Системы оптимального управления. Классификация оптимальных систем автоматического управления

Оптимальные САУ – это системы в которых управление осуществляется таким образом что требуемый критерий оптимальности имеет экстремальное значение. Граничные условия определяющие начальное и требуемое конечное состояния системы технологическая цель системы. tн Её ставят в тех случаях когда особый интерес представляет среднее отклонение в течение определённого интервала времени и задача системы управления – обеспечить минимум этого интеграла...


Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск


Оптимальное управление

Воронов А.А., Титов В.К., Новогранов Б.Н. Основы теории автоматического регулирования и управления. М.: Высшая школа, 1977. – 519с. С. 477 – 491.

Оптимальные САУ – это системы, в которых управление осуществляется таким образом, что требуемый критерий оптимальности имеет экстремальное значение.

Примеры оптимального управления объектами:

  1. Управление движением ракеты с целью достижения ею заданной высоты или дальности при минимальном расходе горючего;
  2. Управление перемещением приводимого двигателем механизма, при котором минимизировались бы затраты энергии;
  3. Управление атомным реактором, при котором максимальна производительность.

Задача оптимального управления формулируется следующим образом:

“Найти такой закон изменения во времени управления u (t ), при котором система при заданных ограничениях перейдёт из одного заданного состояния в другое оптимальным образом в том смысле,что функционал I , выражающий качество процесса, получит при найденном управлении экстремальное значение “.

Чтобы решить задачу оптимального управления, необходимо знать:

1.Математическое описание объекта и среды, связывающее значения всех координат исследуемого процесса,управляющих и возмущающих воздействий;

2.Ограничения физического характера на координаты и закон управления, выраженные математически;

3. Граничные условия, определяющие начальное и требуемое конечное состояния системы

(технологическая цель системы);

4.Целевую функцию (функционал качества –

математическая цель).

Математически критерий оптимальности чаще всего представляют в виде:

t к

I =∫ f o [ y (t ), u (t ), f (t ), t ] dt + φ [ y (t к ), t к ], (1)

t н

где первое слагаемое характеризует качество управления на всём интервале (t н , t н ) и называется

интегральной составляющей, второе слагаемое

характеризует точность в конечный (терминальный) момент времени t к .

Выражение (1) называется функционалом, так как I зависит от выбора функции u (t ) и получающегося при этом y (t ).

Задача Лагранжа. В ней минимизируется функционал

t к

I=∫f o dt.

t н

Её ставят в тех случаях, когда особый интерес представляет среднее отклонение в течение

определённого интервала времени, и задача системы управления – обеспечить минимум этого интеграла (ухудшение качества продукции, убыток и т.п.).

Примеры функционалов:

I =∫ (t ) dt – критерий минимальной ошибки в установившемся режиме, где x (t ) –

  1. отклонение управляемого параметра от заданного значения;

I =∫ dt = t 2 - t 1 = > min – критерий максимального быстродействия САУ;

I =∫ dt = > min – критерий оптимальной экономичности.

Задача Майера. В этом случае минимизируемым является функционал, определяемый только терминальной частью, т.е.

I = φ =>min.

Например, для системы управления ЛА, описываемым уравнением

F o (x , u , t ),

можно поставить следующую задачу: определить управление u (t ), t н ≤ t ≤ t к так, чтобы за

заданное время полёта достичь максимальной дальности при условии, что в конечный момент времени t к ЛА совершит посадку, т.е. x (t к ) =0.

Задача Больца сводится к задаче минимизации критерия (1).

Базовыми методами решения задач оптимального управления являются:

1.Классическое вариационное исчисление – теорема и уравнение Эйлера;

2.Принцип максимума Л.С. Понтрягина;

3.Динамическое программирование Р. Беллмана.

УРАВНЕНИЕ И ТЕОРЕМА ЭЙЛЕРА

Пусть задан функционал:

t к

I =∫ f o dt ,

t н

где – некоторые дважды дифференцируемые функции, среди которых необходимо найти такие функции (t ) или экстремали , которые удовлетворяют заданным граничным условиям x i (t н ), x i (t к ) и минимизируют функционал.

Экстремали отыскиваются среди решений уравнения Эйлера

I = .

Для установления факта минимизации функционала необходимо удостовериться, что вдоль экстремалей выполняются условия Лагранжа:

аналогичные требованиям положительности второй производной в точке минимума функции.

Теорема Эйлера: “Если экстремум функционала I существует и достигается среди гладких кривых, то он может достигаться только на экстремалях”.

ПРИНЦИП МАКСИМУМА Л.С.ПОНТРЯГИНА

Школа Л.С.Понтрягина сформулировала теорему о необходимом условии оптимальности, сущность которой в следующем.

Допустим, что дифференциальное уравнение объекта вместе с неизменяемой частью управляющего устройства заданы в общей форме:

На управление u j могут накладываться ограничения, например, в виде неравенств:

, .

Цель управления состоит в переводе объекта из начального состояния (t н ) в конечное состояние (t к ). Момент окончания процесса t к может быть фиксированным или свободным.

Критерием оптимальности пусть будет минимум функционала

I = dt .

Введём вспомогательные переменные и образуем функцию

Fo ()+ f () f ()+

Принцип максимума гласит, что для оптимальности системы, т.е. для получения минимума функционала, необходимо существование таких ненулевых непрерывных функций, удовлетворяющих уравнению

Что при любом t , находящемся в заданном диапазоне t н≤ t ≤ t к , величина Н, как функция допустимого управления, достигает максимума.

Максимум функции Н определяется из условий:

если не достигает границ области, и как точная верхняя грань функции Н по в противном случае.

Динамическое программирование Р.Беллмана

Принцип оптимальности Р.Беллмана:

“ Оптимальное поведение обладает тем свойством, что, каковы бы ни были первоначальное состояние и решение в начальный момент, последующие решения должны составлять оптимальное поведение относительно состояния, получающегося в результате первого решения.”

Под “поведением” системы следует понимать движение этих систем, а термин “решение” относится к выбору закона изменения во времени управляющих сил.

В динамическом программировании процесс поиска экстремалей разбивается на n шагов, в то время как в классическом вариационном исчислении ведётся поиск экстремали целиком.

Процесс поиска экстремали базируется на следующих предпосылках принципа оптимальности Р.Беллмана:

  1. Каждый отрезок оптимальной траектории является сам по себе оптимальной траекторией;
  2. Оптимальный процесс на каждом участке не зависит от его предыстории;
  3. Оптимальное управление (оптимальная траектория) ищется с помощью попятного движения [от y (T ) к y (T -∆) , где ∆ = Т/ N , N – число участков разбиения траектории, и т.д.].

Эвристически уравнения Беллмана для требуемых постановок задач выведены применительно к непрерывным и дискретным системам.

Адаптивное управление

Андриевский Б.Р., Фрадков А.Л. Избранные главы теории автоматического управления с примерами на языке MATLAB . – СПб.: Наука, 1999. – 467с. Глава 12.

Воронов А.А., Титов В.К., Новогранов Б.Н. Основы теории автоматического регулирования и управления. М.: Высшая школа, 1977. – 519с. С. 491 – 499.

Анхимюк В.Л., Опейко О.Ф., Михеев Н.Н. Теория автоматического управления. – Мн.: Дизайн ПРО, 2000. – 352с. С. 328 – 340.

Необходимость в адаптивных системах управления возникает в связи со значительным усложнением решаемых задач управления, причем специфическая особенность такого усложнения заключается в отсутствии практической возможности для подробного изучения и описания процессов, протекающих в управляемом объекте.

Например, современные высокоскоростные летательные аппараты, точные априорные данные о характеристиках которых во всех условиях функционирования не могут быть получены из-за значительных разбросов параметров атмосферы, больших диапазонов изменения скоростей полета, дальностей и высот, а также из-за наличия широкого спектра параметрических и внешних возмущений.

Некоторые объекты управления (самолеты и ракеты, технологические процессы и энергетические установки) отличаются тем, что их статические и динамические характеристики изменяются в широких пределах непредвиденным заранее образом. Оптимальное управление такими объектами возможно с помощью систем, в которых недостающая информация автоматически пополняется самой системой в процессе работы.

Адаптивными (лат.” adaptio ” – приспособление) называются такие системы, которые при изменении параметров объектов или характеристик внешних воздействий в процессе эксплуатации самостоятельно, без участия человека изменяют параметры регулятора, его структуру, настройку или регулирующие воздействия для поддержания оптимального режима работы объекта.

Создание адаптивных систем управления осуществляется в принципиально иных условиях, т.е. адаптивные методы должны способствовать достижению высокого качества управления при отсутствии достаточной полноты априорной информации о характеристиках управляемого процесса или в условиях неопределенности.

Классификация адаптивных систем :

Самоприспосабливающиеся

(адаптивные)

Системы управления

Самонастраивающиеся Самообучающиеся Системы с адаптацией

Системы системы в особых фазовых

Состояниях

Поисковые Беспоиско- Обучающие- Обучающие- Релейные Адаптивные

(экстремаль- вые (анали- ся с поощре- ся без автоколеба- системы с

Ные) тические) нием поощрения тельные переменной

Системы системы системы структурой

Структурная схема классификации АС (по характеру процесса адаптации)

Самонастраивающиеся системы (СНС) представляют собой системы, в которых адаптация при изменении условий работы осуществляется путем изменения параметров и управляющих воздействий.

Самоорганизующимися называются системы, в которых адаптация осуществляется за счет изменения не только параметров и управляющих воздействий, но и структуры.

Самообучающаяся – это система автоматического управления, в которой оптимальный режим работы управляемого объекта определяется с помощью управляющего устройства, алгоритм которого автоматически целенаправленно совершенствуется в процессе обучения путем автоматического поиска. Поиск производится с помощью второго управляющего устройства, являющегося органической частью самообучающейся системы.

В поисковых системах изменение параметров управляющего устройства или управляющего воздействия осуществляется в результате поиска условий экстремума показателей качества. Поиск условий экстремума в системах этого типа осуществляется с помощью пробных воздействий и оценки полученных результатов.

В беспоисковых системах определение параметров управляющего устройства или управляющих воздействий производится на основе аналитического определения условий, обеспечивающих заданное качество управления без применения специальных поисковых сигналов.

Системы с адаптацией в особых фазовых состояниях используют особые режимы или свойства нелинейных систем (режимы автоколебаний, скользящие режимы) для организации контролируемых изменений динамических свойств системы управления. Специально организованные особые режимы в таких системах либо служат дополнительным источником рабочей информации об изменяющихся условиях функционирования системы, либо наделяют системы управления новыми свойствами, за счет которых динамические характеристики управляемого процесса поддерживаются в желаемых пределах независимо от характера возникающих при функционировании изменений.

При применении адаптивных систем решаются следующие основные задачи:

1 . В процессе функционирования системы управления при изменении параметров, структуры и внешних воздействий обеспечивают такое управление, при котором сохраняются заданные динамические и статические свойства системы;

2 . В процессе проектирования и наладки при начальном отсутствии полной информации о параметрах, структуре объекта управления и внешних воздействиях производят автоматическую настройку системы в соответствии с заданными динамическими и статическими свойствами.

Пример 1 . Адаптивная система стабилизации углового положения ЛА.

f 1 (t ) f 2 (t ) f 3 (t )

Д1 Д2 Д3

ВУ1 ВУ2 ВУ3 f (t ) f 1 (t ) f 2 (t ) f 3 (t )

u (t ) W 1 (p ) W 0 (p ) y (t )

+ -

Рис. 1.

Приспосабливающаяся система стабилизации ЛА

При изменении условий полета меняется передаточная функция W 0 (p ) ЛА, а, следовательно, и динамическая характеристика всей системы стабилизации:

. (1)

Возмущения со стороны внешней среды f 1 (t ), f 2 (t ), f 3 (t ) , приводящие к контролируемым изменениям параметров системы, приложены к различным точкам объекта.

Возмущающее воздействие f (t ) , приложенное непосредственно к входу объекта управления, в отличие от f 1 (t ), f 2 (t ), f 3 (t ) не меняет его параметров. Поэтому в процессе работы системы измеряют только f 1 (t ), f 2 (t ), f 3 (t ).

В соответствии с принципом обратной связи и выражением (1) неконтролируемые изменения характеристики W 0 (p ) из-за возмущений и помех вызывают сравнительно небольшие изменения параметров Ф(p ) .

Если поставить задачу более полной компенсации контролируемых изменений, чтобы передаточная функция Ф(р) системы стабилизации ЛА оставалась практически неизменной, то следует надлежащим образом изменить характеристику регулятора W 1 (p ). Это и осуществляется в приспосабливающейся САУ, выполненной по схеме рис.1. Параметры внешней среды, характеризуемые сигналами f 1 (t ), f 2 (t ), f 3 (t ), например давление скоростного напора P H (t ) , температура окружающего воздуха T 0 (t ) и скорость полёта υ(t ) , непрерывно измеряются датчиками Д 1 , Д 2 , Д 3 , и текущие значения параметров поступают в вычислительные устройства В 1, В 2 ,В 3 , вырабатывающие сигналы, с помощью которых подстраивается характеристика W 1 (p ), чтобы компенсировать изменения характеристики W 0 (p ).

Однако, в АСАУ данного типа (с разомкнутым циклом настройки) отсутствует самоанализ эффективности осуществляемых ею контролируемых изменений.

Пример 2. Экстремальная система управления скоростью полета ЛА.

Z Возмущающее

Воздействие

X 3 = X 0 - X 2

Устройство авто- X 0 Усилительно- X 4 Исполнительное X 5 Регулируемый X 1

Матического по- преобразователь- устройство объект

Иска экстремума + - ное устройство

Измерительное

Устройство

Рис.2.Функциональная схема экстремальной системы управления скоростью полета ЛА

Экстремальная система определяет наивыгоднейшую программу, т.е. то значение X 1 (требуемая скорость движения ЛА), которое нужно в данный момент выдерживать, чтобы производился минимум расхода горючего на единицу длины пути.

Z - характеристика объекта; X 0 - управляющее воздействие на систему.

(величина расхода горючего)

y(0)

y(T)

Самоорганизующиеся системы

В этих нормах отдельно нормируется каждый компонент микроклимата в рабочей зоне производственного помещения: температура относительная влажность скорость движения воздуха в зависимости от способности организма человека к акклиматизации в разное время года характера одежды интенсивности производимой работы и характера тепловыделений в рабочем помещении. Перепады температуры воздуха по высоте и по горизонтали а также изменения температуры воздуха в течение смены при обеспечении оптимальных величин микроклимата на рабочих местах не должны... Управление: понятие признаки система и принципы Органы государственного управления: понятие виды и функции. По содержанию административное право является государственно-управленческим правом реализующим правовой интерес большинства граждан для чего субъекты управления наделяются юридически властными полномочиями представительскими функциями государства. Следовательно объектом действия юридических норм являются специфические управленческие общественные отношения возникающие между субъектом управления управляющим и объектами... Государственное регулирование социально-экономического развития регионов. Местные бюджеты как финансовая основа социально-экономического развития региона. Разные территории Украины имеют свои особенности и отличия как относительно экономического развития так и в социальном историческом языковом и ментальном аспектах. Из таких проблем нужно прежде всего назвать несовершенство отраслевой структуры большинства региональных хозяйственных комплексов их низкую экономическую эффективность; значительные отличия между регионами в уровнях...

Системы оптимального управления

В общем случае система автоматического управления состоит из объекта управления ОУ с рабочим параметром Y, регулятора Р и программатора (задатчика) П (рис. 6.3), вырабатывающего задающее воздействие (программу) для достижения целей управления при условии выполнения качественных и количественных требований. Программатор учитывает совокупность внешней информации (сигнал И).

Рис. 6.2 Структура оптимального управления

Задача создания оптимальной системы состоит в том, чтобы для заданного объекта управления синтезировать регулятор и программатор, которые наилучшим образом решают требуемую цель управления. В теории автоматического управления рассматриваются две родственные задачи: синтез оптимального программатора и синтез оптимального регулятора. Математически эти задачи формулируются одинаково и решаются одними и теми же методами. В то же время эти задачи имеют специфические особенности, которые на определенном этапе требуют дифференцированного подхода.

Система с оптимальным программатором (оптимальное программное управление) получила название оптимальной по режиму управления. Систему с оптимальным регулятором называют оптимальной по переходному режиму. Система автоматического управления называется оптимальной, если оптимальными являются регулятор и программатор. В ряде случаев считается, что программатор задан и требуется определить только оптимальный регулятор.

Задача синтеза оптимальных систем формулируется как вариационная задача или задача математического программирования. При этом, кроме передаточной функции объекта управления задаются ограничения на управляющие воздействия и рабочие параметры объекта управления, краевые условия и критерий оптимальности. Краевые (граничные) условия определяют состояние объекта в начальный и конечный момент времени. Критерий оптимальности, который является числовым показателем качества системы, обычно задается в виде функционала

J = J,

Где u(t ) – управляющие воздействия; y(t) – параметры объекта управления.

Задача оптимального управления формулируется следующим образом: при заданном объекте управления, ограничениях и краевых условиях найти такое управление (программатор или регулятор), при котором критерий оптимальности принимает минимальное (или максимальное) значение.

Задачи оптимального управления относятся к специальным вопросам теории автоматического управления и подробно рассмотрены в источниках .

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Какие принципы управления применяются в автоматических системах?

2. Назовите разновидности и свойства САР.

3. Что такое передаточные функции, особые точки и корневой годограф?

4. Что такое регулятор и закон регулирования?

5. Какими свойствами обладают основные законы регулирования?

6. Что такое временные характеристики систем и элементов?

7. Что такое частотные характеристики систем и элементов?

8. Какие правила структурных преобразований существуют?

9. Разновидности типовых звеньев систем.

10. Позиционные звенья и их свойства.

11. Интегрирующие звенья и их свойства.

12. Дифференцирующие звенья и их свойства.

13. Что такое критерий устойчивости Гурвица?

14. Что такое Критерий устойчивости Михайлова?

15. Что такое Критерий устойчивости Найквиста?

16. Назовите основные оценки качества систем.

17. Какие существуют методы повышения устойчивости и качества систем?

18. Укажите основные особенности анализа нелинейных систем.

19. Какова структура и особенности процессов в цифровых системах управления?

20. Что такое системы экстремального управления?

21. Какие существуют методы экстремального управления?

22. Что такое системы оптимального управления?

Заключение

Учебное пособие содержит основные раздели классической теории автоматического управления, включающие: математическое описание систем, передаточные функции, временные и частотные характеристики, структурные преобразования, критерии устойчивости, методы повышения устойчивости и качества. Рассмотрены основные типовые динамические звенья, их свойства, частотные и временные характеристики.

Оптимальные системы – это системы, в которых заданное качество работы достигается за счет максимального использования возможностей объекта, иными словами это системы, в которых объект работает на пределе своих возможностей.

Оптимальная СУ – система управления, выбранная тем или иным способом и имеет наилучшие качества.

Оценка функции СУ производится по критерию оптимальности. Задачей теории оптимальности СУ является определение в общем виде законов управления объектом. По этим законам можно судить, что можно и чего нельзя достигнуть в реальных условиях. Классической постановкой задачи является задача определения оптимального алгоритма управления при наличии априорной информации (математического описания включающее ограничения наложенные на любые координаты системы) об объекте управления.

Рассмотрим апериодическое звено первого порядка

W (p) = K/(Tp+1) (1)

u ≤ A, (2)

для которого необходимо обеспечить минимальное время перехода у из начального состояния y (0) в конечноеy k . Переходная функция такой системы приK =1 выглядит следующим образом

Рис. 1.1. Переходная функция системы при U= const .

Рассмотрим ситуацию, когда на вход объекта подаем максимально возможное управляющее воздействие.

Рис.1.2. Переходная функция системы при U=A= const .

t 1 - минимально возможное время перехода y из нулевого состояния в конечное для данного объекта.

Для получения такого перехода существует два закона управления:

    программное управление

A, t < t 1

y k , t ≥ t 1 ;

    закон управления типа обратной связи

A, y < y k

y = (4)

y k , y ≥ y k ;

Второй закон более предпочтителен и позволяет обеспечить управление при помехах.

Рис. 1.3. Структурная схема системы с законом управления типа обратной связи.

Цель управления - требования, предъявленные к СУ.

    ограничения на входные параметры, например, допуски на изготовляемую продукцию, ошибки стабилизации управляемой величины,

    экстремальные условия (мах мощности или кпд, мин потери энергии),

    некоторые показатели качества (содержание вредных компонентов в конечном продукте)

Строгая формализация цели управления очень сложна из-за наличия подсистем

При формализации критерия необходимо учитывать факторы, влияющие на поведение СУ более высокого уровня. Например, при добыче полезного ископаемого – мах выхода товара. Но при этом ухудшается качество, т.е. необходимо учитывать заданное качество.

Таким образом, при выборе формализованного (математического) выражения критерия оптимальности необходимо учитывать:

1) критерий оптимальности должен отражать экономические показатели или величины с ними связанные.

2) для конкретной СУ учитывается только 1 критерий (если многокретериальная задачах то глобальный критерий- функция от частных критериев.

3) критерий должен быть связан с управляющими воздействиями, иначе он бесполезен.

4) критериальная функция иметь подходящую форму, желательно, чтоб критерий имел 1 экстремум,

5) информация, необходимая для критерия не должна быть избыточной. Это позволяет мах упростить систему измерительных устройств. И повысить надежность функционирования системы в целом.

Тестовые задания для самоконтроля

1. Управление это -

А) достижение избранных целей в практической деятельности

Б) достижение избранных целей в научной деятельности

В) достижение избранных целей в реальной действительности

Г) достижение избранных целей в теоретической деятельности

Д) достижение избранных целей в психологической деятельности

2. В теории управления возможна постановка скольких задач

3. Суть задачи управления заключается

А) в управлении объектом в процессе его функционирования без нашего непосредственного соучастия в процессе

Б) в управлении объектом в процессе его функционирования с нашим

непосредственном участии в процессе

Д) в управлении объектом в процессе его функционирования с помощью датчиков

4. Суть задачи самоуправления заключается

А) в управлении объектом в процессе его функционирования без нашего непосредственного соучастия в процессе

Б) в управлении объектом в процессе его функционирования с помощью датчиков

В) в управлении объектом в процессе его функционирования с помощью программы

Г) в управлении объектом в процессе его функционирования с помощью ЭВМ

Д) все ответы верны

5. На основании выбранного критерия оптимальности составляется

А) целевая функция

Б) зависимость параметров

В) целевая функция, представляющая собой зависимость критерия оптимальности от параметров, влияющих на ее значение

Г) зависимость параметров, влияющих на ее значение

Д) все ответы верны

В общем случае система автоматического управления состоит из объекта управления ОУ с рабочим параметром Y, регулятора Р и программатора (задатчика) П (рис. 6.3), вырабатывающего задающее воздействие (программу) для достижения целей управления при условии выполнения качественных и количественных требований. Программатор учитывает совокупность внешней информации (сигнал И).

Рис. 6.3. Структура оптимального управления

Задача создания оптимальной системы состоит в том, чтобы для заданного объекта управления синтезировать регулятор и программатор, которые наилучшим образом решают требуемую цель управления.
В теории автоматического управления рассматриваются две родственные задачи: синтез оптимального программатора и синтез оптимального регулятора. Математически они формулируются одинаково и решаются одними и теми же методами. В то же время задачи имеют специфические особенности, которые на определенном этапе требуют дифференцированного подхода.

Система с оптимальным программатором (оптимальное программное управление) получила название оптимальной по режиму управления. Систему с оптимальным регулятором называют оптимальной по переходному режиму. Система автоматического управления называется оптимальной, если оптимальными являются регулятор и программатор.
В ряде случаев считается, что программатор задан и требуется определить только оптимальный регулятор.

Задача синтеза оптимальных систем формулируется как вариационная задача или задача математического программирования. При этом, кроме передаточной функции объекта управления, задаются ограничения на управляющие воздействия и рабочие параметры объекта управления, краевые условия и критерий оптимальности. Краевые (граничные) условия определяют состояние объекта в начальный и конечный момент времени. Критерий оптимальности, который является числовым показателем качества системы, обычно задается в виде функционала

J = J [u (t ), y (t )],

где u (t ) – управляющие воздействия; y (t ) – параметры объекта управления.

Задача оптимального управления формулируется следующим образом: при заданном объекте управления, ограничениях и краевых условиях найти такое управление (программатор или регулятор), при котором критерий оптимальности принимает минимальное (или максимальное) значение.

28. Обработка информации в АСУ ТП. Связь интервала корреляции с час­тотой опроса первичных измерительных преобразователей. Выбор частоты опроса первичных измерительных преобразователей.

ОПТИМАЛЬНЫЕ СИСТЕМЫ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ

Постановка задачи оптимизации управления

В общем случае автоматическая система состоит из объекта управления и совокупности устройств, которые обеспечивают управление этим объектом. Как правило, эта совокупность устройств включает в себя измерительные устройства, усилительные и преобразовательные устройства, а также исполнительные устройства. Если объединить эти устройство в одно звено (управляющее устройство), то структурная схема системы выглядит следующим образом:

В автоматической системе информация о состоянии объекта управления через измерительное устройство поступает на вход управляющего устройства. Такие системы называются системами с обратной связью или замкнутыми системами. Отсутствие этой информации в алгоритме управления говорит о том, что система разомкнута. Состояние объекта управления в любой момент времени будем описывать переменными , которые называются координатами системы или переменными состояния. Их удобно считать координатами - мерного вектора состояния .

Измерительное устройство выдает информацию о состоянии объекта. Если на основании измерения вектора могут быть найдены значения всех координат вектора состояния , то говорят, что система полностью наблюдаема.

Управляющее устройство вырабатывает управляющее воздействие . Таких управляющих воздействий может быть несколько, они образуют - мерный управляющий вектор .

На вход управляющего устройства поступает задающее входное воздействие . Это входное воздействие несет информацию о том, какое должно быть состояние объекта. На объект управления может действовать возмущающее воздействие , которое представляет собой нагрузку или помеху. Измерение координаты объекта, как правило, осуществляется с некоторыми погрешностями , которые тоже носят случайный характер.

Задачей управляющего устройства является выработка такого управляющего воздействия , чтобы качество функционирования автоматической системы в целом было бы наилучшим в некотором смысле.

Мы будем рассматривать такие объекты управления, которые являются управляемыми. То есть вектор состояния можно изменять требуемым образом путем соответствующего изменения вектора управления. Будем подразумевать, что объект полностью наблюдаемый.

Так, например, положение летательного аппарата характеризуется шестью координатами состояния. Это - координаты центра масс, - углы Эйлера, определяющие ориентацию летательного аппарата относительно центра масс. Положение летательного аппарата можно изменить с помощью рулей высоты, курса, элерона и с помощью уклонения вектора силы тяги. Таким образом управляющий вектор определен следующим образом:

Угол отклонения рулей высоты

Вектор состояния в этом случае определяется следующим образом:

Можно поставить задачу выбора управления, с помощью которого летательный аппарат переводится из заданного начального состояния в заданное конечное состояние с минимальными затратами топлива или за минимальное время.

Дополнительная сложность при решении технических задач возникает в силу того, что на управляющее воздействие и на координаты состояния объекта управления, как правило, накладываются различные ограничения.

На любой угол рулей высоты, курса, элерона существуют ограничения:

Тяга сама по себе ограничена.

На координаты состояния объекта управления и их производные также накладываются ограничения, которые связаны с допустимыми перегрузками.

Мы будем рассматривать объекты управления, которые описываются дифференциальным уравнением:

(1)

Или в векторном виде:

Мерный вектор состояния объекта

Мерный вектор управляющих воздействий

Функция правой части уравнения (1)

На вектор управления накладывается ограничение, мы будем полагать, что его значения принадлежат некоторой замкнутой области некоторого -мерного пространства. Это означает, что управляющая функция в любой момент времени принадлежит области ().

Так, например, если координаты управляющей функции удовлетворяет неравенствам:

то область является -мерным кубом.

Назовем допустимым управлением всякую кусочно-непрерывную функцию , значения которой в каждый момент времени принадлежит области , и которая может иметь разрывы первого рода. Оказывается, даже в некоторых задачах оптимального управления решение может быть получено в классе кусочно-непрерывного управления. Для того, чтобы выбрать управление как функцию времени и начального состояния системы , которое однозначно определяет движение объекта управления, требуется, чтобы система уравнений (1) удовлетворяла условиям теоремы существования и единственности решения в области . В этой области располагаются возможные траектории движения объекта и возможные управляющие функции . Если область изменения переменных является выпуклой, то для существования и единственности решения достаточно, чтобы функции . были непрерывны по всем аргументам и имели непрерывные частные производные по переменным .

В качестве критерия, который характеризует качество работы системы, выбирается функционал вида:

(2)

В качестве функции будем предполагать, что она непрерывна по всем своим аргументам и имеет непрерывные частные производные по .

Критерии оптимизации

В зависимости от вида подынтегральной функции функционала:

(1)

могут быть получены различные критерии применяемой проектируемой автоматической системой.



Поделиться