также проведением работ по продлению срока службы АЭС на экономически оправданный период времени. В более отдаленной перспективе вводы мощностей на АЭС должны вестись путем замены демонтируемых блоков на энергоблоки нового поколения, отвечающие современным требованиям безопасности.

Будущее развитие атомной энергетики обусловлено решением ряда проблем, основными из которых является достижение полной безопасности действующих и новых АЭС, закрытие отработавших свой ресурс АЭС, обеспечение экономической конкурентоспособности атомной энергетики по сравнению с альтернативными энергетическими технологиями.

5. Важным направлением в электроэнергетике для современных условий является развитие сети распределенных генерирующих мощностей путем строительства небольших электростанций, в первую очередь, ТЭЦ небольшой мощности с ПГУ и ГТУ



Поделиться