Способ получения соли кобальта (ii). Кобальт – это химический элемент

Cтраница 3


Соли кобальта с ионами SCN - - образуют комплексный ион [ Co (SCN) 4l2 - синего цвета, устойчивый в ацетоне.  

Соли кобальта реакции не мешают, но в случае высокого со - [ ержания их появляется бурое окрашивание раствора. Однако йствием KCN присутствие кобальта может быть замаски-ювано. В этом случае рекомендуют поступать следующим обра-ом.  

Соль кобальта наносят на поверхность силикагеля или окиси алюминия путем погружения на 10 - 15 мин. Полученный реагент высушивают и помещают в трубку.  

Очистить соли кобальта от солей никеля перекристаллизацией нельзя, так как эти соли изоморфны и обладают хорошей растворимостью. Для полной очистки солей кобальта от никеля их переводят в нерастворимый хлорпентамминкобальтхлорид, прокаливают при 500 - 600 С на воздухе для получения оксида кобальта и затем из него получают нитрат растворением в азотной кислоте.  

Очистить соли кобальта от солей никеля перекристаллизацией нельзя, так как эти соли изоморфны и обладают хорошей растворимостью.  

Если соль кобальта (II), даже в сильно кислом растворе, окислить электролитически или другим способом и оставить стоять, то она будет медленно разлагаться и снова будет / образовываться соль кобальта (II) с выделением кислорода. Трудность заключается лишь в настолько быстром установлении потенциала, чтобы измерению не мешало медленное выделение кислорода.  

Ранее соли кобальта использовались эмпирически как неспецифический стимулятор эритропоэза у человека в дозах 20 - 30 мг / сутки. Введение этого МЭ в указанных дозах вызывает полицитемию и ряд токсических явлений, в связи с чем его широкое применение для лечения анемий было прекращено. Особое внимание к токсическому действию кобальта было привлечено после установления того факта, что Добавление хлорида кобальта к пиву в количестве 1 2 - 1 5 мг / л, практиковавшееся в Квебеке (Канада), США и Бельгии, для улучшения ценообразования, приводило к кобальтовой кардиопатии с тяжелой сердечной недостаточностью и смертельным исходом, а также поли-цитемии, гиперплазии щитовидной железы и истощению коллоида. Явления гипотиреоза наступают в результате ингибиро-вания кобальтом тироидпероксидазы, осуществляющей йодирование тирозиновых остатков тиреоглобулина. На щитовидную железу оказывает заметное влияние не только избыток, но и дефицит этого МЭ. Установлено, что в физиологических концентрациях кобальт необходим для синтеза тиреоидных гормонов у крыс. У животных, испытывающих дефицит кобальта, дача этого МЭ приводит к уменьшению размеров фолликулов щитовидной железы и увеличению высоты выстилающего их эпителия.  

Очистить соли кобальта от солей никеля перекристаллизацией нельзя, так как эти соли изоморфны и обладают хорошей растворимостью. Для полной очистки солей кобальта от никеля их переводят в нерастворимый хлорпентамминкобальтхлорид, прокаливают при 500 - - 600 С на воздухе для получения оксида кобальта и затем из него получают нитрат растворением в азотной кислоте.  

Очистить соли кобальта от солей никеля перекристаллизацией нельзя, так как эти соли изоморфны и обладают хорошей растворимостью. Для полной очистки солей кобальта от никеля их переводят в нерастворимый хлоропентаммшшобальтихлорпд (см. стр. С на воздухе для получения окпсп кобальта и затем из нее получают нитрат растворением в азотной кислоте.  

Если соль кобальта (II), даже в сильно кислом растворе, окислить электролитически или другим способом и оставить стоять, то она будет медленно разлагаться и снова будет образовываться соль кобальта (II) с выделением кислорода. Трудность заключается лишь в настолько быстром установлении потенциала, чтобы измерению не мешало медленное выделение кислорода.  

Обычно встречающиеся соли кобальта являются солями двухвалентного кобальта, нелегко окисляющимися до простых солей трехвалентного кобальта. Однако в координационных комплексах кобальт встречается преимущественно в трехвалентном состоянии. Ион [ Со (CN) 0 ] 4 - легко окисляется до [ Со (CN) 6 ] 3 -; многие комплексы трехвалентного кобальта обладают замечательной устойчивостью. По числу и устойчивости аммиакатов кобальт уступает только хрому. Рассмотрим кратко аммиакаты кобальта. Свободная кислота H3Co (CN) 6 не реагирует с крепкой азотной кислотой.  

Название "кобальт" происходит от немецкого слова Kobold, что означает "карлик, охраняющий клады" (горный дух или нечистая сила), или от греческого слова kobalo, что означает "талантливый император". Впервые термин kobelt упоминается в труде Агриколы "О горном деле и металлургии".
Археологи нашли ожерелье из стекла, окрашенного кобальтовой синью, которое было изготовлено за 2500 лет до н.э. Красители, содержащие кобальт, применялись в Китае за 907 - 618 лет до н.э. Металлический кобальт (загрязненный) впервые был получен в 1735 году шведским химиком Г. Брандтом.

Нахождение в природе, получение:

Спектральным анализом было установлено присутствие кобальта в атмосфере Солнца и различных звезд. В природе два стабильных изотопа: 59 Со и 57 Со. Содержание в земной коре 4*10 -3 %. Кобальт изредка встречается в виде самородков, однако соединения его очень распространены. Важнейшие минералы: карролит CuCo 2 S 4; линнеит Co 3 S 4 ; кобальтин CoAsS; скуттерудит CoAs 3 ; шмальтинхлоантин (Co, Ni, Fe) As 3 ; саффлорит (Co, Fe) As 2 .
В небольших количествах кобальт содержится в тканях животных и растений, в частности, он входит в состав витамина В 12 (C 63 H 88 O 14 N 14 PCo).
Металлический кобальт получают восстановлением оксидов, солей, комплексных соединений (Cl 2 , CO 3) водородом, углеродом, окисью углерода или метаном (при нагревании), алюмо- или кремнетермическим восстановлением оксидов кобальта, термическим разложением карбонилов Co 2 (CO) 8 , Co 4 (CO) 12 и электролизом водных растворов солей CoSO 4 *7H 2 O или (NH 4) 2 SO 4 *CoSO 4 *6H 2 O.

Физические свойства:

В компактном состоянии кобальт представляет собой серебристо-белый с розоватым отливом металл с плотностью 8,83 г/см 3 , т. пл. 1492° и т. кип. 3185°. Кобальт тверже железа (5,5 по шкале Мооса), более хрупок, чем сталь, обладает ферромагнитными свойствами (которые исчезают при температуре выше 1150°, и образуется парамагнитная модификация), тягуч и плохо поддается ковке. Металлический кобальт известен в двух кристаллических модификациях: a -Co - с плотной гексагональной структурой и b -Co - с кубической гранецентрированной кристаллической решеткой. Пирофорный кобальт представляет собой черный порошок, который окисляется на воздухе при обычной температуре, разогреваясь при этом до белого каления. Коллоидный кобальт окрашен в золотисто-коричневый цвет.

Химические свойства:

При обычной температуре металлический кобальт в компактном состоянии устойчив к действию сухого и влажного воздуха, воды, сильных щелочей и разбавленных растворов органических кислот. При температуре выше 300°С покрывается пленкой оксидов. Кобальт-магниевый сплав энергично разлагает воду на холоду.
Порошкообразный кобальт взаимодействует при нагревании с галогенами, серой, фосфором, мышьяком, сурьмой, углеродом, кремнием, бором, но не реагирует с азотом:
Металлический кобальт медленно растворяется в разбавленных соляной и серной кислотах и быстро - в разбавленной азотной, поскольку нормальный потенциал системы Co/Co 2+ равен -0,277В:
8Co + 20HNO 3 + (n-10)H 2 O = 8Co(NO 3) 2 *nH 2 O + 2NO + N 2
Под действием дымящей HNO 3 на холоду кобальт пассивируется. Плавиковая кислота и царская водка реагируют с кобальтом на холоду. Расплавленное едкое кали (550°С) также растворяет металлический кобальт.

Важнейшие соединения:

В соединениях кобальт проявляет степень окисления +2 и +3.
Оксид кобальта(II) , CoO - амфотерный оксид, вытесняет аммиак из теплых растворов солей аммония; при сплавлении с избытком щелочи образуются кобальтиты ярко-синего цвета, в растворах - гидроксокобальтаты.
Гидроксид кобальта(II) Co(OH) 2 ,- существует в двух модификациях, слабо растворим в воде, растворяется в теплых концентрированных растворах щелочей, минеральных кислотах и большинстве органических кислот.
Co(OH) 2 катализирует окисление сульфита натрия кислородом воздуха.
Соли кобальта(II) - обычно получают при обработке CoO или Co(OH) 2 различными кислотами. Соли сильных кислот в большинстве растворимы, растворы имеют кислую реакцию благодаря гидролизу. Разбавленные растворы солей содержат катион 2+ розового цвета. Такова же окраска кристаллогидратов, безводные соли - синего цвета.
Комплексные соединения кобальта (II) довольно неустойчивы и легко окисляются до соединений кобальта (III).
Карбонилы . Известны моно- и полиядерные карбонильные соединения кобальта:
2CoI 2 +8CO + 4Cu = Co 2 (CO) 8 + 4CuI
Дигидрид кобальта (темно-серые кристаллы) устойчив под слоем эфира ниже 5°С:
CoCl 2 + 2C 6 H 5 MgBr + 2H 2 = CoH 2 + 2C 6 H 6 + MgBr 2 + MgCl 2
Соединения кобальта (III) : известны многочисленные комплексные соединения кобальта (III): катионные (Cl 3), анионные (K 3 , нейтральные.
Для комплексов с разными лигандами возможна цис-транс изомерия.
K 3 - гексанитритокобальт(III)ат калия, нерастворим, желтый осадок, качественная реакция на соли калия (реагентом служит растворимая соль гексанитритокобальт(III)ат натрия).
Оксид кобальта(II-III) , Co 3 O 4 - сильный окислитель, растворяется в кислотах с выделением кислорода:
2Co 3 O 4 + 6H 2 SO 4 = 6CoSO 4 + O 2 + 6H 2 O.

Применение:

Компонент твердых жаропрочных, магнитных, коррозионностойких и др. сплавов и покрытий, для получения кобальтсодержащих катализаторов. Радиоактивный изотоп 60 Co (Т 1/2 =5,24с) - источник g -излучений в технике и медицине.
С древности известно применение оксидов CoO и Co 3 O 4 при изготовлении синих эмалей и для окраски в синий цвет расплавленного стекла. Способность оксидов кобальта образовывать твердые растворы (окрашенные в синий, зеленый, розовый и другие цвета) с оксидами различных металлов обусловила их применение в керамической и стекольной промышленности.

Батракова А.В.
ХФ ТюмГУ

Источники: 1. Рипан Р., Четяну И. Неорганическая химия, т.2 / пер. с румынского - М.: Изд-во Мир, 1972. - 872 с.
2. Химический энциклопедический словарь/ред. И.Л.Кнунянц. - М.: Большая Российская энциклопедия, 2003. - 792 с.

Использование: для получения солей кобальта II применяемых в промышленности для производства красок и эмалей, катализаторов, аккумуляторов. Сущность изобретения: соли кобальта получают путем обработки технического оксида кобальта II, III или твердых отходов кобальтпотребляющих производств активированным углем при 400-600°С с последующим растворением продукта в соответствующей минеральной кислоте при молярном отношении Co(II):H + =1:(1,4-1,8), введением в полученный раствор гидроксида кобальта из расчета (1,0 1,2) моль Co(OH) 3 на 1 моль Fe в растворе и фильтрацией суспензии. Способ позволяет расширить сырьевую базу производства при использовании в качестве сырья технического оксида кобальта II, III и отходов кобальтпотребляющих производств, что позволит снизить себестоимость продукции. 1 з. п. ф-лы, 2 табл.

Изобретение относится к области получения химических реактивов технологического назначения, а именно солей кобальта, применяемых в промышленности для производства красок и эмалей, катализаторов, аккумуляторов. Известны способы получения солей кобальта путем растворения металлического кобальта или его окисла в соответствующей минеральной кислоте: в Н 2 SO 4 или НCl в НNO 3 в присутствии восстановителя Недостатки указанных способов выделение агрессивных и взрывоопасных газов, дефицит и дороговизна сырья. Наиболее близким по технической сущности к заявляемому является способ получения солей кобальта, включающий обработку технического гидроксида Со(III) кристаллической щавелевой кислотой, в качестве восстановителя вводимой в пульпу Со(ОН) 3 до образования твердого продукта, с последующим его растворением в соответствующей минеральной кислоте. При этом обеспечивается очистка раствора получаемой соли от примесей цветных, щелочных и других металлов Недостатком способа является высокая себестоимость продукции вследствие, с одной стороны, невозможности получения соли кобальта реактивной квалификации с высокой степенью извлечения продукта при использовании в качестве исходного сырья кобальтсодержащих отходов промышленных производств (в том числе производства органических веществ), а с другой, дефицитности используемого восстановителя щавелевой кислоты. Предлагается способ получения солей кобальта (II), включающий обработку кобальтсодержащего сырья восстановителем с последующим растворением продукта в минеральной кислоте, где в качестве исходного сырья используют технический оксид кобальта (II, III) или твердые отходы кобальтпотребляющих производств. Восстановление ведут активированным углем при t (400-600) о С. Растворение продукта в минеральной кислоте осуществляют при мольном отношении Со II 1 (1,4-1,8) с последующим введением в полученный раствор гидроксида Со(III) и фильтрацией суспензии. Гидроксид кобальта (III) вводят из расчета (1,0-1,2) моль на 1 моль Fe в растворе. Использование активированного угля и предлагаемая температура обеспечивают восстановление трехвалентных соединений кобальта и разложение органических примесей. Создаваемое в процессе растворения продукта рН среды (3-4) способствует адсорбции примесей металлов на поверхности нерастворившегося оксида Со и не полностью выгоревшего в заявляемых условиях (t 400-600 о С) активированного угля, как на коллекторах и, таким образом, эффективной очистки раствора соли Со уже на стадии растворения исходного сырья. Введение гидроксида Со(III) обеспечивает дополнительную очистку раствора от Fe II , переводимого в осадок в виде гидроксида железа (III). Образовавшуюся суспензию фильтруют, твердый остаток направляют в голову процесса. Заявляемая совокупность признаков обеспечивает комплексную очистку продукта от примесей металлов, органических и др. нерастворимых примесей и получение солей Со (II) реактивной квалификации. По сравнению с прототипом предлагаемый способ позволит: исключить применение дефицитного восстановителя (щавелевой кислоты); значительно расширить сырьевую базу производства при использовании в качестве сырья технических оксидов Со (II, III) или различных твердых отходов кобальтпотребляющих производств, что позволит снизить себестоимость продукции; обеспечить возможность создания замкнутого цикла производства. П р и м е р 1. Готовят смесь 40 г кобальтового кека с содержанием 43 мас. Со 3+ и 1,8 г активированного угля. Смесь усредняют и нагревают до 550 о С. После охлаждения восстановленный оксид кобальта (II), взятый в виде суспензии, растворяют в 23 мл концентрированной серной кислоты ( 1,83 г/см 3) (Со 2+ H + 1 1,5) с последующим введением в реакционную смесь 0,13 г Со(ОН) 3 . Суспензию перемешивают и фильтруют. Нерастворимый остаток возвращают на растворение, а фильтрат упаривают, кристаллизуют и выделяют готовый продукт СоSO 4 7H 2 O, в котором определяют содержание примесей. Последующие примеры выполнялись аналогично, менялись исходное сырье (табл.1) и параметры проведения процесса. Данные опытов приведены в табл.2. Выход за оптимальные значения температуры восстановления, а также изменение соотношения Со 2+ Н + в сторону увеличения количества Со 2+ приводят к снижению степени извлечения продукта. Кроме того, повышение содержания исходного кобальта сверх заявляемого количества приводит к образованию плохо фильтруемой суспензии. Изменение мольного соотношения Со 2+ H + в сторону уменьшения количества кобальта Со(П) приводит к ухудшению качества продукта за счет неполной очистки от примесей. Введение оксида кобальта (III) осуществляют в оптимальном количестве, необходимом для восстановления Fe III , содержащегося в суспензии (1-1,2 М на 1 М Fe). Уменьшение количества кобальта (III) приводит к загрязнению продукта примесями, увеличение количества Со(III) сверх оптимального нецелесообразно. При этом использование в качестве кобальтсодержащего компонента технического оксида кобальта (II, III) или твердых отходов кобальтпотребляющих производств в предлагаемых режимах позволит снизить себестоимость продукции.

Формула изобретения

1. СПОСОБ ПОЛУЧЕНИЯ СОЛИ КОБАЛЬТА (II), включающий обработку кобальтсодержащего сырья восстановителем и последующее растворение продукта в соответствующей минеральной кислоте, отличающийся тем, что в качестве исходного сырья используют технический оксид кобальта (II,III) или твердые отходы кобальтпотребляющих производств, в качестве восстановителя - активированный уголь, причем обработку ведут при 400-600 o С, а растворение продукта в минеральной кислоте осуществляют при молярном соотношении СО(II):Н + =1:(1,4-1,8) с последующим введением в полученную суспензию гидроксида кобальта (III) и фильтрацией ее. 2. Способ по п. 1, отличающийся тем, что гидроксид кобальта в суспензию вводят в количестве 1,0-1,2 моля на 1 моль содержащегося в растворе железа.

Похожие патенты:

Изобретение относится к технологии получения основных углекислых солей меди, цинка, никеля и кобальта и их оксидов, которые могут быть использованы в качестве сырья и полупродуктов в производстве катализаторов и поглотителей в химической и нефтехимической промышленности

Изобретение относится к химии и позволяет получить закись кобальта высокого качества путем углетермического восстановления закиси-окиси кобальта Соз04 в условиях вибрации при ускорении вибрации 2 К 4 и двухступенчатом нагреве при 600-650°С и 750-800°С

По химической активности кобальт уступает железу. Он легко растворяется в кислотах - окислителях и медленно в обычных кислотах:

Co + 2HCl = CoCl 2 + H 2 ╜

В простых соединениях у кобальта наиболее устойчива степень окисления +2, в комплесных √ +3. Водные растворы солей кобальта (II) обычно окрашены в розовый цвет.

Гидроксид кобальта (II)

Образуется при действии щелочей на соли кобальта (II):

CoSO 4 + 2KOH = K 2 SO 4 + Co(OH) 2 ¯

На воздухе розовый осадок Co(OH) 2 постепенно буреет, превращаясь в гидроксид кобальта (III):

4Co(OH) 2 + O 2 + 2H 2 O ╝ 4Co(OH) 3

Сo(OH) 2 - слабое основание, растворимое в сильных кислотах:

Co(OH) 2 + 2HCl ╝ CoCl 2 + 2H 2 O

При прокаливании Co(OH) 2 образует оксид кобальта (II) CoO:

Co(OH) 2 ═ t ═ CoO + H 2 O

Cоединения кобальта склонны к комплексообразованию (координационное число=6):

Co(OH) 2 + 6NH 3 = (OH) 2

Никель и его соединения

Никель легко растворяется в разбавленной азотной кислоте и медленно в соляной и серной кислотах

Ni + 2HCl = NiCl 2 + H 2

Ион Ni 2+ в водных растворах имеет зелёную окраску. Для никеля наиболее характерна степень окисления +2. Оксид и гидроксид никеля проявляют основной характер.

NiO + H 2 SO 4 ═ t ═ NiSO 4 + H 2 O

NiCl 2 + 2NaOH═ t ═ Ni(OH) 2 ¯(зелёный) + 2NaCl

Ni(OH) 2 + H 2 SO 4 = NiSO 4 + 2H 2 O

Соединения двухвалентного никеля могут давать комплексы с аммиаком:

Ni(OH) 2 + 6NH 2 = . С фтором и другими галогенами Ru и Os легко реагируют при нагревании, образуя соединения типа RuF3, RuF4, RuF5, RuF6. Осмий дает подобные же соединения, кроме OsF3. Весьма интересны комплексные соединения Ru с ксеноном Xe (канадский химик Н. Бартлетт, 1962), а также с молекулярным азотом - [(NO)(NH3)4 N2Ru(NH3)4NO]Cl (советский химик Н. М. Синицын, 1962) и Cl2 (канадский химик А. Аллен, 1965).

На компактные Rh и Ir царская водка не действует. При прокаливании в О2 образуются оксиды Rh2O3 и Ir2О3, разлагающиеся при высоких температурах.

Pd легко растворяется при нагревании в HNO3 и концентрированной H2SO4 с образованием нитрата Pd(NO3)2 и сульфата PdSO4. На Pt эти кислоты не действуют. Царская водка растворяет Pd и Pt, причем образуются комплексные кислоты - тетрахлоропалладиевая кислота H2 и гексахлороплатиновая - коричнево-красные кристаллы состава H2·6H2O. Из ее солей наибольшее значение для технологии Платиновых металлов имеет хлороплатинат аммония (NH4)2 - светло-желтые кристаллы, малорастворимые в воде и почти не растворимые в концентрированных растворах NH4Cl. При прокаливании они разлагаются по реакции:

(NH4)2 = Pt + Cl2 + 2NH4Cl

При этом Pt получается в мелкораздробленном виде (т. н. платиновая губка, или губчатая платина).

Билет 24

Лантано́иды (лантани́ды ) - семейство из 14 химических элементов III группы 6-го периода периодической таблицы. Семейство состоит из церия, празеодима, неодима, прометия, самария, европия, гадолиния, тербия, диспрозия, гольмия, эрбия, тулия, иттербия и лютеция. Лантан часто рассматривается вместе с этими элементами для удобства сравнения, хотя к лантаноидам он не относится.

Химические свойства

Лантаноиды химически активны, они образуют прочные оксиды, галогениды, сульфиды, реагируют с водородом, углеродом, азотом, фосфором. Разлагают воду, растворяются в соляной, серной и азотной кислотах. В плавиковой и фосфорной кислотах лантаноиды устойчивы, так как покрываются защитными пленками малорастворимых солей - фторидов и фосфатов.

С рядом органических соединений лантаноиды образуют комплексные соединения. Важное значение для разделения лантаноидов имеют комплексы с лимонной и этилендиаминтетрауксусной кислотой.

Билет 25

Актино́иды (актини́ды) - семейство, состоящее из 14 радиоактивных химических элементов III группы 7-го периода периодической системы с атомными номерами 90-103.

Данная группа состоит из тория, протактиния, урана, нептуния, плутония, америция, кюрия, берклия, калифорния, эйнштейния, фермия, менделевия, нобелия и лоуренсия. Актиний часто для удобства сравнения рассматривается вместе с этими элементами, однако к актиноидам он не относится

Поскольку наиболее долгоживущими элементами являются первые 5f-элементы (Th–Am), их химические свойства изучены лучше, а многообразие проявляемых степеней окисления в значительной мере отличает их от типичных 4f-элементов и тяжелых 5f-элементов.

С водородом актиноиды образуют гидриды переменного состава (ThH 2, Th 4H 15; PaH 2–2,7; AmH 2–2,7), но для урана можно получить и стехиометрический гидрид UH 3. В общем случае гидриды этих элементов термически менее устойчивы, чем гидриды 4f-элементов. С кислородом актиноиды образуют оксиды, соответствующие их наиболее устойчивым степеням окисления (ThO 2, PaO 2, Pa 2O 5, NpO 2 и др.). К исключительно сложным следует отнести систему уран–кислород. Характерными для урана являются оксиды UO 2 – UO 2,25; U 3O 8 и UO 3, из них наиболее устойчив U 3O 8 (UO 2∙2UO 3) – урановая смолка.

Отличительной особенностью кислородсодержащих соединений актиноидов в высших степенях окисления V, VI является наличие катионных группировок и или , , . Эти группировки называются иловыми оксоионами. Например, – уранил, – протактинил. Оксоионы устойчивы и сохраняются без изменения в разнообразных химических реакциях:

Особая устойчивость оксоионов объясняется тем, что связь между атомами актиноида и кислорода формально можно рассматривать как тройную:

Для ионов прочность связи увеличивается в ряду Am < Pu < Np.

С галогенами актиноиды образуют многообразные галогениды ЭГ n, где n = 3, 4, 5, 6. Фториды элементов в высших степенях окисления летучи, что позволило разделить изотопы урана 235U и 238U. Взаимодействие актиноидов с B, Si, C, N, P, S и Se приводит к образованию соединений нестехиометрического состава вследствие возможного присутствия элемента в разных степенях окисления.

Уменьшение радиусов элементов в ряду Th–Lr приводит к ослаблению основных свойств соединений.

Соединения актиноидов склонны к диспропорционированию. Например:

Свойства тяжелых 5f-элементов (Bk, Cf, Es, Md, No, Fm, Lr) изучены мало, поскольку они получены в виде короткоживущих радиоактивных изотопов в очень малых количествах. Однако есть основания полагать, что они подобны лантаноидам.

Актиноиды и их соединения используются в атомной энергетике. Торий используется как легирующая добавка в жаропрочных сталях, катализаторах при синтезе многих соединений, вакуумной электронике. Соли урана применяются как красители для стекла и глазурей, аналитические и фотографические препараты.



Поделиться