Скорость продольной волны в сталях. Муравьев В.В

RESEARCH COMMUNICATION ULTRASONIC VELOCITY WITH THE MECHANICAL PROPERTIES OF CAST STEEL

Alexandr Pavlov

candidate of Physical and Mathematical Sciences, Professor, Department of Physics and the East Kazakhstan state university of technology it. S. Amanzholov, Kazakhstan, Ust-Kamenogorsk

Alexandr Pavlov

master of Science, Head of Laboratory of technical diagnostics and control “Vostokmashzavod” JSC,

Kazakhstan, Ust-Kamenogorsk

Almira Zhylkashynova

candidate of Physical and Mathematical Sciences , Head of the Laboratory of energy saving and alternative energy a national scientific laboratory for communities EKSU S. Amanzholov,

Kazakhstan, Ust-Kamenogorsk

Zarina Satbaeva

master of Science, Researcher of the East Kazakhstan State University, S. Amanzholov,

Kazakhstan, Ust-Kamenogorsk

АННОТАЦИЯ

Настоящая научная работа посвящена исследованию связи скорости ультразвука с пластическими характеристиками и ударной вязкостью литой стали 20ГЛ, в структурно-неоднородном состоянии.

Одной из важнейших задач в физике твердого тела является поиск новых методов контроля и закономерностей в модели поведения физических характеристик металлов при внешнем энергетическом воздействии на них.

По результатам эксперимента выявлена математическая зависимость, позволяющая определить значение ударной вязкости по скорости ультразвука в металле и модулю упругости.

ABSTRACT

This scientific work is devoted to the study of communication ultrasound velocity with plastic properties and toughness cast steel 20GL in structurally inhomogeneous state.

One of the major problems in solid state physics is the search for new control methods and patterns in the behavior patterns of the physical characteristics of metals in the external radiation on them.

According to the results of the experiment revealed mathematical relationship, which allows to determine the toughness of the value of the speed of ultrasound in the metal and elastic modulus.

Ключевые слова: ударная вязкость, скорость ультразвука, модуль упругости, сталь 20ГЛ, неразрушающий контроль.

Keywords: toughness, speed of ultrasound, the modulus of elasticity, 20GL steel, non-destructive testing.

Введение.

Непрерывно возрастающий уровень требований к качеству деталей предполагает развитие новых, более точных методов неразрушающего контроля механических свойств сталей. Ударная вязкость при пониженной температуре, является определяющим параметром при оценке качества деталей эксплуатируемых при экстремальных температурных условиях и знакопеременных нагрузок.

Внутренние напряжения металла оказывают решающее влияние на механические свойства деталей, в частности на ударную вязкость, твёрдость, предел прочности и текучести. Зная комплекс физико-механических свойств, и внутренние напряжения, можно судить о поведении детали в конкретных условиях. При измерении ударной вязкости разрушающим способом можно лишь приближенно охарактеризовать склонность всего изделия к хрупкому разрушению, так как испытанию подвергается образец, вырезанный из конкретной части детали или треф пробы, которая в свою очередь не имеет отношения к самой детали. Неразрушающие испытания дают возможность провести измерения скорости ультразвуковой волны и тем самым значения ударной вязкости почти в любом месте изделия, что очень важно, например, для таких деталей как рама боковая и балка надрессорная.

Методы неразрушающего контроля ударной вязкости и упругости в настоящее время рассмотрены для конструкционных сталей перлитного класса в виде кованых заготовок и проката , для малоуглеродистых и низколегированных сталей после прокатки и термической обработки . В работе было проведено изучение корреляционных зависимостей между скоростью ультразвука, твердостью и ударной вязкостью в горячекатаной листовой стали 09Г2С. В отличие от вышеприведенных проката и кованых заготовок, неоднородность структуры литого металла снижает точность ультразвукового контроля указанных характеристик. Данная тематика частично рассмотрена в работе , где предлагается акустико-эмиссионный метод неразрушающего контроля внутренних дефектов литых деталей подвижного состава.

Методика проведения анализа.

Скорость распространения продольной ультразвуковой волны, генерируемой преобразователем с частотой 4 MHz, определяли на приборе УЗТ А 1209, используя режим калибровки на заданную толщину металла. Для чего, были изготовлены образцы с концентратором KCU и KCV, согласно ГОСТ 9454 с разных плавок стали марки 20ГЛ, в количестве 20 шт., затем, на образце замеряли скорость распространения продольной и поперечной ультразвуковой волны при комнатной и пониженной температуре. Испытания на ударную вязкость проводили на маятниковом копре IMPACTP-300 с автоматической системой управления.

Статические испытания на растяжение цилиндрических образцов диаметром 10 мм проводили при комнатной температуре на машине одноосного статического нагружения “WAW-600C” с записью диаграмм растяжения в соответствии с ГОСТ 1497 , с измерением физического предела текучести, временного сопротивления, относительного равномерного удлинения и сужения.

Результаты исследований и их обсуждение.

Согласно проведенным исследованиям ударная вязкость KCU связана с работой упругопластической деформации до появления трещины и с работой расширения трещины на все сечение образца. Ударная вязкость KCV, примерно равна второй работе. Таким образом, формула для ударной вязкости:

где: , и – константы, определяемые из опыта. В предлагается похожая формула связи К CU и V :

Здесь – скорость поперечной волны.

Формулу (1) можно обосновать термодинамически. Первый закон термодинамики гласит, что изменение энергии системы равно работе внешних сил и полученному количеству теплоты:

Испытание на ударную вязкость осуществляется ударом. Следовательно, процесс разрушения образца можно считать адиабатическим. Тогда и . Энергия отличается от не только температурой, но и другим расположением точек равновесия атомов, и энергией остаточной деформации:

, (4)

где: и - средние значения остаточных напряжений и деформаций, а и – константы. Тогда, заменяя через (, где - модуль упругости), получаем:

где: и – постоянные, определяемые из опыта. Модуль упругости связан со скоростью звука известным соотношением:

где: – плотность стали.

Формула (5) получается и из диаграммы растяжения образца (рис. 1).

Рисунок 1. Типичная диаграмма растяжения стали 20ГЛ. Указаны координаты эллиптической функции отклика

Линейный участок диаграммы описывает упругую деформацию, которая растет согласно закону Гука . Деформация будет оставаться упругой до предела текучести . Следовательно, работа внешней силы на этом участке будет:

Участок АВ описывает упруго-пластическую деформацию. Как показано в этот участок диаграммы можно моделировать эллипсом с полуосями и .

Работа внешней силы на этом участке будет определяться площадью прямоугольника со сторонами – , и 0,25 площади эллипса (0,25):

Нисходящий участок диаграммы ВС, описывающий разрушение образца, тоже моделируется эллипсом с полуосями: и . Значит, работа внешних сил на этом участке будет:

Согласно определению ударной вязкости она равна отношению работы деформирования и разрушения к площади сечения образца. Полная работа деформирования равна

где: – объем тела. В нашем случае , где – длина образца, S – площадь поперечного сечения. Следовательно:

.

Сложив (7), (8) и (9) получим полную работу внешних сил:

Поскольку диаграммы получались при растяжении образца, а разрушение образца при определении ударной вязкости происходит при деформации изгибом, то в предыдущей формуле необходимо поставить коэффициент пропорциональности, т. е.

Используя (7), (8) и (9), для получаем:

Используя опытные данные для соответствующих значений и , приходим к следующей формуле, связывающей ударную вязкость и скорость звука

(11)

Здесь – предел текучести. Как показано в , этот предел можно определить серийным дефектоскопом.

В качестве доказательства работоспособности данной формулы было проанализировано около 50 образцов с разных плавок, методом сравнения показаний маятникового копра и значений, полученных расчетом по формуле (11). Установлено, что при значении ударной вязкости определенной на маятниковом копре в пределах 14–24 Дж/см 2 , погрешность измерения составляет около 15 %, что конечно недопустимо. Однако в пределах от 24 до 50 Дж/см 2 , выведенная формула достаточно точно отражает реальное значение ударной вязкости с погрешностью порядка 3 %.

Например: образец плавки № 311 имеет значение , , подстановка этих чисел в формулу (11) дает Дж/см 2 , значение определенное по маятниковому копру – 43,0 Дж/см 2 . Образец плавки № 238 , , , значение по маятниковому копру – 37,2 Дж/см 2 .

Так как при получении формулы (11) использовалась полная работа деформации и разрушения, следовательно, данную формулу можно использовать как для измерения KCV так и для KCU, с учетом изменения коэффициентов.

Выводы:

1. Полученная формула (11), в сочетании с указанной методикой замера скорости продольной ультразвуковой волны вполне могут быть использованы при оценке ударной вязкости стали 20ГЛ, в интервале значений от 24 до 50 Дж/см 2 .

2. Достаточно простая реализация данного метода, дает возможности разработки малогабаритной аппаратуры с последующим созданием методики контроля ударной вязкости по частотным и временным характеристикам, при пониженных температурах. Данный метод позволит избежать трудности с изготовлением образцов с V-образным надрезом, контролем геометрических размеров и тем самым повысить точность измерения значения ударной вязкости. Также положительными факторами будет экономия металла, трудовых и временных ресурсов для изготовления образцов.

Список литературы:

1. Бобров А.Л. Повышение достоверности неразрушающего контроля литых деталей подвижного состава: Дисс. канд. техн. наук: 05.02.11 / СГУПС. – Новосибирск, 2000. – 142 с.

2. ГОСТ 9454-78 Металлы. Метод испытания на ударный изгиб при пониженных, комнатной и повышенных температурах.

3. ГОСТ 1497-87 Металлы. Методы испытаний на растяжение.

4. Зуев Л.Б., Полетика И.М., Ткаченко В.В., Громов В.Е. Ультразвуковой контроль механических свойств стали в структурно-неоднородном состоянии. Институт физики прочности и материаловедения СО РАН, Вестник ТГУ, т. 5, вып. 2–3, Томск, 2000 г.

5. Куликова О.А. Разработка методики ультразвукового контроля ударной вязкости горячекатаной листовой стали: Дис. Канд. тех. наук: 05.16.01/ТГПУ. – Томск, 2000. – 109 с.

6. Павлов А.М., Павлов А.В. Особенности упругопластической деформации стали 20ГЛ. // Локомотивы. ХХI век: материалы III Международной научно-технической конференции, посвященной 85-летию со дня рождения д.т.н., профессора В.В. Стрекопытова, Санкт-Петербург, 17–19 ноября 2015 – С. 100–105.

7. Сухарев Е.М. Исследование связи скорости ультразвука с ударной вязкостью и разработка методики контроля качества конструкционных сталей: дисс. канд. техн. наук: 05.02.11 / НГТУ. – Новосибирск, 2000. – 132 с.

Измерение скорости распространения ультразвука и ультразвуковая аппаратура

Скорость распространения ультразвука в бетоне колеблется от 2800 до 4800 м/с в зависимости от его структуры и прочности (табл. 2.2.2).

Таблица 2.2.2

Материал ρ, г/смЗ v п p , м/с
Сталь 7.8
Дуралюминий 2.7
Медь 8.9
Оргстекло 1.18
Стекло 3.2
Воздух 1.29x10 -3
Вода 1.00
Масло трансф. 0.895
Парафин 0.9
Резина 0.9
Гранит 2.7
Мрамор 2.6
Бетон (более 30 суток) 2.3-2.45 2800-4800
Кирпич:
силикатный 1.6-2.5 1480-3000
глиняный 1.2-2.4 1320-2800
Раствор:
цементный 1.8-2.2 1930-3000
известковый 1.5-2.1 1870-2300

Измерение такой скорости на относительно малых участках (в среднем 0.1-1 м) является сравнительно сложной технической задачей, которая может быть решена только при высоком уровне развития радиоэлектроники. Из всех существующих методов измерения скорости распространения ультразвука, с точки зрения возможности их применения для испытания строительных материалов, можно выделить следующие:

Метод акустического интерферометра;

Резонансный метод;

Метод бегущей волны;

Импульсный метод.

Для измерения скорости ультразвука в бетоне наибольшее распространение получил импульсный метод. Он основан на многократной посылке в бетон коротких ультразвуковых импульсов с частотой следования 30-60 Гц и измерении времени распространения этих импульсов на определенном расстоянии, называемой базой прозвучивания, т.е.

Следовательно, чтобы определить скорость ультразвука необходимо измерить расстояние, пройденное импульсом (база прозвучивания), и время, за которое ультразвук распространяется от места излучения до приема. Базу прозвучивания можно измерить любым прибором с точностью до 0.1мм. Время распространения ультразвука в большинстве современных приборов измеряется путем заполнения высокочастотными (до 10 МГц) счетными импульсами электронных ворот, начало которых соответствует моменту излучения импульса, а конец - моменту прихода его в приемник. Упрощенная функциональная схема такого прибора приведена на рис. 2.2.49.

Схема работает следующим образом. Задающий генератор 1 вырабатывает электрические импульсы с частотой от 30 до 50 Гц в зависимости от конструкции прибора и запускает высоковольтный генератор 2, который вырабатывает короткие электрические импульсы с амплитудой 100 В. Эти импульсы поступают в излучатель, в котором, используя пьезоэффект, преобразуются в пачку (от 5 до 15 шт.) механических колебаний с частотой 60-100 кГц и вводятся через акустическую смазку в контролируемое изделие. В это же время открываются электронные ворота, которые заполняются счетными импульсами, и срабатывает блок развертки, начинается движение электронного луча по экрану электронно­лучевой трубки (ЭЛТ).

Рис. 2.2.49. Упрощенная функциональная схема ультразвукового прибора:

1 - задающий генератор; 2 - генератор высоковольтных электрических импульсов; 3 - излучатель ультразвуковых импульсов; 4 - контролируемое изделие; 5 - приемник; 6 - усилитель; 7 - генератор формирования ворот; 8 - генератор счетных импульсов; 9 - блок развертки; 10 - индикатор; 11 - процессор; 12 - блок ввода коффициентов; 13 - цифровой индикатор значений t,V,R

Головная волна пачки ультразвуковых механических колебаний, пройдя через контролируемое изделие длиной L, при этом затратив время t, попадает в приемник 5, в котором преобразуется в пачку электрических импульсов.

Пришедшая пачка импульсов усиливается в усилителе 6 и попадает в блок вертикальной развертки для визуального контроля на экране ЭЛТ, а первым импульсом этой пачки закрываются ворота, прекратив доступ счетных импульсов. Таким образом, электронные ворота были открыты для счетных импульсов с момента излучения ультразвуковых колебаний до момента прихода их в приемник, т.е. время t. Далее счетчик считает количество счетных импульсов, которые заполнили ворота, и результат выдается на индикатор 13.

В некоторых современных приборах, таких как «Пульсар-1.1», имеются процессор и блок ввода коэффициентов, с помощью которых решается аналитическое уравнение зависимости "скорость-прочность", а на табло цифровой индикации выдаются время t, скорость V и прочность бетона R.

Для измерения скорости распространения ультразвука в бетоне и других строительных материалах в 80-е годы серийно выпускались ультразвуковые приборы УКБ-1М, УК-10П, УК-10ПМ, УК-10ПМС, УК-12П, УФ-90ПЦ, Бетон-5, которые себя хорошо зарекомендовали.

На рис. 2.2.50 приведен общий вид прибора УК-10ПМС.

Рис. 2.2.50. Ультразвуковой прибор УК-10ПМС

Факторы, влияющие на скорость распространения ультразвука в бетоне

Все материалы в природе можно разделить на две большие группы», относительно однородные и с большой степенью неоднородности или гетерогенные. К относительно однородным можно отнести такие материалы, как стекло, дистиллированная вода и другие материалы с постоянной для нормальных условий плотностью и отсутствием воздушных включений. Для них скорость распространения ультразвука в нормальных условиях практически постоянна. В неоднородных материалах, к которым относится большая часть строительных материалов, в том числе и бетон, внутреннее строение, взаимодействие микрочастиц и крупных составляющих элементов непостоянно как по объему, так и по времени. В их структуру входят микро - и макропоры, трещины, которые могут быть сухими или наполнеными водой.

Непостоянным является и взаимное расположение крупных и мелких частиц. Все это приводит к тому, что плотность и скорость распространения в них ультразвука непостоянны и колеблются в больших пределах. В табл. 2.2.2 приведены значения плотности ρ и скорости распространения ультразвука V для некоторых материалов.

Далее рассмотрим, каким образом влияют изменения таких параметров бетона, как прочность, состав и вид крупного заполнителя, количество цемента, влажность, температура и наличие арматуры на скорость распространения ультразвука в бетоне. Эти знания необходимы для объективной оценки возможности контроля прочности бетона ультразвуковым методом, а также для исключения ряда погрешностей при контроле, связанных с изменением указанных факторов



Влияние прочности бетона

Экспериментальные исследования показывают, что с повышением прочности бетона скорость ультразвука увеличивается.

Это объясняется тем, что значение скорости, так же как и значение прочности, зависит от условия внутриструктурных связей.

Как видно из графика (рис. 2.2.51), зависимость "скорость-прочность" для бетонов различного состава непостоянная, из чего следует, что на данную зависимость, кроме прочности, влияют и другие факторы.

Рис. 2.2.51. Зависимость между скоростью ультразвука V и прочностью R c для бетонов различных составов

К сожалению, некоторые факторы влияют на скорость ультразвука в большей степени, чем прочность, что является одним из серьезных недостатков ультразвукового метода.

Если принять бетон постоянного состава, а прочность изменять путем принятия различного В/Ц, то влияние других факторов окажется постоянным, и скорость ультразвука будет изменяется только от прочности бетона. В данном случае зависимость "скорость-прочность" станет более определенной (рис. 2.2.52).

Рис. 2.2.52. Зависимость "скорость-прочность" для постоянного состава бетона, полученная на заводе ЖБИ №1 г.Самары

Влияние вида и марки цемента

Сравнивая результаты испытаний бетонов на обыкновенном портландцементе и на других цементах, можно сделать вывод, что минералогический состав мало влияет на зависимость "скорость-прочность". Основное влияние оказывает содержание трехкальциевого силиката и тонкость помола цемента. Более важным фактором, влияющим на зависимость "скорость-прочность", является расход цемента на 1 м 3 бетона, т.е. его дозировка. С увеличением количества цемента в бетоне скорость ультразвука возрастает медленнее, чем механическая прочность бетона.

Это объясняется тем, что ультразвук при прохождении через бетон распространяется как по крупному заполнителю, так и по растворной части, соединяющей гранулы заполнителя, и его скорость в большей степени зависит от скорости распространения в крупном заполнителе. Однако прочность бетона в основном зависит от прочности растворной составляющей. Влияние количества цемента на прочность бетона и скорость ультразвука приведено на рис. 2.2.53.

Рис. 2.2.53. Влияние дозировки цемента на зависимость

"скорость-прочность"

1- 400 кг/м 3 ; 2 - 350 кг/м 3 ; 3 - 300 кг/м 3 ; 4 - 250 кг/м 3 ; 5 - 200 кг/м 3

Влияние водоцементного отношения

С уменьшением В/Ц увеличиваются плотность и прочность бетона соответственно повышается скорость ультразвука. При увеличении В/Ц наблюдается обратная зависимость. Следовательно, изменение В/Ц не вносит существенных отклонений в установленную зависимость "скорость-прочность. Поэтому при построении градуировочных графиков для изменения прочности бетона рекомендуется применять различное В/Ц.

Влияние вида и количества крупного заполнителя

Вид и количество крупного заполнителя оказывают существенное влияние на изменение зависимости "скорость-прочность". Скорость ультразвука в заполнителе, особенно в таких как кварц, базальт, твердый известняк, гранит, значительно больше скорости распространения его в бетоне.

Вид и количество крупного заполнителя влияют и на прочность бетона. Обычно принято считать, что чем прочнее заполнитель, тем выше прочность бетона. Но иногда приходится сталкиваться с таким явлением, когда применение менее прочного щебня, но с шероховатой поверхностью позволяет получить бетон с более высоким значением Re, чем при использовании прочного гравия, но с гладкой поверхностью

При незначительном изменении расхода щебня прочность бетона изменяется незначительно. Вместе с тем такое изменение количества крупного заполнителя оказывает большое влияние на скорость ультразвука.

По мере насыщения бетона щебнем значение скорости ультразвука увеличивается. Вид и количество крупного заполнителя влияют на связь "скорость - прочность" больше, чем остальные факторы (рис. 2.2.54 – 2.2.56)

Рис. 2.2.54. Влияние наличия крупного заполнителя на зависимость "скорость-прочность":

1 - цементный камень; 2 - бетон с заполнителем крупностью до 30 мм

Рис. 2.2.55. Зависимость "скорость-прочность" для бетонов с различной крупностью заполнителей: 1-1 мм; 2-3 мм; 3-7 мм; 4-30 мм

Рис. 2.2.56. Зависимость "скорость- прочность" для бетонов с заполнителем из:

1-песчаника; 2-известняка; 3-гранита; 4-базальта

Из графиков видно, что увеличение количества щебня на единицу объема бетона или повышение скорости ультразвука в нем приводит к увеличению скорости ультразвука в бетоне более интенсивно, чем прочность.

Влияние влажности и температуры

Влажность бетона неоднозначно влияет на его прочность и скорость ультразвука. С повышением влажности бетона, предел прочности при сжатии уменьшается за счет изменения межкристаллических связей, но скорость ультразвука возрастает, поскольку воздушные поры и микротрещины заполняются водой, а скорость в воде больше, чем в воздухе.

Температура бетона в диапазоне 5-40° С практически не влияет на прочность и скорость, но повышение температуры затвердевшего бетона за пределы указанного диапазона приводит к уменьшению его прочности и скорости вследствие увеличения внутренних микротрещин.

При отрицательной температуре скорость ультразвука повышается за счет превращения несвязанной воды в лед. Поэтому определять прочность бетона ультразвуковым методом при отрицательной температуре не рекомендуется.

Распространение ультразвука в бетоне

Бетон по своей структуре является гетерогенным материалом, в состав которого входят растворная часть и крупный заполнитель. Растворная часть, в свою очередь, представляет собой затвердевший цементный камень с включением частиц кварцевого песка.

В зависимости от назначения бетона и его прочностных характеристик соотношение между цементом, песком, щебнем и водой бывает различным. Кроме обеспечения прочности, состав бетона зависит от технологии изготовления железобетонных изделий. Например, при кассетной технологии производства необходима большая пластичность бетонной смеси, что достигается повышенным расходом цемента и воды. В этом случае увеличивается растворная часть бетона.

В случае стендовой технологии, особенно при немедленной распалубке, используются жесткие смеси с пониженным расходом цемента.

Относительный объем крупного заполнителя в этом случае увеличивается. Следовательно, при одних и тех же прочностных характеристиках бетона его состав может изменяться в больших пределах. На структурообразование бетона влияет технология изготовления изделий: качество перемешивания бетонной смеси, ее транспортировка, уплотнение, термовлажностная обработка во время твердения. Из этого следует, что на свойство затвердевшего бетона оказывает влияние большое количество факторов, причем влияние неоднозначное и носит случайный характер. Этим объясняется высокая степень неоднородности бетона как по составу, так и по его свойствам. Неоднородность и различные свойства бетона отражаются и на его акустических характеристиках.

В настоящее время, несмотря на многочисленные попытки, еще не разработана единая схема и теория распространения ультразвука через бетон, что объясняется) в первую очередь, наличием указанных выше многочисленных факторов, которые по-разному влияют на прочностные и акустические свойства бетона. Такое положение усугубляется и тем, что еще не разработана общая теория распространения ультразвуковых колебаний через материал с высокой степенью неоднородности. Только поэтому скорость ультразвука в бетоне определяется как для однородного материала по формуле

где L - путь, пройденный ультразвуком, м (база);

t - время, затраченное на прохождение данного пути, мкс.

Рассмотрим более подробно схему распространения импульсного ультразвука через бетон как через неоднородный материал. Но вначале ограничим область, в которой будут справедливы наши рассуждения, тем, что рассмотрим наиболее распространенный на заводах ЖБИ и стройках состав бетонной смеси, состоящей из цемента, речного песка, крупного заполнителя и воды. При этом будем считать, что прочность крупного заполнителя выше, чем прочность бетона. Это справедливо при использовании в качестве крупного заполнителя известняка, мрамора, гранита, доломита и других пород с прочностью порядка 40 МПа. Условно примем, что затвердевший бетон состоит из двух компонентов: относительно однородной растворной части с плотностью ρ и скоростью V и крупного заполнителя с ρ и V .

С учетом отмеченных допущений и ограничений затвердевший бетон можно рассматривать как твердую среду с акустическим импедансом:

Рассмотрим схему распространения головной ультразвуковой волны от излучателя 1 к приемнику 2 через затвердевший бетон толщиной L (рис. 2.2.57).

Рис. 2.2.57. Схема распространения головной ультразвуковой волны

в бетоне:

1 - излучатель; 2 - приемник; 3 - контактный слой; 4 - распространение волны в гранулах; 5 - распространение волны в растворной части

Головная ультразвуковая волна от излучателя 1 в первую очередь попадает в контактный слой 3, расположенный между излучающей поверхностью и бетоном. Для прохождения через контактный слой ультразвуковой волны он должен быть заполнен проводящей жидкостью или смазкой, в качестве которой чаще всего используется технический вазелин. Пройдя через контактный слой (за время t 0), ультразвуковая волна частично отражается в обратном направлении, а остальная часть войдет в бетон. Чем тоньше контактный слой по сравнению с длиной волны, тем меньшая часть волны отразится.

Войдя в толщу бетона, головная волна начнет распространяться в растворной части бетона на площади, соответствующей диаметру излучателя. Пройдя определенное расстояние Δl 1 , через время Δt 1 головная волна на определенной площади встретит одну или несколько гранул крупного заполнителя, частично от них отразится, а большая часть войдет в гранулы и начнет в них распространяться. Между гранулами волна будет продолжать распространяться по растворной части.

Учитывая принятое условие, что скорость ультразвука в материале крупного заполнителя больше, чем в растворной части, расстояние d, равное усредненному значению диаметра щебня, первой пройдет волна, которая распространялась через гранулы со скоростью V 2 , а волна, прошедшая через растворную часть, будет запаздывать.

Пройдя через первые гранулы крупного заполнителя, волна подойдет к границе раздела с растворной частью, частично отразится, а частично войдет в нее. При этом гранулы, через которые прошла головная волна, в дальнейшем можно рассматривать как элементарные сферические источники излучения ультразвуковой волны в растворную часть бетона, к которой можно применить принцип Гюйгенса.

Пройдя по раствору минимальное расстояние между соседними гранулами, головная волна войдет в них и начнет по ним распространяться, превращая их в очередные элементарные источники. Таким образом, через время t, пройдя всю толщу бетона L и второй контактный слой 3, головная волна попадет в приемник 2, где преобразуется в электрический сигнал.

Из рассмотренной схемы следует, что головная волна от излучателя 1 к приемнику 2 распространяется по пути, проходящему через гранулы крупного заполнителя и растворную часть, соединяющую эти гранулы, причем этот путь определяется из условия минимума затраченного времени t.

Отсюда время t равно

где - время, затраченное на прохождение растворной части, соединяющей гранулы;

- время, затраченное на прохождение через гранулы. Пройденный ультразвуком путь L равен

где: - общий путь, пройденный головной волной через растворную часть;

Общий путь, пройденный головной волной через гранулы.

Полное расстояние L, которое пройдет головная волна, может быть больше геометрического расстояния между излучателем и приемником, поскольку волна распространяется по пути максимальной скорости, а не по минимальному геометрическому расстоянию.

Время, затраченное ультразвуком на прохождение через контактные слои, необходимо вычитать из общего измеренного времени.

Волны, которые следуют за головной, также распространяются по пути максимальной скорости, но при своем движении будут встречать отраженные волны от границ раздела гранул крупного заполнителя и растворной части. Если диаметр гранул окажется равным длине волны или ее половине, то может возникнуть внутри гранулы акустический резонанс. Эффект интерференции и резонанса можно наблюдать при спектральном анализе пачки ультразвуковых волн, прошедших через бетон с различной крупностью заполнителя.

Рассмотренная выше схема распространения головной волны импульсного ультразвука справедлива только для бетонов с указанными в начале раздела свойствами, т.е. механическая прочность и скорость распространения ультразвука в материале, из которого получены гранулы крупного заполнителя, превышают прочность и скорость в растворной части бетона. Такими свойствами обладает большинство бетонов, применяемых на заводах ЖБИ и строительных площадках, в которых используется щебень из известняка, мрамора, гранита. Для керамзитобетона, пенобетона, бетона с туфовым заполнителем схема распространения ультразвука может быть другой.

Справедливость рассмотренной схемы подтверждается экспериментами. Так, из рис. 2.2.54 видно, что при добавлении к цементной части определенного количества щебня скорость ультразвука повышается при незначительном увеличении (а иногда и уменьшении) прочности бетона.

На рис. 2.2.56 заметно, что с повышением скорости ультразвука в материале крупного заполнителя скорость его в бетоне возраcтает.

Увеличение скорости в бетоне с более крупным заполнителем (рис. 2.2.55) также объясняется данной схемой, поскольку с увеличением диаметра удлиняется путь прохождения ультразвука через материал заполнителя.

Предложенная схема распространения ультразвука позволит объективно оценить возможности ультразвукового метода при дефектоскопии и контроле прочности бетона.

Тензометрия - измерение напряжений и деформаций в твердых телах. Акустическая тензометрия основана на явлении акустоупругости которое заключается в изменении скорости распространения упругих волн под влиянием напряжений.

Упругая деформация твердых тел описывается законом Гука.

Рис. 1.

Модуль Юнга характеризует упругие свойства твердых тел при деформации растяжения - сжатия. Он численно равен величине напряжения, которое вызывает изменение длины образца вдвое, если деформация при этом остается упругой. С другой стороны, модуль Юнга можно понимать как величину, численно равную объемной энергии деформации при удвоении размеров образца. Закон Гука справедлив лишь для идеально упругих тел. Для реальных же тел наблюдаются различные отклонения от этого закона. На рис. 1. представлена характерная диаграмма растяжения твердого тела. Строгая пропорциональность между относительным удлинением и напряжением наблюдается лишь при сравнительно небольших нагрузках, на участке 0А.

Максимальное напряжение п , при котором еще выполняется закон Гука, называется пределом пропорциональности.

Максимальное напряжение уп , при котором еще не возникают заметные остаточные деформации (относительная остаточная деформация не превышает 0,1%), называется пределом упругости. Ему соответствует точка В на диаграмме деформации.

Предел текучести - это напряжение, которое характеризует такое состояние деформируемого тела, после которого удлинение возрастает без увеличения действующей силы (горизонтальный участок ВС).

Пределом прочности пр (точка D) называется напряжение, соответствующее наибольшей нагрузке, выдерживаемой телом перед разрушением.

Отклонения от закона Гука в области напряжений, не превосходящих предела упругости, объединяются общим понятием неупругости. Проявлением неупругости являются, например, упругие последействия и упругий гистерезис, подлежащий экспериментальному наблюдению в данной работе.

Явление упругого последействия заключается в изменении со временем деформационного состояния при неизменной величине напряжения. В этом случае после приложения нагрузки к образцу деформация возникает не мгновенно, а продолжает увеличиваться с течением времени (прямое упругое последействие); также и после снятия нагрузки: деформация образца исчезает не мгновенно, а продолжает уменьшаться во времени (обратное упругое последействие).

Закон Гука, согласно которому напряжение б и деформация е пропорциональны, выполняется приближенно. Более точная зависимость имеет вид степенного ряда.

Степени выше второй не учитывают. Это выражение следует понимать как упрощенное, не учитывающее наличия и взаимодействия деформаций разного типа. Коэффициенты типа С1 называют упругими постоянными или модулями упругости, а коэффициенты типа С2 (в изотропном твердом теле их три) обычно называют коэффициентами Мурнагана или другими терминами. В вопрос рассматривается упрощенно и показано, что

Таким образом, изменение скорости пропорционально напряжению или деформации в контролируемом объекте. Связь между ними определяется акустоупругим коэффициентом. При деформации растяжения скорость уменьшается, а при деформации сжатия - увеличивается. В области пластических деформаций скорость остается практически постоянной. Измерение абсолютных значений скорости с необходимой точностью - трудная задача. Она облегчается тем, что обычно требуется измерить не абсолютную величину, а изменение скорости под влиянием приложенных напряжении (как и в других вариантах тензометрии). Важное достоинство акустической тензометрии - измерение напряжений не только на поверхности, но также внутри ОК.

Определение напряжений в материалах, обладающих собственной анизотропией, требует учета реальной скорости звука в направлении измеряемых напряжений. Например, текстура, возникающая при прокатке дюралюминия Д16, может вызвать изменение скорости по разным направлениям до 0,26%, а изменение скорости под влиянием напряжений - порядка 0,08%; для стали 45 соответственно 0,64% и 0,04%.

Явление динамической акустоупругости заключается в воздействии на ОК переменного поля напряжений скорость ультразвука под их воздействием изменяется приблизительно так же, как в стационарном режиме. Следовательно явление может быть использовано для контроля переменных напряжений. В представлены данные о величине акустоупругого взаимодействия в зависимости от направления приложенного напряжения (рис 2).

Рис. 2. Относительные изменении скорости под влиянием приложенных напряжений: о - измерения непрерывными волнами методом прохождения; * - импульсные измерения эхо-методом

Теорию акустоупругого взаимодействия с логарифмической формой представления конечной деформации считают перспективной. Изменение скорости под влиянием напряжений очень мало, измерениям сильно мешают температурные эффекты, микронеоднородности, текстура. Схемы выполнявшихся экспериментов показаны на рис. 3.

В качестве образцов использовали алюминево-магниевый сплав, технический алюминиевый сплав и оптическое стекло. Для них измерены акустоупругие коэффициенты. Измерения выполняли импульсным методом с учетом изменения фазы импульса и методом непрерывных волн с наложением модуляции. Точность первого метода была на 10% выше, результаты показаны на (рис. 4).

Рис.

Рис.

Применительно к сталям У8 и ШХI 5 установлено, что амплитуда сигнала, возбуждаемого ЭМА-преобразователем, однозначно и практически линейно уменьшается с увеличением микроискажений кристаллической решетки (е), характеризующих микронапряжения. Значение (е) измеряли рентгеноструктурным методом. Уменьшается также резонансная частота колебаний образца, возбуждаемого ЭМА способом, но в значительно меньшей степени.

Обнаруженный эффект дает возможность использовать ЭМА-преобразование для оценки внутренних напряжений при термической обработке углеродистых и слаболегировынных сталей. Это тем более важно, что эффект проявляется при температурах отпуска 200… 600 град. где магнитные и электрические методы контроля неэффективны.

В таблице , в которой приведены скорости звука в различных лег сталях в разных состояниях обработки, различия в обеих скоростях звука составляют менее 5%. По влиянию легирующих элементов никакой систематики не усматривается, однако со стояния обработки (отжиг, закалка, термическое улучшение, холодная деформация) сказываются на скорости звука гораздо сильнее, чем легирующие элементы. Как правило, обе скорости звука под влиянием легирующих примесей уменьшаются; обычно это относится и к затуханию звука. Отклоненными от величины с 5,93 км/с для многих практических целей можно пренебречь, но в случае точного измерения толщины стенки это недопустимо. Между тем отклонение поперечной скорости звука на 1% уже приводит к изменению угла преломления на 1,5° при его исходном значении 70°. Следовательно, в критических случаях, например при предельном угле для поверхностных или головных волн, это отклонение нужно учитывать. В таком случае определенную роль играет и уменьшение скорости звука с температурой .

Термическая или механическая обработка металла приводит к перестройке структуры и появлению микродефектов. Например, в процессе усталостных испытаний изменяется дислокационная структура и накапливаются усталостные повреждения. Следователь но, есть основания ожидать изменений скорости ультразвука при механических нагружениях. Напряжения акустических колебаний, используемые в ультразвуковых измерениях, значительно меньше напряжений трения, поэтому скорость ультразвука может характеризовать перестроение и закрепление дислокаций, возникновение микропор в процессе циклических нагружений. Кривые изменения модуля упругости в процессе усталости представляют собой как бы зеркальное отображение аналогичных кривых внутреннего трения. Как правило, моменту появления микротрещин усталости соответствует одновременное заметное увеличение внутреннего трения и уменьшение модуля упругости. Перераспределение примесных атомов в металле может быть зарегистрировано по скорости ультразвука. Единственной физической характеристикой, которая изменяется (растет) вместе с развитием отпускной хрупкости, является внутреннее трение.



Поделиться