Смо с отказами определения и формулы. Многоканальная смо с отказами, формулы эрланга

Рассмотрим способы моделирования на ЭВМ потоков заявок, поступающих в систему массового обслуживания. Сначала остановимся на достаточно простом и вместе с тем наиболее распространенном случае, когща в систему поступает ординарный стационарный поток однородных событий с ограниченным последействием (поток типа Пальма).

Любой поток типа Пальма может быть задан функцией плотности случайных интервалов между последовательными моментами - поступления заявок. Для моделирования его на ЭВМ достаточно построить необходимое число реализаций потока, т. е. таких неслучайных последовательностей моментов

поступления заявок в систему, интервалы между которыми являлись бы возможными значениями случайных величин описываемых функцией плотности

Процедура построения последовательности состоит в следующем. Сначала формируется Функция плотности может быть определена через по формуле Пальма (4.4). Тогда, исходя из наличия в ЭВМ электронного или алгоритмического датчика случайных чисел с равномерным распределением в интервале (0,1), приступаем к формированию Для этого одним из способов, рассмотренных в главе П, преобразуем случайное число в случайное число имеющее функцию плотности Получив полагаем

В дальнейшем процедура получения любого совпадает с процедурой формирования т. е. очередное случайное число преобразуется в случайное число имеющее функцию плотности и

Рассмотрим некоторые примеры, часто встречающиеся при решении практических задач методом статистического моделирования.

Пример 1. Простейший (пауссоновский) поток.

Как отмечалось выше, простейший (пауссоновский) поток является стационарным ординарным потоком однородных событий без последействия, т. е. одним из возможных частных случаев потоков типа Пальма. Функция плотности для простейшего потока имеет вид показательного распределения (4.6):

где - интенсивность потока, определяющая среднее значение числа заявок, поступающих в единицу времени.

Чтобы определить функцию плотности для первого интервала, воспользуемся формулой Пальма.

После несложных вычислений получаем:

Отсюда следует, что функция плотности первого интервала для простейшего потока имеет тот же вид, что и Этим свойством в общем случае, не обладают другие потоки типа Пальма.

Таким образом, для формирования реализаций простейшего потока необходимо иметь последовательность случайных чисел имеющих показательное распределение (4.6) с параметром К. Методику получения такой последовательности мы рассматривали в главе II. В соответствии с (2.15) случайные числа могут быть получены по формуле

где - случайные числа с равномерным распределением в интервале (0,1).

Последовательность моментов поступления заявок будет следующей:

Пример 2. Поток с равномерным распределением интервалов

Функция плотности рассматриваемого потока имеет вид равномерного распределения:

Можно показать, что среднее значение (математическое ожидание) случайной величины равно Поэтому среднее число заявок, поступивших в единицу времени (интенсивность потока):

Определим функцию плотности для первого интервала. По формуле Пальма аналогично формуле (4.11):

Заметим, что среднее значение длительности первого интервала может быть получено как математическое ожидание случайной величины, имеющей функцию плотности (4.16):

Перейдем к формированию первого интервала Для этого, имея случайные числа с равномерным законом распределения в интервале (0,1), необходимо получить случайное число соответствующее функции плотности (4.16). Преобразуем соотношение (4.16) следующим образом. Подставим в него вместо величины ее значение из равенства (4.15). Тогда можно записать функцию плотности

Необходимо отметить, что потоки, рассмотренные в примерах 1 и 2, отличаются благоприятной особенностью: интегралы в формуле Пальма и формулах преобразования случайных чисел берутся в конечном виде. В общем случае эти интегралы могут оказаться неберущимися. Кроме того, функции плотности иногда задаются таблично по (результатам обработки статистического материала. На практике в такого рода ситуациях пользуются приближенными методами. Интеграл в формуле Пальма вычисляется обычно для заданного набора численными методами. Это не оказывается существенно на объеме вычислений, так как формула Пальма применяется только один раз для данного потока. Преобразование случайных чисел выполняется, как правило, методом кусочной аппроксимации функции плотности в соответствии с соотношениями (2.23), (2.24) и (2.25).

В качестве показателей эффективности СМО с отказами будем рассматривать:

1) A - абсолютную пропускную способность СМО , т.е. среднее число заявок, обслуживаемых в единицу времени;

2) Q - относительную пропускную способность , т.е. среднюю долю пришедших заявок, обслуживаемых системой;

3) P_{\text{otk}} - вероятность отказа , т.е. того, что заявка покинет СМО необслуженной;

4) \overline{k} - среднее число занятых каналов (для многоканальной системы).

Одноканальная система (СМО) с отказами

Рассмотрим задачу. Имеется один канал, на который поступает поток заявок с интенсивностью \lambda . Поток обслуживании имеет интенсивность \mu . Найти предельные вероятности состояний системы и показатели ее эффективности.


Примечание. Здесь и в дальнейшем предполагается, что все потоки событий, переводящие СМО из состояния в состояние, будут простейшими. К ним относится и поток обслуживании - поток заявок, обслуживаемых одним непрерывно занятым каналом. Среднее время обслуживания обратно по величине интенсивности \mu , т.е. \overline{t}_{\text{ob.}}=1/\mu .

Система S (СМО) имеет два состояния: S_0 - канал свободен, S_1 - канал занят. Размеченный граф состояний представлен на рис. 6.

В предельном, стационарном режиме система алгебраических уравнений для вероятностей состояний имеет вид (см. выше правило составления таких уравнений)

\begin{cases}\lambda\cdot p_0=\mu\cdot p_1,\\\mu\cdot p_1=\lambda\cdot p_0,\end{cases}


т.е. система вырождается в одно уравнение. Учитывая нормировочное условие p_0+p_1=1 , найдем из (18) предельные вероятности состояний

P_0=\frac{\mu}{\lambda+\mu},\quad p_1=\frac{\lambda}{\lambda+\mu}\,


которые выражают среднее относительное время пребывания системы в состоянии S_0 (когда канал свободен) и S_1 (когда канал занят), т.е. определяют соответственно относительную пропускную способность Q системы и вероятность отказа P_{\text{otk}}:

Q=\frac{\mu}{\lambda+\mu}\,

P_{\text{otk}}=\frac{\lambda}{\lambda+\mu}\,.

Абсолютную пропускную способность найдем, умножив относительную пропускную способность Q на интенсивность потока отказов

A=\frac{\lambda\mu}{\lambda+\mu}\,.

Пример 5. Известно, что заявки на телефонные переговоры в телевизионном ателье поступают с интенсивностью \lambda , равной 90 заявок в час, а средняя продолжительность разговора по телефону мин. Определить показатели эффективности работы СМО (телефонной связи) при наличии одного телефонного номера.

Решение. Имеем \lambda=90 (1/ч), \overline{t}_{\text{ob.}}=2 мин. Интенсивность потока обслуживании \mu=\frac{1}{\overline{t}_{\text{ob.}}}=\frac{1}{2}=0,\!5 (1/мин) =30 (1/ч). По (20) относительная пропускная способность СМО Q=\frac{30}{90+30}=0,\!25 , т.е. в среднем только 25% поступающих заявок осуществят переговоры по телефону. Соответственно вероятность отказа в обслуживании составит P_{\text{otk}}=0,\!75 (см. (21)). Абсолютная пропускная способность СМО по (29) A=90\cdot0.\!25=22,\!5 , т.е. в среднем в час будут обслужены 22,5 заявки на переговоры. Очевидно, что при наличии только одного телефонного номера СМО будет плохо справляться с потоком заявок.

Многоканальная система (СМО) с отказами

Рассмотрим классическую задачу Эрланга . Имеется n каналов, на которые поступает поток заявок с интенсивностью \lambda . Поток обслуживании имеет интенсивность \mu . Найти предельные вероятности состояний системы и показатели ее эффективности.

Система S (СМО) имеет следующие состояния (нумеруем их по числу заявок, находящихся в системе): S_0,S_1,S_2,\ldots,S_k,\ldots,S_n , где S_k - состояние системы, когда в ней находится k заявок, т.е. занято k каналов.

Граф состояний СМО соответствует процессу гибели и размножения и показан на рис. 7.

Поток заявок последовательно переводит систему из любого левого состояния в соседнее правое с одной и той же интенсивностью \lambda . Интенсивность же потока обслуживании, переводящих систему из любого правого состояния в соседнее левое состояние, постоянно меняется в зависимости от состояния. Действительно, если СМО находится в состоянии S_2 (два канала заняты), то она может перейти в состояние S_1 (один канал занят), когда закончит обслуживание либо первый, либо второй канал, т.е. суммарная интенсивность их потоков обслуживании будет 2\mu . Аналогично суммарный поток обслуживании, переводящий СМО из состояния S_3 (три канала заняты) в S_2 , будет иметь интенсивность 3\mu , т.е. может освободиться любой из трех каналов и т.д.

В формуле (16) для схемы гибели и размножения получим для предельной вероятности состояния

P_0={\left(1+ \frac{\lambda}{\mu}+ \frac{\lambda^2}{2!\mu^2}+\ldots+\frac{\lambda^k}{k!\mu^k}+\ldots+ \frac{\lambda^n}{n!\mu^n}\right)\!}^{-1},

где члены разложения \frac{\lambda}{\mu},\,\frac{\lambda^2}{2!\mu^2},\,\ldots,\,\frac{\lambda^k}{k!\mu^k},\,\ldots,\, \frac{\lambda^n}{n!\mu^n} , будут представлять собой коэффициенты при p_0 в выражениях для предельных вероятностей p_1,p_2,\ldots,p_k,\ldots,p_n . Величина

\rho=\frac{\lambda}{\mu}


называется приведенной интенсивностью потока заявок или интенсивностью нагрузки канала . Она выражает среднее число заявок, приходящее за среднее время обслуживания одной заявки. Теперь

P_0={\left(1+\rho+\frac{\rho^2}{2!}+\ldots+\frac{\rho^k}{k!}+\ldots+\frac{\rho^n}{n!}\right)\!}^{-1},

P_1=\rho\cdot p,\quad p_2=\frac{\rho^2}{2!}\cdot p_0,\quad \ldots,\quad p_k=\frac{\rho^k}{k!}\cdot p_0,\quad \ldots,\quad p_n=\frac{\rho^n}{n!}\cdot p_0.

Формулы (25) и (26) для предельных вероятностей получили названия формул Эрланга в честь основателя теории массового обслуживания.

Вероятность отказа СМО есть предельная вероятность того, что все я каналов системы будут заняты, т.е.

P_{\text{otk}}= \frac{\rho^n}{n!}\cdot p_0.

Относительная пропускная способность - вероятность того, что заявка будет обслужена:

Q=1- P_{\text{otk}}=1-\frac{\rho^n}{n!}\cdot p_0.

Абсолютная пропускная способность:

A=\lambda\cdot Q=\lambda\cdot\left(1-\frac{\rho^n}{n!}\cdot p_0\right)\!.

Среднее число занятых каналов \overline{k} есть математическое ожидание числа занятых каналов:

\overline{k}=\sum_{k=0}^{n}(k\cdot p_k),


где p_k - предельные вероятности состояний, определяемых по формулам (25), (26).

Однако среднее число занятых каналов можно найти проще, если учесть, что абсолютная пропускная способность системы A есть не что иное, как интенсивность потока обслуженных системой заявок (в единицу времени). Так как каждый занятый канал обслуживает в среднем \mu заявок (в единицу времени), то среднее число занятых каналов

\overline{k}=\frac{A}{\mu}

Или, учитывая (29), (24):

\overline{k}=\rho\cdot\left(1-\frac{\rho^n}{n!}\cdot p_0\right)\!.

Пример 6. В условиях примера 5 определить оптимальное число телефонных номеров в телевизионном ателье, если условием оптимальности считать удовлетворение в среднем из каждых 100 заявок не менее 90 заявок на переговоры.

Решение. Интенсивность нагрузки канала по формуле (25) \rho=\frac{90}{30}=3 , т.е. за время среднего (по продолжительности) телефонного разговора \overline{t}_{\text{ob.}}=2 мин. поступает в среднем 3 заявки на переговоры.

Будем постепенно увеличивать число каналов (телефонных номеров) n=2,3,4,\ldots и определим по формулам (25), (28), (29) для получаемой n-канальной СМО характеристики обслуживания. Например, при n=2 имеем

З_0={\left(1+3+ \frac{3^2}{2!}\right)\!}^{-1}=0,\!118\approx0,\!12;\quad Q=1-\frac{3^2}{2!}\cdot0,\!118=0,\!471\approx0,\!47;\quad A=90\cdot0,\!471=42,\!4 и т.д.


Значение характеристик СМО сведем в табл. 1.

По условию оптимальности Q\geqslant0,\!9 , следовательно, в телевизионном ателье необходимо установить 5 телефонных номеров (в этом случае Q=0,\!9 - см. табл. 1). При этом в час будут обслуживаться в среднем 80 заявок (A=80,\!1) , а среднее число занятых телефонных номеров (каналов) по формуле (30) \overline{k}=\frac{80,\!1}{30}=2,\!67 .

Пример 7. В вычислительный центр коллективного пользования с тремя ЭВМ поступают заказы от предприятий на вычислительные работы. Если работают все три ЭВМ, то вновь поступающий заказ не принимается, и предприятие вынуждено обратиться в другой вычислительный центр. Среднее время работы с одним заказом составляет 3 ч. Интенсивность потока заявок 0,25 (1/ч). Найти предельные вероятности состояний и показатели эффективности работы вычислительного центра.

Решение. По условию n=3,~\lambda=0,\!25 (1/ч), \overline{t}_{\text{ob.}} =3 (ч). Интенсивность потока обслуживании \mu=\frac{1}{\overline{t}_{\text{ob.}}}=\frac{1}{3}=0,\!33 . Интенсивность нагрузки ЭВМ по формуле (24) \rho=\frac{0,\!25}{0,\!33}=0,\!75 . Найдем предельные вероятности состояний:

– по формуле (25) p_0={\left(1+0,\!75+ \frac{0,\!75^2}{2!}+ \frac{0,\!75^3}{3!}\right)\!}^{-1}=0,\!476 ;

– по формуле (26) p_1=0,!75\cdot0,\!476=0,\!357;~p_2=\frac{0,\!75^2}{2!}\cdot0,\!476=0,\!134;~p_3=\frac{0,\!75^3}{3!}\cdot0,\!476=0,\!033 ;


т.е. в стационарном режиме работы вычислительного центра в среднем 47,6% времени нет ни одной заявки, 35,7% - имеется одна заявка (занята одна ЭВМ), 13,4% - две заявки (две ЭВМ), 3,3% времени - три заявки (заняты три ЭВМ).

Вероятность отказа (когда заняты все три ЭВМ), таким образом, P_{\text{otk}}=p_3=0,\!033 .

По формуле (28) относительная пропускная способность центра Q=1-0,\!033=0,\!967 , т.е. в среднем из каждых 100 заявок вычислительный центр обслуживает 96,7 заявок.

По формуле (29) абсолютная пропускная способность центра A=0,\!25\cdot0,\!967=0,\!242 , т.е. в один час в среднем обслуживается. 0,242 заявки.

По формуле (30) среднее число занятых ЭВМ \overline{k}=\frac{0,\!242}{0,\!33}=0,\!725 , т.е. каждая из трех ЭВМ будет занята обслуживанием заявок в среднем лишь на \frac{72,\!5}{3}= 24,\!2%. .

При оценке эффективности работы вычислительного центра необходимо сопоставить доходы от выполнения заявок с потерями от простоя дорогостоящих ЭВМ (с одной стороны, у нас высокая пропускная способность СМО, а с другой стороны - значительный простой каналов обслуживания) и выбрать компромиссное решение.

В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!

Задача 1. На диспетчерский пульт поступает поток заявок, который является потоком Эрланга второго порядка. Интенсивность потока заявок равна 6 заявок в час. Если диспетчер в случайный момент оставляет пульт, то при первой же очередной заявке он обязан вернуться к пульту. Найти плотность распределения времени ожидания очередной заявки и построить ее график. Вычислить вероятность того, что диспетчер сможет отсутствовать от 10 до 20 минут. Решение . Поскольку поток Эрланга второго порядка является стационарным потоком с ограниченным последействием, то для него справедлива формула Пальма

где f1(θ)- плотность распределения вероятностей для времени ожидания первого ближайшего события;
λ - интенсивность потока;
- порядок потока;
(θ) - функция распределения вероятностей для времени между двумя соседними событиями потока Эрланга - го порядка (Э).
Известно, что функция распределения для потока Э имеет вид

. (2)

По условиям задачи поток заявок является Эрланговским порядка =2. Тогда из (1) и (2) получим
.
Из последнего соотношения при λ=6 будем иметь

f1(θ)=3е-6θ(1+6 θ), θ≥0. (3)

Построим график функции f1(θ) . При θ <0 имеем f1(θ) =0 . При θ =0 , f1(0)=3 . Рассмотрим предел

При вычислении предела для раскрытия неопределенности типа использовано правило Лопиталя . По результатам исследований строим график функции f1(θ) (Рис. 1).


Обратим внимание на размерности времени в тексте задачи: для интенсивности это заявки в час, для времени-минуты. Перейдем к одним единицам времени: 10 мин=1/6 час, 20 мин=1/3 час. Для этих значений можно вычислить f1(θ) и уточнить характер кривой


Эти ординаты указаны на графике над соответствующими точками кривой.
Из курса теории вероятностей известно, что вероятность попадания случайной величины Х в отрезок [α, β] численно равна площади под кривой плотности распределения вероятностей f(х) . Эта площадь выражается определенным интегралом

Следовательно, искомая вероятность равна

Этот интеграл легко вычисляется по частям, если положить
U=1+6θ и dV=е-6θ . Тогда dU=6 и V= .
Используя формулу получим

Ответ: вероятность того, что диспетчер сможет отсутствовать от 10 до 20 минут равна 0,28.

Задача 2. Дисплейный зал имеет 5 дисплеев. Поток пользователей простейший. Среднее число пользователей, посещающих дисплейный зал за сутки, равно 140. Время обработки информации одним пользователем на одном дисплее распределено по показательному закону и составляет в среднем 40 минут. Определить, существует ли стационарный режим работы зала; вероятность того, что пользователь застанет все дисплеи занятыми; среднее число пользователей в дисплейном зале; среднее число пользователей в очереди; среднее время ожидания свободного дисплея; среднее время пребывания пользователя в дисплейном зале. Решение. Рассматриваемая в задаче СМО относится к классу многоканальных систем с неограниченной очередью. Число каналов =5. Найдем λ-интенсивность потока заявок: где (час.) - среднее время между двумя последовательными заявками входящего потока пользователей. Тогда польз./час.

Найдем -интенсивность потока обслуживания: , где М[Т обсл.]=40 мин=0,67 часа - среднее время обслуживания одного пользователя одним дисплеем,

тогда польз/час.

Таким образом, классификатор данной системы имеет вид СМО (5, ∞; 5,85; 1,49).
Вычислим коэффициент загрузки СМО . Известно, что для СМО такого класса стационарный режим существует, если отношение коэффициента загрузки системы к числу каналов меньше единицы. Находим это отношение
.
Следовательно, стационарный режим существует. Предельное распределение вероятностей состояний вычисляется по формулам


Поскольку =5, имеем

Вычислим Р*- вероятность того, что пользователь застанет все дисплеи занятыми. Очевидно, она равна сумме вероятностей таких событий: все дисплеи заняты, очереди нет (р5); все дисплеи заняты, один пользователь в очереди (р6); все дисплеи заняты, два пользователя в очереди (р7) и так далее. Поскольку для полной группы событий сумма вероятностей этих событий равна единице, то справедливо равенство

Р*=р5+р6+р7+…=1 - ро - р1 - р2 - р3 - р4.

Найдем эти вероятности: ро =0,014; р1 =3,93*0,014; р2 =7,72*0,014; р3 =10,12*0,014; р4 =9,94*0,014.
Вынося за скобки общий множитель, получим
Р*=1-0,0148*(1+3,93+7,72+10,12+9,94)=1-0,014*32,71=1-0,46=0,54.
Используя формулы для вычисления показателей эффективности? найдем:

  • 1. среднее число пользователей в очереди

2. среднее число пользователей в дисплейном зале

3. среднее время ожидания свободного дисплея

4. среднее время пребывания пользователя в дисплейном зале

Ответ: стационарный режим работы дисплейного зала существует и характеризуется следующими показателями Р* =0,54; пользователя; пользователя; ; .

Задача 3. В двухканальную систему массового обслуживания (СМО) с отказами поступает стационарный пуассоновский поток заявок. Время между поступлениями двух последовательных заявок распределено по показательному закону с параметром λ=5 заявок в минуту. Длительность обслуживания каждой заявки равна 0,5 мин. Методом Монте-Карло найти среднее число обслуженных заявок за время 4 мин. Указание: провести три испытания. Решение. Изобразим статистическое моделирование работы заданной СМО с помощью временных диаграмм. Введем следующие обозначения для временных осей:
Вх -входящий поток заявок, здесь ti -моменты поступления заявок; Ti -интервалы времени между двумя последовательными заявками. Очевидно, что ti =ti -1 i .
К1-первый канал обслуживания;
К2-второй канал обслуживания; здесь жирные линии на временной оси обозначают интервалы занятости канала. Если оба канала свободны, то заявка становится под обслуживание в канал К1, в случае его занятости заявка обслуживается каналом К2.
Если заняты оба канала, то заявка покидает СМО необслуженной.
Вых ОБ-выходящий поток обслуженных заявок.
Вых ПТ-выходящий поток потерянных заявок за счет отказов СМО (случай занятости обоих каналов).
Статистические испытания продолжаются в течение временного интервала . Очевидно, что любое превышение времени tmax влечет за собой сброс заявки в выходящий поток Вых ПТ. Так на рис. 3 заявка №10, пришедшая в систему в момент t10 , не успевает обслужиться до момента tmax , так как t10+Тобсл.>tmax . Следовательно, она не принимается свободным каналом К1 на обслуживание и сбрасывается в Вых ПТ, получая отказ.


Рис. 3

Из временных диаграмм видно, что необходимо научиться моделировать интервалы Т i . Применим метод обратных функций. Поскольку случайная величина Тi распределена по показательному закону с параметром λ =5, то плотность распределения имеет вид f (τ)=5е-5τ . Тогда значение F(Ti) функции распределения вероятностей определяется интегралом

.

Известно, что область значений функции распределения F (T ) есть отрезок . Выбираем из таблицы случайных чисел число и определяем Т i из равенства , откуда . Однако, если . Поэтому можно сразу получать из таблицы случайных чисел реализации . Следовательно,
е-5Т i = ri , или –5Т i = lnri , откуда . Результаты вычислений удобно заносить в таблицу.
Для проведения испытания №1 были взяты случайные числа из приложения 2, начиная с первого числа первой строки. Далее выборка осуществлялась по строкам. Проведем еще два испытания.
Обратите внимание на выборку случайных чисел из таблицы приложения 2, если в испытании №1 последнее случайное число для заявки №16 было 0,37 (первое случайное число во второй строке), то испытание №2 начинается со следующего за ним случайного числа 0,54. Испытание №2 содержит последним случайное число 0,53 (пятое число в третьей строке). Следовательно, третье испытание начнется с числа 0,19. Вообще в пределах одной серии испытаний случайные числа из таблицы выбираются без пропусков и вставок по определенному порядку, например, по строкам.

Таблица 1. ИСПЫТАНИЕ №1

№ зая-вки
i

Сл. число
ri

-ln ri
Тi

Момент поступления заявки
ti=ti-1+Ti

Момент окончания обслужив.
ti+0,50

Счетчик заявок

К1
Таблица 2 ИСПЫТАНИЕ №2

№ зая-вки
i

Сл. число
ri

-ln ri
Т i

Момент поступления заявки
ti=ti-1+Ti

Момент окончания обслужив.
ti+0,50

Счетчик заявок

Таблица №3 ИСПЫТАНИЕ №3

№ зая-вки
i

Сл. число
ri

-ln ri
Т i

Момент поступления заявки
ti=ti-1+Ti

Момент окончания обслужив.
ti+0,50

Счетчик заявок

К1

Таким образом, по результатам трех испытаний число обслуженных заявок составило соответственно: х1 =9, х2 =9, х3 =8. Найдем среднее число обслуженных заявок:

Ответ: среднее число заявок, обслуженных СМО за 4 минуты, равно 8,6(6).

При решении задач управления, в том числе и управления войсками, часто возникает ряд однотипных задач:

  • оценка пропускной способности направления связи, железнодорожного узла, госпиталя и т. п.;
  • оценка эффективности ремонтной базы;
  • определение количества частот для радиосети и др.

Все эти задачи однотипны в том смысле, что в них присутствует массовый спрос на обслуживание. В удовлетворении этого спроса участвует определенная совокупность элементов, образующая систему массового обслуживания (СМО) (рис. 2.9).

Элементами СМО являются:

  • входной (входящий) поток требований (заявок) на обслуживание;
  • приборы (каналы) обслуживания;
  • очередь заявок , ожидающих обслуживания;
  • выходной ( выходящий) поток обслуженных заявок;
  • поток не обслуженных заявок;
  • очередь свободных каналов (для многоканальных СМО).

Входящий поток - это совокупность заявок на обслуживание. Часто заявка отождествляется с ее носителем. Например, поток неисправной радиоаппаратуры, поступающий в мастерскую объединения, представляет собой поток заявок - требований на обслуживание в данной СМО.

Как правило, на практике имеют дело с так называемыми рекуррентными потоками, - потоками, обладающими свойствами:

  • стационарности;
  • ординарности;
  • ограниченного последействия.

Первые два свойства мы определили ранее. Что касается ограниченного последействия, то оно заключается в том, что интервалы между поступающими заявками являются независимыми случайными величинами.

Рекуррентных потоков много. Каждый закон распределения интервалов порождает свой рекуррентный поток . Рекуррентные потоки иначе называют потоками Пальма.

Поток с полным отсутствием последействия, как уже отмечалось, называется стационарным пуассоновским. У него случайные интервалы между заявками имеют экспоненциальное распределение:

здесь - интенсивность потока.

Название потока - пуассоновский - происходит от того, что для этого потока вероятность появления заявок за интервал определяется законом Пуассона:

Поток такого типа, как отмечалось ранее, называют также простейшим. Именно такой поток предполагают проектировщики при разработке СМО. Вызвано это тремя причинами.

Во-первых , поток этого типа в теории массового обслуживания аналогичен нормальному закону распределения в теории вероятностей в том смысле, что к простейшему потоку приводит предельный переход для потока, являющегося суммой потоков с произвольными характеристиками при бесконечном увеличении слагаемых и уменьшении их интенсивности. То есть сумма произвольных независимых (без преобладания) потоков с интенсивностями является простейшим потоком с интенсивностью

Во-вторых , если обслуживающие каналы (приборы) рассчитаны на простейший поток заявок, то обслуживание других типов потоков (с той же интенсивностью) будет обеспечено с не меньшей эффективностью.

В-третьих , именно такой поток определяет марковский процесс в системе и, следовательно, простоту аналитического анализа системы. При других потоках анализ функционирования СМО сложен.

Часто встречаются системы, у которых поток входных заявок зависит от количества заявок, находящихся в обслуживании. Такие СМО называют замкнутыми (иначе - разомкнутыми ). Например, работа мастерской связи объединения может быть представлена моделью замкнутой СМО. Пусть эта мастерская предназначена для обслуживания радиостанций, которых в объединении . Каждая из них имеет интенсивность отказов . Входной поток отказавшей аппаратуры будет иметь интенсивность :

где - количество радиостанций, уже находящихся в мастерской на ремонте.

Заявки могут иметь разные права на начало обслуживания. В этом случае говорят, что заявки неоднородные . Преимущества одних потоков заявок перед другими задаются шкалой приоритетов.

Важной характеристикой входного потока является коэффициент вариации :

где - математическое ожидание длины интервала;

Среднеквадратическое отклонение случайной величины (длины интервала) .

Для простейшего потока

Для большинства реальных потоков .

При поток регулярный, детерминированный.

Коэффициент вариации - характеристика, отражающая степень неравномерности поступления заявок.

Каналы (приборы) обслуживания . В СМО могут быть один или несколько обслуживающих приборов (каналов). Согласно с этим СМО называют одноканальными или многоканальными.

Многоканальные СМО могут состоять из однотипных или разнотипных приборов. Обслуживающими приборами могут быть:

  • линии связи;
  • мастера ремонтных органов;
  • взлетно-посадочные полосы;
  • транспортные средства;
  • причалы;
  • парикмахеры, продавцы и др.

Основная характеристика канала - время обслуживания. Как правило, время обслуживания - величина случайная.

Обычно практики полагают, что время обслуживания имеет экспоненциальный закон распределения:

где - интенсивность обслуживания, ;

Математическое ожидание времени обслуживания.

То есть процесс обслуживания - марковский, а это, как теперь нам известно, дает существенные удобства в аналитическом математическом моделировании.

Кроме экспоненциального встречаются -распределение Эрланга, гиперэкспоненциальное, треугольное и некоторые другие. Это нас не должно смущать, так как показано, что значение критериев эффективности СМО мало зависят от вида закона распределения вероятностей времени обслуживания.

При исследовании СМО выпадает из рассмотрения сущность обслуживания, качество обслуживания .

Каналы могут быть абсолютно надежными , то есть не выходить из строя. Вернее, так может быть принято при исследовании. Каналы могут обладать конечной надежностью . В этом случае модель СМО значительно сложнее.

Очередь заявок . В силу случайного характера потоков заявок и обслуживания пришедшая заявка может застать канал (каналы) занятым обслуживанием предыдущей заявки. В этом случае она либо покинет СМО не обслуженной, либо останется в системе, ожидая начало своего обслуживания. В соответствии с этим различают:

  • СМО с отказами;
  • СМО с ожиданием.

СМО с ожиданием характеризуются наличием очередей. Очередь может иметь ограниченную или неограниченную емкость: .

Исследователя обычно интересуют такие статистические характеристики, связанные с пребыванием заявок в очереди:

  • среднее количество заявок в очереди за интервал исследования;
  • среднее время пребывания (ожидания) заявки в очереди. СМО с ограниченной емкостью очереди относят к СМО смешанного типа.

Нередко встречаются СМО, в которых заявки имеют ограниченное время пребывания в очереди независимо от ее емкости. Такие СМО также относят к СМО смешанного типа.

Выходящий поток - это поток обслуженных заявок, покидающих СМО.

Встречаются случаи, когда заявки проходят через несколько СМО: транзитная связь , производственный конвейер и т. п. В этом случае выходящий поток является входящим для следующей СМО. Совокупность последовательно связанных между собой СМО называют многофазными СМО или сетями СМО .

Входящий поток первой СМО, пройдя через последующие СМО, искажается и это затрудняет моделирование . Однако следует иметь в виду, что при простейшем входном потоке и экспоненциальном обслуживании (то есть в марковских системах) выходной поток тоже простейший . Если время обслуживания имеет не экспоненциальное распределение, то выходящий поток не только не простейший, но и не рекуррентный.

Заметим, что интервалы между заявками выходящего потока, это не то же самое, что интервалы обслуживания. Ведь может оказаться, что после окончания очередного обслуживания СМО какое-то время простаивает из-за отсутствия заявок. В этом случае



Поделиться