Развитие тэс. Проблемы и перспективы развития электроэнергетики россии

Тепловые и атомные электрические станции, их оборудование и технологические схемы должны удовлетворять ряду технических и экономических требований: надежное и бесперебойное энергоснабжение потребителей в соответствии с графиком нагрузок особенно важно для снабжения электроэнергией, т.к. производство и потребление ее осуществляется практически почти одновременно.

Электроэнергия не запасается и не хранится на складах. Ведутся работы по созданию накопителей электроэнергии. Показатели качества электроэнергии должны удовлетворять установленным нормам: обеспечение требований безопасности, нормальных условий труда персонала, охрана окружающей среды, включая требования противопожарной безопасности, радиационной безопасности, противоаварийной и биологической защиты.

Помещения ТЭС и АЭС должны иметь хорошее естественное освещение, аэрацию и вентиляцию. Должна обеспечиваться защита воздушного бассейна от загрязнений вредными выбросами путем улавливания твердых частиц, оксиды серы и азота и рассеивания их в верхних слоях атмосферы.

Источники водоснабжения защищают от попадания в них загрязняющих сточных вод. Должны осуществляться преимущественно безотходные технологические схемы водоподготовки, золоулавливания и др.

Экономические требования заключаются в снижении первоначальных затрат и эксплуатационных расходов. Такое снижение должно выполняться в результате рационального конструирования оборудования и проектирования ТЭС в целом, индустриализация строительства и монтажа. Одно из важнейших требований экономичности – снижение затрат на топливо.

Тепловая экономичность ТЭС должна быть, возможно, высокой, энергетические показатели ТЭС не должны уступать по своим значениям показателям лучших образцов отечественной и зарубежной энергетики.

Перспективы развития тэс и аэс

В начале XXI века вопрос модернизации и развития энергетики России крайне обострился с учетом следующих факторов:

    Износ оборудования электростанций, тепловых и электрических сетей к концу первого десятилетия мог превысить 50 %, а это означало, что к 2020 году износ мог достигнуть 90 %;

    Технико-экономические характеристики производства и транспорта энергии изобилуют многочисленными очагами непроизводительных затрат первичных энергоресурсов;

    Уровень оснащения объектов энергетики средствами автоматики, защит и информатики находится на уровне значительно более низком, чем на объектах энергетики стран Западной Европы и США;

    Первичный энергоресурс на ТЭС России используется с КПД не превышающим 32 – 33 %, в отличие от стран, применяющих передовые технологии паросилового цикла с КПД до 50% и выше;

    Уже в первом пятилетии XXI века по мере стабилизации экономики России стало очевидным, что энергетика из «локомотива» экономики может превратится в «полосу препятствий». К 2005 г. энергосистема Московского региона стала дефицитной;

    Изыскание средств для модернизации и развития энергетической базы России в условиях рыночной экономики и реформирования энергетики, исходя из рыночных принципов.

В этих условиях были созданы несколько программ, однако их дополнения и «развитие» продолжаются.

Вот одна из программ созданных в конце прошлого века (табл. 6).

Таблица 6. Вводы мощностей электростанций, млн. кВт.

Электростанции

2006 – 2010 гг.

2011 – 2015 гг.

2016 – 2020 гг.

в том числе

из них ТЭЦ

в т.ч. ПГУ + ГТУ

Таблица 7. Инвестиционные потребности электроэнергетики, млрд. долл.

Показатель

2006 – 2010 гг.

2011 – 2015 гг.

2016 – 2020 гг.

Общие капиталовложения,

в том числе:

ГЭС, ГАЭС

Электрические сети

Острота положения дел с энергоснабжением экономики России и социальной сферы по оценкам специалистов РАО «ЕЭС России» иллюстрируется появлением энергодефицитных регионов (в осеннее-зимний период максимума нагрузок потребления).

Так возникла энергопрограмма ГОЭЛРО-2. Следует заметить, что в различных источниках приводятся значительно отличные друг от друга показатели. Именно поэтому в предыдущих таблицах (табл. 6, табл. 7) нами приведены максимальные из опубликованных показателей. Очевидно, что этот «потолочный» уровень прогнозов может быть использован как ориентир.

В число основных направлений следует включить:

    Ориентация на создание ТЭС на твердом топливе. По мере приведения цен на природный газ к уровню мировых, ТЭС на твердом топливе будут экономически обоснованы. Современные методы сжигания угля (в циркулирующем кипящем слое), а далее угольные технологии комбинированного цикла с предварительной газификацией угля или его сжигание в котлах кипящего слоя под давлением позволяют сделать ТЭС на твердом топливе конкурентными на «рынке» ТЭС будущего.

    Применение «дорогого» природного газа на вновь сооружаемых ТЭС будет обосновано лишь при использовании установок комбинированного цикла, а также при создании мини-ТЭС на базе ГТУ и т.п.

    Техническое перевооружение существующих ТЭС из-за нарастающего физического и морального износа останется приоритетным направлением. Следует заметить, что при замене узлов и агрегатов появляется возможность внедрения совершенных технических решений, в том числе и в вопросах автоматизации и информатики.

    Развитие атомной энергетики в ближайшей перспективе связано с завершением строительства блоков высокой готовности, а также проведением работ по продлению срока службы АЭС на экономически оправданный период времени. В более отдаленной перспективе вводы мощностей на АЭС должны вестись путем замены демонтируемых блоков на энергоблоки нового поколения, отвечающие современным требованиям безопасности.

Будущее развитие атомной энергетики обусловлено решением ряда проблем, основными из которых является достижение полной безопасности действующих и новых АЭС, закрытие отработавших свой ресурс АЭС, обеспечение экономической конкурентоспособности атомной энергетики по сравнению с альтернативными энергетическими технологиями.

    Важным направлением в электроэнергетике для современных условий является развитие сети распределенных генерирующих мощностей путем строительства небольших электростанций, в первую очередь, ТЭЦ небольшой мощности с ПГУ и ГТУ

Электроэнергетика, как и другие отрасли промышленности, имеет свои проблемы и перспективы развития.

В настоящее время электроэнергетика России находится в кризисе. Понятие "энергетический кризис" можно определить, как напряженное состояние, сложившееся в результате несовпадения между потребностями современного общества в энергии и запасами энергоресурсов, в том числе вследствие нерациональной структуры их потребления.

В России можно на данный момент выделить 10 групп наиболее острых проблем:

  • 1). Наличие большой доли физически и морально устаревшего оборудования. Увеличение доли физически изношенных фондов приводит к росту аварийности, частым ремонтам и снижению надежности энергоснабжения, что усугубляется чрезмерной загрузкой производственных мощностей и недостаточными резервами. На сегодняшний день износ оборудования одна из важнейших проблем электроэнергетики. На российских электростанциях он очень велик. Наличие большой доли физически и морально устаревшего оборудования усложняет ситуацию с обеспечением безопасности работы электростанций. Около одной пятой производственных фондов в электроэнергетике близки или превысили проектные сроки эксплуатации и требуют реконструкции или замены. Обновление оборудования ведется недопустимо низкими темпами и в явно недостаточном объеме (таблица).
  • 2). Основной проблемой энергетики является также то, что наряду с черной и цветной металлургией энергетика оказывает мощное негативное влияние на окружающую среду. Предприятия энергетики формируют 25 % всех выбросов промышленности.

В 2000 году объемы выбросов вредных веществ в атмосферу составляли 3,9 тонн в том числе выбросы от ТЭС - 3, 5 млн тонн. На диоксид серы приходится до 40% общего объема выбросов, твердых веществ - 30%, оксидов азота - 24 %. То есть ТЭС являются главной причиной формирования кислотных остатков.

Крупнейшими загрязнителями атмосферы являются Рафтинская ГРЭС (г. Асбест, Свердловская область) - 360 тыс. тонн, Новочеркасская (г. Новочеркасск, Ростовская обл.) - 122 тыс. тонн, Троицкая (г. Троицк-5, Челябинская обл.) - 103 тыс. тонн, Верхнетагильская (Свердловская обл.) - 72 тыс. тонн.

Энергетика является и крупнейшим потребителем пресной и морской воды, расходуемой на охлаждение агрегатов и используемой в качестве носителя тепла. На долю отрасли приходится 77% общего объема свежей воды, использованной промышленностью России.

Объем сточных вод, сброшенных предприятиями отрасли в поверхностные водоёмы, в 2000 г. Составил 26,8 млрд куб. м. (на 5,3% больше чем в 1999г.). Крупнейшими источниками загрязнения водных объектов являются ТЭЦ, в то время как ГРЭС - главных источников загрязнения воздуха. Это ТЭЦ-2 (г. Владивосток) - 258 млн куб. м, Безымянская ТЭЦ (Самарская область) - 92 млн куб. м, ТЭЦ-1 (г. Ярославль) - 65 млн куб. м, ТЭЦ-10 (г. Ангарск, Иркутская обл.) - 54 млн куб. м, ТЭЦ-15 и Первомайская ТЭЦ (Санкт-Петербург) - суммарно 81 млн куб. м.

В энергетике образуется и большое количество токсичных отходов (шлаки, зола). В 2000 г. объем токсичных отходов составил 8,2 млн тонн.

Помимо загрязнения воздуха и воды, предприятия энергетики загрязняют почвы, а гидроэлектростанции оказывают сильнейшее воздействие на режим рек, речные и пойменные экосистемы.

  • 3). Жесткая тарифная политика. В электроэнергетике поставлены вопросы об экономичном использовании энергии и о тарифах на неё. Можно говорить о необходимости экономии вырабатываемой электроэнергии. Ведь в настоящее время в стране расходуется на единицу продукции в 3 раза больше энергии, чем в США. В этой области предстоит большая работа. В свою очередь тарифы на энергию растут опережающими темпами. Действующие в России тарифы и их соотношение не соответствуют мировой и европейской практике. Существующая тарифная политика привела к убыточной деятельности и низкой рентабельности ряда АО-энерго.
  • 4). Ряд районов уже испытывает трудности с обеспечением электроэнергией. Наряду с Центральным районом, дефицит электроэнергии отмечается в Центрально-Черноземном, Волго-Вятском и Северо-Западном экономических районах. Например, в Центральном экономическом районе в 1995 году было произведено огромное количество электроэнергии - 19% от общероссийских показателей (154,7 млрд. кВт), но она вся расходуется внутри региона.
  • 5). Сокращается прирост мощностей. Это объясняется некачественным топливом, изношенностью оборудования, проведением работ по повышению безопасности блоков и рядом других причин. Неполное использование мощностей ГЭС происходит из-за малой водности рек. В настоящее время 16 % мощностей электростанций России уже отработали свой ресурс. Из них на ГЭС приходится 65%, на ТЭС - 35 %. Ввод новых мощностей сократился до 0,6 - 1,5 млн кВт в год (1990-2000гг.) по сравнению с 6-7 млн кВт в год (1976-1985гг.).
  • 6). Возникшее противодействие общественности и местных органов власти размещению объектов электроэнергетики в связи с их крайне низкой экологической безопасностью. В частности после Чернобыльской катастрофы были прекращены многие изыскательные работы, строительство и расширение АЭС на 39 площадках общей проектной мощностью 109 млн кВт.
  • 7). Неплатежи, как со стороны потребителей электроэнергии, так и со стороны энергокомпаний за топливо, оборудование и др.;
  • 8). Недостаток инвестиций, связанный как с проводимой тарифной политикой, так и с финансовой "непрозрачностью" отрасли. Крупнейшие западные стратегические инвесторы готовы вкладывать средства в российскую электроэнергетику лишь при условии роста тарифов, чтобы обеспечить возвратность вложений.
  • 9). Перебои в энергоснабжении отдельных регионов, в частности Приморья;
  • 10). Невысокий коэффициент полезного использования энергоресурсов. Это значит, что 57% энергоресурсов ежегодно теряется. Большая часть потерь происходит на электростанциях, в двигателях, непосредственно использующих горючее, а также в технологических процессах, где топливо служит сырьем. При транспортировке топлива также происходят большие потери энергоресурсов.

Что же касается перспектив развития электроэнергетики в России, то, несмотря на все свои проблемы, электроэнергетика имеет достаточные перспективы.

Например, работа ТЭС требует добычи огромного объема невозобновляемых ресурсов, имеет достаточно низкий КПД, ведет к загрязнению окружающей среды. В России тепловые электростанции работают на мазуте, газе, угле. Однако на данном этапе привлекательными являются региональные энергокомпании с высоким удельным весом газа в структуре топливного баланса, как более эффективного и экологически выгодного топлива. В частности можно отметить, что электростанции, работающие на газе, выбрасывают в атмосферу на 40% меньше углекислого газа. Кроме того газовые станции имеют более высокий коэффициент использования установленной мощности по сравнению с мазутными и угольными станциями, отличаются более стабильным теплоснабжением и не несут затрат по хранению топлива. Работающие на газе станции находятся в лучшем состоянии, чем угольные и мазутные, так как они относительно недавно введены в эксплуатацию. А также цены на газ регулируются государством. Таким образом, становится более перспективным строительство тепловых электростанций, топливом для которых является газ. Также на ТЭС перспективно использование пылеочистительного оборудования с максимально возможным КПД, при этом образующуюся золу использовать в качестве сырья при производстве строительных материалов.

Строительство ГЭС в свою очередь требует затопления большого количества плодородных земель, или в результате давления воды на земную кору ГЭС может вызвать землетрясение. Кроме этого сокращаются рыбные запасы в реках. Перспективным становится строительство сравнительно небольших ГЭС, не требующих серьезных капиталовложений, работающих в автоматическом режиме преимущественно в горной местности, а также - обваловка водохранилищ для освобождения плодородных земель.

Что же касается ядерной энергетики, то строительство АЭС имеет определенный риск, из-за того, что трудно предсказать масштабы последствий при осложнении работы энергоблоков АЭС или при форс-мажорных обстоятельствах. Также не решена проблема утилизации твердых радиоактивных отходов, несовершенна и система защиты. Ядерная электроэнергетика имеет наибольшие перспективы в развитии термоядерных электростанций. Это практически вечный источник энергии, почти безвредный для окружающей среды. Развитие атомной электроэнергетики в ближайшей перспективе будет основано на безопасной эксплуатации существующих мощностей, с постепенной заменой блоков первого поколения наиболее совершенными российскими реакторами. Наибольший ожидаемый рост мощностей произойдет за счет завершения строительства уже начатых станций.

Существует 2 противоположные концепции дальнейшего существования ядерной электроэнергетики в стране.

  • 1. Официальная, которая поддерживается Президентом и Правительством. Основываясь на положительных чертах АЭС, они предлагают программу широкого развития электроэнергетики России.
  • 2. Экологическая, во главе которой стоит академик Яблоков. Сторонники этой концепции полностью отвергают возможность нового строительства атомных электростанций, как по экологическим, так и по экономическим соображениям.

Есть и промежуточные концепции. Например ряд специалистов считает, что нужно ввести мораторий на строительство атомных электростанций опираясь на недостатки АЭС. Другие же предполагают, что остановка развития ядерной электроэнергетики может привести к тому, что Россия полностью потеряет свой научно-технический и промышленный потенциал в ядерной энергетике.

Исходя из всех негативных влияний традиционной энергетики на окружающую среду, большое внимание уделяется изучению возможностей использования нетрадиционных, альтернативных источников энергии. Практическое применение уже получили энергия приливов и отливов и внутреннее тепло Земли. Ветровые энергоустановки имеются в жилых поселках Крайнего Севера. Ведутся работы по изучению возможности использования биомассы в качестве источника энергии. В будущем, возможно, огромную роль будет играть гелиоэнергетика.

Опыт развития отечественной электроэнергетики выработал следующие принципы размещения и функционирования предприятий этой отрасли промышленности:

  • 1. концентрация производства электроэнергии на крупных районных электростанциях, использующих относительно дешевое топливо и энергоресурсы;
  • 2. комбинирование производства электроэнергии и тепла для теплофикации населенных пунктов, прежде всего городов;
  • 3. широкое освоение гидроресурсов с учетом комплексного решения задач электроэнергетики, транспорта, водоснабжения;
  • 4. необходимость развития атомной энергетики, особенно в районах с напряженным топливно-энергетическим балансом, с учетом безопасности использования АЭС;
  • 5. создание энергосистем, формирующих единую высоковольтную сеть страны.

В настоящий момент России нужна новая энергетическая политика, которая была бы достаточно гибкой и предусматривала все особенности данной отрасли, в том числе и особенности размещения. В качестве основных задач развития российской энергетики можно выделить следующие:

ь Снижение энергоемкости производства.

ь Сохранение целостности и развитие Единой энергетической системы России, ее интеграция с другими энергообъединениями на Евразийском континенте;

ь Повышение коэффициента используемой мощности электростанций, повышение эффективности функционирования и обеспечение устойчивого развития электроэнергетики на базе современных технологий;

ь Полный переход к рыночным отношениям, освобождение цен на энергоносители, полный переход на мировые цены.

ь Скорейшее обновление парка электростанций.

ь Приведение экологических параметров электростанций к уровню мировых стандартов, снижение вредного воздействия на окружающую среду

Исходя из данных задач создана "Генеральная схема размещения объектов электроэнергетики до 2020 года", одобренная Правительством РФ. (диаграмма 2)

Приоритетами Генеральной схемы в рамках установленных ориентиров долгосрочной государственной политики в сфере электроэнергетики являются:

ь опережающее развитие электроэнергетической отрасли, создание в ней экономически обоснованной структуры генерирующих мощностей и электросетевых объектов для надежного обеспечения потребителей страны электрической и тепловой энергией;

ь оптимизация топливного баланса электроэнергетики за счет максимально возможного использования потенциала развития атомных, гидравлических, а также использующих уголь тепловых электростанций и уменьшения в топливном балансе отрасли использования газа;

ь создание сетевой инфраструктуры, развивающейся опережающими темпами по сравнению с развитием электростанций и обеспечивающей полноценное участие энергокомпаний и потребителей в функционировании рынка электрической энергии и мощности, усиление межсистемных связей, гарантирующих надежность взаимных поставок электрической энергии и мощности между регионами России, а также возможность экспорта электрической энергии;

ь минимизация удельных расходов топлива на производство электрической и тепловой энергии путем внедрения современного высокоэкономичного оборудования, работающего на твердом и газообразном топливе;

ь снижение техногенного воздействия электростанций на окружающую среду путем эффективного использования топливно-энергетических ресурсов, оптимизации производственной структуры отрасли, технологического перевооружения и вывода из эксплуатации устаревшего оборудования, увеличения объема природоохранных мероприятий на электростанциях, реализации программ по развитию и использованию возобновляемых источников энергии.

По результатам мониторинга в Правительство Российской Федерации ежегодно представляется доклад о ходе реализации Генеральной схемы. Через несколько лет будет видно, насколько она эффективна и насколько реализуются её положения по использованию всех перспектив развития российской энергетики.

В перспективе Россия должна отказаться от строительства новых крупных тепловых и гидравлических станций, требующих огромных инвестиций и создающих экологическую напряженность. Предполагается строительство ТЭЦ малой и средней мощности и малых АЭС в удаленных северных и восточных регионах. На Дальнем Востоке предусматривается развитие гидроэнергетики за счет строительства каскада средних и малых ГЭС. Новые ТЭЦ будут строиться на газе, и только в Канско-Ачинском бассейне предполагается строительство мощных конденсационных ГРЭС из-за дешевой, открытой добычи угля. Имеет перспективы использование геотермальной энергии. Районами, наиболее перспективными для широкого использования термальных вод являются Западная и Восточная Сибирь, а также Камчатка, Чукотка, Сахалин. В перспективе масштабы использования термальных вод будут неуклонно возрастать. Проводятся исследования по вовлечению неисчерпаемых источников энергии, таких как энергия Солнца, ветра, приливов и др., в хозяйственный оборот, что даст возможность обеспечить в стране экономию энергоресурсов, особенно минерального топлива.

Перспективы развития ТЭС и АЭС

В начале XXI века вопрос модернизации и развития энергетики России крайне обострился с учетом следующих факторов:

Износ оборудования электростанций, тепловых и электрических сетей к концу первого десятилетия мог превысить 50 %, а это означало, что к 2020 году износ мог достигнуть 90 %;

Технико-экономические характеристики производства и транспорта энергии изобилуют многочисленными очагами непроизводительных затрат первичных энергоресурсов;

Уровень оснащения объектов энергетики средствами автоматики, защит и информатики находится на уровне значительно более низком, чем на объектах энергетики стран Западной Европы и США;

Первичный энергоресурс на ТЭС России используется с КПД не превышающим 32 – 33 %, в отличие от стран, применяющих передовые технологии паросилового цикла с КПД до 50% и выше;

Уже в первом пятилетии XXI века по мере стабилизации экономики России стало очевидным, что энергетика из «локомотива» экономики может превратится в «полосу препятствий». К 2005 г. энергосистема Московского региона стала дефицитной;

Изыскание средств для модернизации и развития энергетической базы России в условиях рыночной экономики и реформирования энергетики, исходя из рыночных принципов.

В этих условиях были созданы несколько программ, однако их дополнения и «развитие» продолжаются.

Вот одна из программ созданных в конце прошлого века (табл. 6).

Таблица 6. Вводы мощностей электростанций, млн. кВт.

Таблица 7. Инвестиционные потребности электроэнергетики, млрд. долл.

Острота положения дел с энергоснабжением экономики России и социальной сферы по оценкам специалистов РАО «ЕЭС России» иллюстрируется появлением энергодефицитных регионов (в осеннее-зимний период максимума нагрузок потребления).

Так возникла энергопрограмма ГОЭЛРО-2. Следует заметить, что в различных источниках приводятся значительно отличные друг от друга показатели. Именно поэтому в предыдущих таблицах (табл. 6, табл. 7) нами приведены максимальные из опубликованных показателей. Очевидно, что этот «потолочный» уровень прогнозов может быть использован как ориентир.

В число основных направлений следует включить:

1. Ориентация на создание ТЭС на твердом топливе. По мере приведения цен на природный газ к уровню мировых, ТЭС на твердом топливе будут экономически обоснованы. Современные методы сжигания угля (в циркулирующем кипящем слое), а далее угольные технологии комбинированного цикла с предварительной газификацией угля или его сжигание в котлах кипящего слоя под давлением позволяют сделать ТЭС на твердом топливе конкурентными на «рынке» ТЭС будущего.

2. Применение «дорогого» природного газа на вновь сооружаемых ТЭС будет обосновано лишь при использовании установок комбинированного цикла, а также при создании мини-ТЭС на базе ГТУ и т.п.

3. Техническое перевооружение существующих ТЭС из-за нарастающего физического и морального износа останется приоритетным направлением. Следует заметить, что при замене узлов и агрегатов появляется возможность внедрения совершенных технических решений, в том числе и в вопросах автоматизации и информатики.

4. Развитие атомной энергетики в ближайшей перспективе связано с завершением строительства блоков высокой готовности, а также проведением работ по продлению срока службы АЭС на экономически оправданный период времени. В более отдаленной перспективе вводы мощностей на АЭС должны вестись путем замены демонтируемых блоков на энергоблоки нового поколения, отвечающие современным требованиям безопасности.

Будущее развитие атомной энергетики обусловлено решением ряда проблем, основными из которых является достижение полной безопасности действующих и новых АЭС, закрытие отработавших свой ресурс АЭС, обеспечение экономической конкурентоспособности атомной энергетики по сравнению с альтернативными энергетическими технологиями.

5. Важным направлением в электроэнергетике для современных условий является развитие сети распределенных генерирующих мощностей путем строительства небольших электростанций, в первую очередь, ТЭЦ небольшой мощности с ПГУ и ГТУ





























Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Презентация представляет собой дополнительный материал к урокам, посвящённым развитию энергетики. Энергетика любой страны является основой развития производительных сил, создания материально – технической базы общества. В презентации отражены проблемы и перспективы всех видов энергетики, перспективные (новые) виды энергетики, используется опыт музейной педагогики, самостоятельные поисковые работы обучающихся (работа с журналом «Япония сегодня»), творческие работы обучающихся (плакаты). Презентацию можно использовать на уроках географии в 9 и 10 классах, во внеурочной деятельности (занятиях на факультативах, элективных курсах), в проведении Недели географии «22 апреля – День Земли», на уроках экологии и биологии «Глобальные проблемы человечества. Сырьевая и энергетическая проблема».

В своей работе я использовала метод проблемного обучения, который заключался в создании перед обучающимися проблемных ситуаций и разрешении их в процессе совместной деятельности учащихся и учителя. При этом учитывалась максимальная самостоятельность обучающихся и под общим руководством учителя, направляющего деятельность обучающихся.

Проблемное обучение позволяет не только сформировать у обучающихся, необходимую систему знаний, умений и навыков, достигать высокого уровня развития школьников, но, что особенно важно, оно позволяет сформировать особый стиль умственной деятельности, исследовательскую активность и самостоятельность обучающихся. При работе с данной презентацией у обучающихся проявляется актуальное направление – исследовательская деятельность школьников.

Отрасль объединяет группу производств, занятых добычей и транспортировкой топлива, выработкой энергии и передачей её потребителю.

Природные ресурсы, которые используют для получения энергии – это топливные ресурсы, гидроресурсы, ядерная энергия, а также альтернативные виды энергии. Размещение большинства отраслей промышленности зависит от развития электроэнергии. Наша страна располагает огромными запасами топливно – энергетических ресурсов. Россия была, есть и будет одной из ведущих энергетических держав мира. И это не только потому, что в недрах страны находится 12% мировых запасов угля, 13% нефти и 36% мировых запасов природного газа, которых достаточно для полного обеспечения собственных потребностей и для экспорта в сопредельные государства. Россия вошла в число ведущих мировых энергетических держав, прежде всего, благодаря созданию уникального производственного, научно – технического и кадрового потенциала ТЭК.

Сырьевая проблема

Минеральные ресурсы – первоисточник, исходная основа человеческой цивилизации практически во всех фазах ее развития:

– Топливные полезные ископаемые;
– Рудные полезные ископаемые;
– Нерудные полезные ископаемые.

Современные темпы энергопотребления растут в геометрической прогрессии. Если даже учесть, что темпы роста потребления электроэнергии несколько сократятся из-за совершенствования энергосберегающих технологий, запасов электрического сырья хватит максимум на 100 лет. Однако положение усугубляется ещё и несоответствием структуры запасов и потребления органического сырья. Так, 80% запасов органического топлива приходится на уголь и лишь 20% на нефть и газ, в то время как 8/10 современного энергопотребления приходится на нефть и газ.

Следовательно, временные рамки ещё более сужаются. Однако лишь сегодня человечество избавляется от идеологических представлений о том, что они практически бесконечны. Ресурсы минерального сырья ограничены, фактически невосполнимы.

Энергетическая проблема.

Сегодня энергетика мира базируется на источниках энергии:

– Горючих минеральных ископаемых;
– Горючих органических ископаемых;
– Энергия рек. Нетрадиционные виды энергии;
– Энергия атома.

При современных темпах подорожания топливных ресурсов Земли проблема использования возобновляемых источников энергии становится всё более актуальной и характеризует энергетическую и экономическую независимости государства.

Преимущества и недостатки ТЭС.

Преимущества ТЭС:

1. Себестоимость электроэнергии на ГЭС очень низкая;
2. Генераторы ГЭС можно достаточно быстро включать и выключать в зависимости от потребления энергии;
3. Отсутствует загрязнение воздуха.

Недостатки ТЭС:

1. Строительство ГЭС может быть более долгим и дорогим, чем других энергоисточников;
2. Водохранилища могут занимать большие территории;
3. Плотины могут наносить ущерб рыбному хозяйству, поскольку перекрывают путь к нерестилищам.

Преимущества и недостатки ГЭС.

Преимущества ГЭС:
– Строятся быстро и дешево;
– Работают в постоянном режиме;
– Размещены практически повсеместно;
– Преобладание ТЭС в энергетическом хозяйстве РФ.

Недостатки ГЭС:

– Потребляют большое количество топлива;
– Требует длительной остановки при ремонтах;
– Много тепла теряется в атмосфере, выбрасывают много твердых и вредных газов в атмосферу;
– Крупнейшие загрязнители окружающей среды.

В структуре выработки электроэнергии в мире первое место принадлежит тепловым электростанциям (ТЭС) – их доля составляет 62%.
Альтернативой органическому топливу и возобновляемым источником энергии является гидроэнергетика. Гидроэлектростанция (ГЭС) - электростанция, в качестве источника энергии использующая энергию водного потока. Гидроэлектростанции обычно строят на реках, сооружая плотины и водохранилища. Гидроэнергетика – это получение электроэнергии за счет использования возобновляемых речных, приливных, геотермальных водных ресурсов. Это использование возобновляемых водных ресурсов предполагает управление паводками, укрепление русла рек, переброс водных ресурсов в районы, страдающие от засухи, сохранение подземных токовых вод.
Однако и здесь источник энергии достаточно сильно ограничен. Это связано с тем, что крупные реки, как правило сильно удалены от промышленных центов либо их мощности практически полностью использованы. Таким образом, гидроэнергетика, в настоящий момент обеспечивающего около 10% производства энергии в мире, не сможет существенно увеличить эту цифру.

Проблемы и перспективы АЭС

В России доля атомной энергии достигает 12%. Имеющиеся в России запасы добытого урана обладают электропотенциалом в 15 трлн. кВт.ч, это столько сколько смогут выработать все наши электростанции за 35 лет. На сегодня только атомная энергетика
способна резко и за короткий срок ослабить явление парникового эффекта. Актуальной проблемой является безопасность АЭС. 2000 год стал началом перехода принципиально новые подходы к нормированию и обеспечению радиационной безопасности АЭС.
За 40 лет развития атомной энергетики в мире построено около 400 энергоблоков в 26 странах мира. Основными преимуществами атомной энергетики являются высокая конечная рентабельность и отсутствие выбросов в атмосферу продуктов сгорания, основными недостатками является потенциальная опасность радиоактивного заражения окружающей среды продуктами деления ядерного топлива при аварии и проблема переработки использованного ядерного топлива.

Нетрадиционная (альтернативная энергетика)

1. Солнечная энергетика . Это использование солнечного излучения для получения энергии в каком-либо виде. Солнечная энергетика использует возобновляемый источник энергии и в перспективе может стать экологически чистой.

Преимущества солнечной энергии:

– Общедоступность и неисчерпаемость источника;
– Теоретически, полная безопасность для окружающей среды.

Недостатки солнечной энергии:

– Поток солнечной энергии на поверхности Земли сильно зависит от широты и климата;
– Солнечная электростанция не работает ночью и недостаточно эффективно работает в утренних и вечерних сумерках;
Фотоэлементы содержат ядовитые вещества, например, свинец, кадмий, галлий, мышьяк и т. д., а их производство потребляет массу других опасных веществ.

2. Ветроэнергетика . Это отрасль энергетики, специализирующаяся на использовании энергии ветра - кинетической энергии воздушных масс в атмосфере. Так как энергия ветра является следствием деятельности солнца, то её относят к возобновляемым видам энергии.

Перспективы ветроэнергетики.

Ветроэнергетика является бурно развивающейся отраслью, так в конце 2007 года общая установленная мощность всех ветрогенераторов составила 94,1 гигаватта, увеличившись впятеро с 2000 год. Ветряные электростанции всего мира в 2007 году произвели около 200 млрд кВт·ч, что составляет примерно 1,3 % мирового потребления электроэнергии. Прибрежная ферма ветроэнергетических установок Миддельгрюнден, около Копенгагена, Дания. На момент постройки она была крупнейшей в мире.

Возможности реализации ветроэнергетики в России. В России возможности ветроэнергетики до настоящего времени остаются практически не реализованными. Консервативное отношение к перспективному развитию топливно-энергетического комплекса практически тормозит эффективное внедрение ветроэнергетики, особенно в Северных районах России, а также в степной зоне Южного Федерального Округа, и в частности в Волгоградской области.

3. Термоядерная энергетика. Солнце - природный термоядерный реактор. Ещё более интересной, хотя и относительно отдалённой перспективой выглядит использование энергии ядерного синтеза. Термоядерные реакторы, по расчётам, будут потреблять меньше топлива на единицу энергии, и как само это топливо (дейтерий, литий, гелий-3), так и продукты их синтеза нерадиоактивны и, следовательно, экологически безопасны.

Перспективы термоядерной энергетики. Данная область энергетики имеет огромный потенциал, в настоящее время в рамках проекта "ITER", в котором участвуют Европа, Китай, Россия, США, Южная Корея и Япония во Франции идет строительство крупнейшего термоядерного реактора, целью которого является вывести УТС (Управляемый термоядерный синтез) на новый уровень. Строительство планируется завершить в 2010 году.

4. Биотопливо, биогаз. Биотопливо - это топливо из биологического сырья, получаемое, как правило, в результате переработки стеблей сахарного тростника или семян рапса, кукурузы, сои. Различается жидкое биотопливо (для двигателей внутреннего сгорания, например, этанол, метанол, биодизель) и газообразное (биогаз, водород).

Виды биотоплива:

– Биометанол
– Биоэтанол
– Биобутанол
– Диметиловый эфир
– Биодизель
– Биогаз
– Водород

На данный момент самые развитые – биодизель и водород.

5. Геотермальная энергия. Под вулканическими островами Японии скрыты огромные количества геотермальной энергии, этой энергией можно воспользоваться извлекая горячую воду и пар. Преимущество: выделяет примерно в 20 раз меньше углекислого газа при производстве электричества, что снижает ее влияние на глобальную окружающую среду.

6. Энергия волн, приливов и отливов. В Японии важнейший источник энергии волновые турбины, которые преобразуют вертикальное движение океанских волн в давление воздуха вращающего турбины электрогенераторов. На побережье Японии установлено большое количество буев, использующих энергию приливов и отливов. Так используют энергию океана для обеспечения безопасности океанского транспорта.

Огромный потенциал энергии Солнца мог бы теоритически обеспечить все мировые потребности энергетики. Но КПД преобразования тепла в электроэнергию всего 10%. Это ограничивает возможности Солнечной энергетики. Принципиальные трудности возникают и при анализе возможностей создания генераторов большой мощности, использующих энергию ветра, приливы и отливы, геотермальную энергию, биогаз, растительное топливо и т.д. Всё это приводит к выводу об ограниченности возможностей рассмотренных так называемых «воспроизводимых» и относительно экологически чистых ресурсов энергетики, по крайней мере, в относительно близком будущем. Хотя эффект от их использования при решении отдельных частных проблем энергообеспечения может быть уже сейчас весьма впечатляющим.

Конечно, существует оптимизм по поводу возможностей термоядерной энергии и других эффективных способов получения энергии, интенсивно исследуемых наукой, но при современных масштабах энергопроизводства. При практическом освоении этих возможных источников потребуется несколько десятков лет из-за высокой капиталоёмкости и соответствующей инерционности в реализации проектов.

Исследовательские работы обучающихся:

1. Спецрепортаж «Зеленая энергия» для будущего: «Японии является мировым лидером по производству солнечной электроэнергии. 90% солнечной энергии, производимой в Японии, вырабатывается солнечными панелями в обычных домах. Японское правительство поставило цель в 2010 году получить примерно 4,8 млн. кВт энергии от солнечных батарей. Производство электроэнергии из биомассы в Японии. Из кухонных отходов выделяют газ метан. На этом газе работает двигатель, который генерирует электричество, также создаются благоприятные условия для защиты окружающей среды.

Статьи Рисунки Таблицы

Тепловые электростанции. Перспективы развития

из "Топливо Кн3"

Тепловые электростанции (ТЭС) составляли основу энергетической базы СССР . На их долю в конце 80-х годов прошлого столетия приходилось около 75 % вырабатываемой электроэнергии и примерно 50 % тепловой энергии. Планрфовалось, что и впредь, несмотря на строительство атомных и гидравлических станций, сохранится главенствующая роль ТЭС в покрытии энергопотребления страны.
Если говорить уже не об СССР, а о России, то ситуация с ТЭС меняется, но, похоже, не в лучшую сторону. Продемонстрируем это фрагментами выступлений самых высокопоставленных чиновников в энергетическом руководстве страны.
Вначале - высшего руководства РАО ЕЭС России . Приводим цитату дословно.
Поэтому, с моей точки зрения, что мы должны предпринять в ценообразовании Мы должны освободить ТЭЦ от необходимости распределения затрат на тепло и электроэнергию по каким-то нормативам. Надо полностью освободить и предоставить право хозяйствующему субъекту формировать тарифы на тепло таким образом, чтобы не появлялся его конкурент (выделение - наше). Стоимость гигакалории должна быть равна или ниже возможного альтернативного источника в зоне теплоснабжения. В таком случае никто не будет строить котельные, будут брать тепло от ТЭЦ - это раз. Второе - электроэнергия - а ТЭЦ должна вырабатываться только в теплофикационном режиме, следовательно, у нас около 50% мощностей ТЭЦ окажутся незагруженными. Следовательно, мы должны заплатить только за ту часть мощности на ТЭЦ, которая является необходимой для обеспечения надежного энергоснабжения этого региона. Если диспетчер покупает какую-то мощность ТЭЦ допустим, 10-20 %, все остальные мощности надо законсервировать или демонтировать, и на их площадях строить совсем другие мощности - парогазовые турбинные установки, которые могут производить тепло и электроэнергию с КПД 55 %, а не 25 %, как это сейчас.
Извините, что я неоднозначно ответил на Ваш вопрос, но судьба ТЭЦ- это очень большая задача для энергетики.
Следует отметить, что РАО ЕЭС России все проблемы ТЭЦ видит в том, что...тарифы устанавливаем не мы, а государство.
Федеральная энергетическая комиссия причину тех же проблем ТЭЦ видит в том, что...производственные мощности теплофикационных установок не соответствуют структуре теплопотребления.
В одном все же эти федеральные ведомства едины-надо сделать так, чтобы у ТЭЦ советской поры любой ценой не появился конкурент.
Следует от себя заметить, что проблемами тепла РАО ЕЭС России уже активно занимается. Одно из направлений - это взять под свой контроль коммунальную энергетику. А если говорить по существу, то мы не можем согласиться с фразой из выступления руководства РАО ЕЭС России...тарифы устанавливаем не мы, а государство. Практика такова, что региональные АО-энерго из состава РАО ЕЭС России предлагают в Региональные энергетические комиссии (РЭК) тарифы на тепловую и электрическую энергию. А РЭК своими постановлениями их утверждает, в некоторых случаях их корректирует в соответствии с прогнозами правительства страны на предельные темпы роста тарифов естественных монополий. То есть, если бы РЭКи устанавливали тарифы на уровне запросов структур РАО ЕЭС России, то цена альтернативного тепла собственной генерации оказывалась бы не просто ниже, а во много, много раз ниже, чем в РАО ЕЭС России.
казалось бы, все должно быть наоборот, так как крупные электростанции региональных АО-энерго должны иметь вьш)дные технико-экономические показатели по сравнению с коммунальной энергетикой.
Паротурбинные электростанции являются главным типом ТЭС на органическом топливе, они делятся на станции, вырабатывающие только электроэнергию (конденсационные - КЭС) и служащие для комбинированного производства тепловой и электрической энергии (теплоэлектроцентрали - ТЭЦ). Основными преимуществами ТЭС является то, что они могут работать на всех видах минеральньк топлив (твердых, жидких и газообразных) с довольно высокими КПД (-40 %), а также вырабатывать не только электрическую, но и тепловую энергию. КПД современных ТЭЦ еще выше, и составляет примерно 65 %. Современные паротурбинные электростанции отличаются возможностью концентрации больших мощностей в одном агрегате, высокими технико-экономическими показателями и надежностью.
В паротурбинных ТЭС основными агрегатами являются паровой котел и турбина. Главным направлением технического прогресса ТЭС должен бьггь дальнейший рост единичной мощности энергетических блоков станций и их основного оборудования (котлов и турбин). На электростанциях освоены энергоблоки мощностью 300 и 500 МВт с паровыми котлами производительностью 1000 и 1650 т/ч, а также мощностью 800 МВт с котлами производительностью 2650 т/ч. Причем на газомазутных блоках 800 МВт средний эксплуатационный расход топлива составляет 319-320 г/(кВт-ч), что значительно ниже среднеотраслевого. Создан и эксплуатируется энергоблок 1200 МВт, имеюпщй газомазутную котельную установку с паровым котлом производительностью 3950 т/ч .
До конкретного обывателя (квартиросъемщика) в данном случае электроэнергия доходит через число трансформаций, обычно, более трех. То есть, каждый из нас, по экспертным оценкам, в силу сложившихся схем электросетей, вынужден платить примерно на 20 % больше только за счет потерь в этих сетях. То же самое может быть и при централизованном теплоснабжении, но уже в разы.
Отсюда можно сделать, по крайней мере, предположение, что концентрирование производства высококачественной энергии на крупных источниках вступает в противоречие со вторым законом термодинамики .

Поделиться