Стекловолокно имеет диаметр. Виды стеклоткани – характеристики, состав, свойства, применение

Все большую популярность в современном строительстве приобретают инновационные Что представляет собой стекловолокно для авто и почему оно получило такое широкое распространение? Эти вопросы достаточно актуальны в настоящее время.

Современный композит представляет собой материал, который состоит из целого ряда компонентов. Проще говоря, он является не монолитным веществом, а смесью самых разнообразных элементов. Композит состоит из матрицы, представляющей собой пластичную основу, наполненную слоями большого количества материалов.

Какое преимущество имеет стекловолокно для авто перед всеми остальными современными материалами? Прежде всего, оно является очень прочным и жестким, но вместе с этим довольно легким и эластичным материалом. Стекловолокно количественно и качественно превосходит каждый из компонентов. Если композиты применить в автомобильной отрасли, то конструкция приобретет прекрасные механические свойства, и это ни в коем случае не отразится на ее весе.

Стекловолокно и эпоксидная смола

При объединении вышеуказанных компонентов получается один из лучших современных композитов - стеклопластик. В настоящее время это наиболее популярный и распространенный материал, который применяют в автомобильных системах.

Некоторое время назад большинство самых разнообразных деталей изготавливали из металла или пластмассы. Но, как показывает практика, проверки временем и критики не выдержал ни тот, ни другой материал. Любые изделия, изготовленные из металла, отличались довольно большим весом и часто выходили из строя вследствие возникновения коррозионных процессов, а вот кузов из стекловолокна зарекомендовал себя только с положительной стороны, даже при длительном использовании полностью исключается появление ржавчины.

Что касается пластмассы, то она, наоборот, слишком ломкая, хрупкая и не способна выдерживать значительные нагрузки, но характеризуется небольшим весом. Открытие стеклопластика все кардинально изменило.

Внутреннее строение стеклопластика

Современный материал стеклопластик представляет собой эпоксидное стекловолокно, основой которого является наполнитель из ткани, обработанный смолой. Каркас материала создает именно волокно, отвечающее также за уровень качества детали, изготовленной из стеклопластика. Основными критериями этого вещества являются степень стойкости при изгибе или разрыве и уровень прочности.

Эпоксидная смола является связующим компонентом. Именно она определяет эксплуатационные свойства стеклопластика, например, антикоррозионную стойкость, теплопроводность, упругость и диэлектрические показатели. Стекловолокно и эпоксидная смола образуют уникальную структуру, которая позволяет иметь столько преимуществ перед всеми остальными материалами.

Технология производства эпоксидного стекловолокна

Промышленное производство стеклопластика осуществляется либо в одну, либо в две стадии. При проведении технологического процесса стекловолокно вытягивается непосредственно из расплавленной стеклянной массы. Если же производство материала проводится в два этапа, то сначала делаются небольшие части оплавленного стекла или же своеобразные стеклянные шарики. Они расплавляются, после чего к полученной стеклоткани добавляется смола. Благодаря данной технологии бампер из стекловолокна получается намного прочнее, чем из пластмассы.

Преимущества материала

Стекловолокно имеет довольно много важных преимуществ перед всеми остальными аналогичными материалами. Рассмотрим их:

  • влагонепроницаемость;
  • небольшой вес;
  • простота укладки;
  • стойкость к воздействию окружающей среды;
  • стоимость (выбирая стекловолокно, цена которого - около 100 руб. за 1 кв. метр, вы значительно удешевляет ;
  • высокий уровень теплоизоляции;
  • продолжительный срок эксплуатации - до 50 лет;
  • низкая степень теплопроводности;
  • быстрота монтажа.

Стекловолокно широко используется в разных сферах. Тем не менее, основное применение этот материал нашел в автомобильных системах. Здесь из него производят кузов, бампер и другие детали.

Технология ремонтных работ

Стекловолокно для авто - наиболее подходящий материал, особенно если необходимо выполнить ремонт кузова. Для этой работы главное - в точности соблюдать технологию.

  1. Кузов необходимо очистить от краски, для этого можно воспользоваться специальной смывкой.
  2. После этого вырезается кусок стекловолокна, размеры которого должны соответствовать поврежденному месту.
  3. Следующим этапом будет подготовка эпоксидной смолы. Надо подобрать специальную емкость, добавить отвердитель и хорошо перемешать.
  4. Поврежденное место на кузове обрабатывают смолой.
  5. После этого наклеивают стекловолокно и опять покрывают смолой. Этот процесс очень длительный, так как необходимо тщательно обработать всю поверхность.
  6. Последний штрих - финишная пропитка смолой с помощью валика хаотичными движениями.

Возможности стекловолокна

Многие водители предпочитают самостоятельно экспериментировать со стекловолокном, изготавливая из него новые детали. Однако сформировать его достаточно сложно. Для этого рекомендуется использовать стекломаты. Такой процесс не потребует больших вложений. Стекловолокно (цена, повторимся, - от 100 рублей) чаще всего обрабатывают гелькоутом, стоимость которого не превышает 400 р. за один килограмм. Наносят его кисточкой или краскопультом, и после этого формируют необходимую плоскость.

Почему стекловолокно?

В настоящее время большинство производителей предлагает потребителям стекловолокно для авто разных марок, исходя из их функционального назначения. На современном строительном рынке данный материал составляет достойную конкуренцию другим видам, которые еще до недавнего времени прочно занимали ведущие позиции, например, стеклу, бетону, металлам и их сплавам, керамике и древесине. По своим основным характеристикам и свойствам ни один из этих материалов не способен сравниться со стекловолокном.

Благодаря его использованию детали автомобиля приобретают высокую прочность: если машина постоянно используется зимой, то ее детали, изготовленные из стеклопластика, спокойно выдерживают разные климатические условия. Стоит добавить, что данный материал, как и нержавеющая сталь, совершенно не поддается ни гниению, ни коррозии. Именно благодаря его изобретению появилась уникальная возможность продлить срок эксплуатации автомобилей на несколько десятков лет, поскольку такие детали на протяжении долгого периода времени не требуют никакой антикоррозионной обработки.

СТЕКЛЯННЫЕ ВОЛОКНА (СВ)

1. Природа СВ и способы получения

2. Виды и формы СВ

3. Основные свойства СВ

4. Ассортимент и применение

5. Высокосиликаты (кварцевые волокна)

Более 3500 лет человечеству известно о возможности вытягивания различных изделий из расплавленного стекла. В XIX в. было теоретически предсказано, что стекло, вытянутое в длинное волокно, пригодно для использования в различных текстильных изделиях. Однако промышленного производства стекловолокон реально не существовало до 1939 г. Начало коммерческого выпуска стекловолокон связано с образованием фирмы «Оуенз Корнинг файбергласс».

СВ сочетают сравнительно малую плотность с высокими теплостойкостью, химической стойкостью и прочностью, низкой теплопроводностью и коэф. термического расширения, они негорючи, стойки к биологическому воздействию.

Технология получения

Известно два основных вида СВ: непрерывное и штапельное. Для первого характерны неограниченно большая длина, прямолинейность и параллельное расположение волокон в нити; для второго - небольшая длина, извитость и хаотическое расположение волокон в пространстве.

Существуют три основных способа получения стекловолокна:

1)вытягивание волокон из расплавленной массы через фильеры (одностадийный процесс);

2)вытягивание волокон из стеклянных штабиков при их разогреве (двухстадийный процесс);

3) получение штапельного волокна путем расчленения струй стекломассы под воздействием центробежных сил или потоков воздуха, газа, пара.

Непрерывные СВ изготавливаются вытягиванием волокон из расплавленной стекломассы через фильеры одно- или двух-стадийным способом либо из стеклянных штабиков. Штапельное волокно формуется путем вытягивания непрерывного СВ на струи расплавленного стекла с последующим разрывом его на отрезки ограниченной длины (способ воздушного вытягивания) или разделением струи (пленки) расплавленного стекла на отдельные объемы, растягиваемые в короткие волокна раздувом (дутьевой способ), центробежным или комбинированным способами.



Состав стекла определяет способ, условия формования и область применения СВ. Для технического назначения СВ получают из стекол различных составов (таблица 1), СВ высокопрочные высокомодульные, с низкой и высокой диэлектрической проницаемостью, полупроводящие и другие - из стекол специальных составов.

Таблица 1 - Состав стекловолокон, %

Состав Марка стекла
А (высоко-щелочное) С(химически-стойкое) Е (электроизо-ляцнонное) S (высоко-прочное)
Окись кремния 72,00 64,6 54,3 64,20
Окись алюминия 0,6 4,1 15,2 24,80
Окись железа - - - 0,21
Окись кальция 10,00 13,2 17,2 0,01
Окись магния 2,5 3,3 4,7 10,27
Окись натрия 14,2 7,7 0,6 0,27
Окись калия - 1,7 -
Окись бора - 4,7 8,0 0,01
Окись бария - 0,9 - 0,20
Прочие вещества 0,7 - -.

Большую часть стекловолокон получают одностадийным методом. Кварцевый песок, известняк, борная кислота и другие компоненты (глина, уголь и шпаты) перемешиваются и плавятся в высокотемпературных печах. Температура плавления для каждой композиции своя, но в среднем она составляет ~ 1260°С. Расплав стекла поступает непосредственно в оборудование для расплавного формования (рисунок 1).

1 - глина; 2 - известняк; 3 - уголь; 4 - кварцевый песок; 5 - флюорит; 6 - борная кислота; 7 - автоматические дозаторы: 8 - смеситель; 9, 10 - бункера; 11 - шнековый питатель; 12 – ванна; 13 - секция приготовления замасливателя (шлихты); 14 - платиновые фильеры (бушинги с электронагревом и автоматическим управлением); 15 - замасливатель; 16 - высокоскоростное намоточное устройство; 17, 27 - посты контроля и взвешивания; 18 - камера для кондиционирования волокна; 19 - крутильные машины; 20 - участок отделки и упаковки пряжи; 21 - участок термообработки; 22 - шпулярники; 23 - намоточная машина для ровинга; 24 - резальная машина; 25 - ровинг; 26 - резаное волокно (штапель); 28 - участок упаковки; 29 - участок отгрузки продукции

Рисунок 1 - Схема одностадийного получения стекловолокна:

Непрерывные волокна получают из предварительно расплавленного стекла на аппаратах для вытяжки стекловолокон (емкость для расплавленного стекла из платинового сплава называется бушингом - стеклоплавильный сосуд, имеющий форму лодочки). Под действием гидростатического давления расплав стекла вытекает через тонкие отверстия фильеры диаметром 0,8...3,0 мм в днище бушинга. Экструдируемые из каждого отверстия струи, подвергают интенсивному механическому растяжению до диаметра 3...19 мкм, после закалки в подфильерном холодильнике (в потоке водяных брызг) собирают в нить и пропускают через зону, в которой на волокно наносится покрытие - замасливатель, повышающий компактность нити.

Собранные в единый пучок элементарные волокна называют одиночной нитью или «стренга». Скорость вытягивания готовой нити стекловолоконной стренги составляет от 20 до 50 м/с. Прядильный кулич кондиционируется или проходит сушку для дальнейшей переработки в товарную продукцию.

Для получения штапельного стекловолокна расплавленная стекломасса, вытекающая из отверстий фильеры, вытягивается и разрывается в струе воздуха. Волокна длиной 200 ... 380 мм собираются вместе на вращающемся барабане и объединяются в стренгу. Затем стекловолокно проходит кондиционирование или сушку, если это необходимо для дальнейших технологических процессов.

Каждое элементарное волокно, вытягиваемое из отверстий фильеры, должно контролироваться для обеспечения стабильности размеров и свойств как элементарных волокон, так и стренг. Этот контроль достигается с помощью регулирования вязкости и температуры расплава стекломассы, а также скорости вытяжки (скорости приема нити или скорости истечения струи). Следовательно, можно получать большее число волокон различной тонины, меняя число отверстий в бушинге и условия вытяжки.

При двухстадийном процессе расплав перерабатывается вначале в стеклосферы, которые затем поступают в плавильные печи. После вторичной плавки расплав подается на установки для формования.

Характеристики ряда комплексных нитей из стекла различного состава приведены в таблице 2.

Таблица 6 – Основные характеристики крученных комплексных нитей

Марка Техническая документация Линейная плотность, текс Крутка, кр/м Тип замасливателя, потери при прокаливании, % (масс.)
Нити из алюмоборосиликатного стекла
БС6-2бх1х4(у) ТУ6-11-116-75 104±12 100±10 ПЭ н/б 2,0
БС5-3,4х1х2-80 ТУ6-11-383-76 6,8±0,5 150±15 № 80 0,8-2,0
Нити из бесщелочного безборного стекла Т-273А
ТС8-26х1х4 ТУ6-11-431-77 104±6 ПЭ1,5-0,5
ТС8-26х1х2 То же 52±4 ПЭ1,5-0,5
Нити кремнеземные из стекла № 11
КПС6-180 ОСТ-П-389-74 18О±14 150±10
КПС6-180-13 То же То же 150±10 № 13
КПС6-170-БА ОСТ-11 -389-74 170±20 150±10 № 13
Нити кварцевые
КС11-7х4хЗ ТУ6-11-82-75 100±15 ПЭ н/б 2,5
КС11-17x2x3 То же 100±15 То же

Обозначение марки крученой комплексной нити, например: БС6-3,4х1х2 (150)-80; ТС8-26х1х2; К11С6-180-БА; КС11-17x4x3, состоит из трех частей:

1– тип стекла и номинальный диаметр элементарной нити (волокна), где Б – бесщелочное алюмоборосиликатное, Т – стекло состава Т-273А, К11 – кремнеземные нити из стекла N11, К – кварцевая нить, С – стеклонить непрерывная, 6,8,6,11 – диаметр элементарной нити, мкм;

2 - номинальная линейная плотность комплексной нити (3,4;26;180;17), текс. Цифровое обозначение после знака "х": 1 - количество одиночных нитей в комплексной, 2 - количество скручиваемых одиночных нитей; цифры в скобках - количество кручений на 1 м нити;

3- тип замасливателя (например, № 80). При выработке нити на технологическом замасливателе из парафиновой эмульсии индекс в марке нити не указывают. В кремнеземных нитях: БА - безусадочная аппретированная нить.

Стекло является аморфным материалом, занимающим по своим физико-механическим свойствам промежуточное положение между твердым телом и жидкостью. С одной стороны, оно не обладает кристаллической структурой твердого тела, с другой - не обладает текучестью, проявляющейся в жидкостях. Химически стекла состоят в основном из кремнеземной (SiO 2) основы, существующей в виде полимерных цепочек (- SiO 4 -). Однако диоксид кремния, т, е. кварц, требует высоких температур для размягчения и вытягивания. Поэтому необходима модификация состава для снижения уровня рабочих температур, при которых стекломасса обладает вязкостью, позволяющей проводить вытяжку нитей. Способы модификации состава могут быть разделены по решению задач на две группы: получение стекол с определенными свойствами и приспособление к нуждам технологии.

Высокощелочные стекла (широко известные как натриевые или бутылочные стекла) являются наиболее распространенными. Они используются в основном для производства емкостей и листового стекла. Высокощелочные композиции (известково-натриевое стекло), известные под маркой А-стекла, выгодны для получения волокон, обладающих высокой хемостойкостью.

Вместе с тем высокое содержание щелочи в стекле определяет его невысокие электрические свойства, в то время как хорошие электроизоляционные свойства определили развитие стекол на основе низкощелочных композиций (алюмоборосиликаты), получивших наименование Е-стекол. В настоящее время из Е-стекол изготовляется большая часть текстильного ассортимента стекловолокон.

Для специальных областей применения, когда не подходят волокна из А - стекла и Е-стекла, могут быть созданы композиции с необходимыми характеристиками. Когда требуется особо высокая хемостойкость, может быть использовано волокно из С-стекла (натрийборосиликатная композиция). Для создания волокон с высокими прочностными характеристиками (например, для материалов несущих конструкций в самолето- и ракетостроении) используют S - стекла (C 1 -стекла) (магнийалюмосиликатные композиции). Повышение прочностных характеристик волокон из S-стекла приблизительно на 40 % относительно волокон из Е - стекла является результатом более высокой прочности исходной композиции. Кроме того, S - стекла имеют более высокую теплостойкость, нежели Е – стекла. Волокна из S - стекла обладают наряду с высоким качественным уровнем свойств довольно умеренным уровнем стоимости.

Образцы специальных композиций стекол создаются для исследования возможности создания материалов со специальными свойствами.

Композиция М-стекла позволила получать стекловолокна с высоким модулем упругости (Е = 11З ГПа). Однако присутствие бериллия (окиси, бериллия) препятствует созданию коммерческой продукция.

Низкие диэлектрические свойства D-стекол послужили причиной исследования возможности их применения в электронике. Они обладают низкой диэлектрической проницаемостью, по сравнению с Е-стеклами и могут найти применение при создании обтекателей антенн радиолокаторов.

L-стекла (свинцовые) хороши для радиационной защиты. Стекловолокна из такой композиции могут быть использованы для защитной одежды людей работающих с рентгеновским излучением, и как «меченая» пряжа в композитах, которая не разрушается под воздействием рентгеновского излучения.

Обработка поверхности . Поверхность непрерывных СВ в процессе их вытягивания из фильер покрывается замасливателем, который соединяет волокна в нить, предотвращает истирание волокон, защищает их от разрушения во время текстильной переработки, препятствует накоплению зарядов статического электричества при трений.

Применяются два вида замасливателей: технологические (текстильные) и прямые (активные, гидрофобно-адгезионные). Первые служат только для обеспечения текстильной переработки стеклонитей и состоят из клеящих и пластифицирующих (или смазывающих) веществ, обычно растворенных или эмульгированных в воде, реже - в органических растворителях. В отечественной промышленности наиболее часто применяется водно-эмульсионный замасливатель называемый «парафиновая эмульсия». За рубежом используют замасливатели на основе крахмала. Текстильные замасливатели ухудшают адгезию волокна к полимерной матрице, поэтому перед изготовлением КМ их необходимо удалять.

После удаления замасливателя на поверхность стеклянного наполнителя в ряде случаев наносят аппреты - вещества, способствующие созданию прочной связи на границе СВ - связующее. В качестве аппретов применяют обычно кремнийорганические и металлорганические соединения. Удаление текстильного замасливателя и последующее аппретирование усложняет и удорожает подготовку стеклонаполнителей, поэтому более эффективно применение прямых (активных) замасливателей, в состав которых наряду с пленкообразующими смазками входят и аппреты. Прямой замасливатель выполняет двойную функцию - предохраняет волокна от разрушения и усиливает адгезию между стеклом и полимерной матрицей.

Виды и формы

Обычно СВ имеют форму сплошного круглого цилиндра, СВ другой формы, например полые, называются профилированными. К наиболее перспективным профилированным СВ относятся волокна, имеющие в сечении форму треугольника, квадрата, шестигранника, волокна лентовидной и других форм с гладкой и гофрированной поверхностью.

Полые СВ получают протягиванием расплавленной стекломассы через фильеры при подаче воздуха под давлением в зону формования через сопло, расположенное внутри фильеры концентрически ее отверстию. Профилированные СВ с поперечным сечением сложной формы изготавливают вытягиванием заготовки с поперечным сечением такой же формы, как у готового СВ, вытягиванием стекломассы через фильеры, имеющие форму сектора, а также через коническую диафрагму. Плоские непрерывные СВ вырабатывают путем предварительного пропускания стекломассы через формующее устройство, с открытой стороны которого стекломасса охлаждается быстрее, чем с закрытой.

Полые (капиллярные) СВ по сравнению со сплошными имеют высокие значения плотности, диэлектрической проницаемости, тангенса угла диэлектрических потерь и теплопроводности, а также более высокие жесткость при изгибе и прочность при сжатии. Свойства полых СВ в значительной степени определяются коэффициентом капиллярности, который представляет собой отношение внутреннего диаметра волокна к его наружному диаметру. Полые СВ из бесщелочного алюмоборосиликатного стекла типа Е при кажущейся плотности 1700 кг/м 3 , среднем наружном диаметре 10,2 мкм, среднем коэффициенте капиллярности 0,57 имеют среднюю прочность при растяжении 2500 – 2800 МПа

В результате длительной практики промышленность стекловолокон установила несколько стандартов на толщину моноволокон (таблица 2). Значения диаметров, выраженные в микрометрах, округлены.

Таблица 2 - Маркировка и размеры элементарных стекловолокон

Маркировка Диаметр, мкм Маркировка Диаметр, мкм Маркировка Диаметр, мкм
В 3,8 DE 6,0 H 10,0
С 4,5 Е 7.0 K 13,0
D 5,0 G 9,0

Основные свойства

Механические свойства . Стекловолокна имеют очень высокий предел прочности при растяжении, превышающий прочность других текстильных волокон. Удельная прочность стекловолокон (отношение прочности при растяжении к плотности) превышает аналогичную характеристику стальной проволоки.

По прочности (1000 - 6000 МПа) технические СВ значительно превосходят исходные массивные стекла (100 МПа) вследствие более изотропной структуры высокотемпературного расплава стекла, из которого вырабатываются волокна, и высокой скорости их охлаждения, предотвращающей образование опасных микродефектов и микротрещин на поверхности СВ в процессе их формования. Наиболее высокую техническую прочность, достигающую прочности кварцевых волокон, имеют СВ из стекол магнийалюмосиликатного состава (таблица 2).

Таблица 2 - Механические свойства СВ

Тип, парка стекла Е, ГПа d раст, МПа e, %
Алюмоборосиликатиое Е-стекло 73,5 4,8
Высокомодульное ВМ-1 (РФ) 4,8
М-стекло (США)
Высокопрочное магнийалюмосиликатное
ВМП (РФ)
УП-68 (РФ) 84,7 ... ...
УП-73 (РФ) 82,6
S-994 (США) 86,8 4650 - 4900 5,4
D-стекло с низкой диэлектрической проницаемостью (США) 52,5 4,7
Известково-натриевое А-стекло (США) 66,0 4,0
Кислотостойкое
№ 7-А (РФ) 74,0 3,6
С-стекло (США) 70,0 ...
Плавленый кварц 74,2 ...
Свинцовосиликатное L-стекло (США) 51,0 4,6

На прочность СВ помимо химического состава стекла влияют метод и условия формования и главным образом состояние поверхности волокон в физико-химическое взаимодействие поверхностных дефектов с окружающей средой. Наиболее высокой прочностью обладают СВ с неповрежденной поверхностью, так называемые нетронутые волокна (отобранные сразу после вытяжки из фильер до контакта с замасливающим и наматывающим устройствами). Выпускаемые промышленностью СВ имеют механически и химически поврежденную поверхность, что снижает их прочность и увеличивает разброс показателей.

Термообработка СВ без нагрузки приводит к уменьшению их прочности и тем в большей степени, чем выше температура и продолжительность обработки. Это связано с ростом микронеоднородностей и поверхностной кристаллизацией, вызывающей образование микротрещин. Понижение прочности кварцевых волокон наступает при температуре обработки 873 К, бесщелочных алюмоборосиликатных - при 573 К, натрийкальцийсиликатных, боратных, свинцовых и фосфатных - при 373 - 473 К.

Рисунок 2- Зависимость прочности от температуры термообработки волокна:

1 - кварцевого; 2 - марки Е; 3 - марки А.

Прочность СВ возрастает с уменьшением их диаметра, но эта зависимость не всегда справедлива и определяется условиями формования волокон, их составом и условиями эксплуатации.

Так, в полимерных КМ зависимость прочности дефектных волокон от их геометрических параметров проявляется лишь при значительных диаметрах и можно достаточно эффективно использовать СВ диаметром 10 - 50 мкм и более. Согласно современным представлениям влияние диаметра волокна на его прочность выражено значительно слабее, если соблюдать неизменной скорость охлаждения волокна (рисунок 3, кривая 1).

Рисунок 3 - Зависимость прочности стеклянного волокна марки Е от диаметра при уменьшающейся (1) и постоянной (2) скорости охлаждения.

СВ имеют низкую стойкость к многократному изгибу и истиранию, которые значительно повышаются после пропитки их лаками, смолами. Склеивание волокон в нить увеличивает ее прочность на 20 - 25 %, а пропитка лаками - на 80 - 100 %. Сопротивление изгибу и кручению растет с уменьшением диаметра СВ.

При комнатной температуре, влажности примерно 50 - 55 % и кратковременной нагружении СВ ведут себя вплоть до разрушения как идеальные упругие тела, подчиняясь закону Гука. С повышением температуры модуль упругости СВ уменьшается незначительно до температуры размягчения. Исключение составляют кварцевые волокна, модуль упругости которых с температурой линейно увеличивается от 74,2 ГПа при 293 К до 82,9 ГПа при 1173 К.

Высокомодульные волокна в большинстве случаев имеют меньшую прочность и более высокую плотность, а следовательно, меньшие значения удельной жесткости и прочности.

Прочность кремнеземных волокон зависит от состава стекол, из которых они выщелочены, структуры волокон. Наибольшую прочность (800 - 1000 МПа) имеют кремнеземные волокна, полученные из натрийсиликатных стекол, низкую (1000 - 1500 МПа) - алюмокремнеземные и алюмосиликатньм волокна.

Физические свойства СВ идентичны свойствам массивных стекол того же состава и определяются в основном химическим составом стекла (таблица 1).

Кремнеземные волокна обладают высокой температурой размягчения. Так, температура размягчения высококремнеземных волокон типа «викор» равна 1773 К, волокна «рефразил» (98 - 99 % SiO 2) не плавятся и не испаряются до температуры 1923 К. Все виды кремнеземных волокон имеют хорошие теплофизические (при температуре 538 К l = 0,087 Вт/(м´К), с = 1,006 кДж/(кг´К)) и электроизоляционные свойства, мало изменяющиеся с повышением температуры. Алюмокремнеземные волокна имеют более высокую температуру спекания (1973 К), чем кремнеземные. Высокие температуры плавления (1973 - 2063 К) и спекания (1723 - 1773 К), хорошие электроизоляционные, теплоизоляционные (l = 0,22 Вт/(м´К) при температуре 373 К), звукоизоляционные свойства и низкую плотность (80 - 100 кг/м 3) имеют алюмосиликатные волокна (каолиновые, каовул, файберакс). Алюмосиликатные и алюмохромосиликатные волокна могут длительно эксплуатироваться при температурах 1473-1723 К.

Химические свойства. Химическая стойкость СВ зависит от состава стекла, природы, концентрации, температуры и продолжительности действия реагента и определяется потерями массы и прочности под воздействием агрессивных сред. СВ имеют развитую поверхность и поэтому разрушаются интенсивнее, чем массивные стекла. Хотя химическая стойкость СВ не зависит от их диаметра, абсолютная растворимость в различных агрессивных средах выше у тонких СВ вследствие более развитой поверхности.

Высокой химической стойкостью к воде и пару высокого давления обладают кварцевые, кремнеземные, каолиновые, бесщелочные алюмоборосиликатные волокна. При длительном воздействии водяного пара различного давления прочность тонких волокон из многокомпонентных бесщелочных стекол снижается. В щелочных стеклах с увеличением содержания щелочных оксидов снижается стойкость к действию воды и водяного пара вследствие интенсивного выщелачивания, которое приводит к полному распаду структурной сетки стекла.

Кварцевые, кремнеземные и бесщелочные алюмосиликатные волокна, не содержащие борного ангидрида, стойки к действию органических и минеральных кислот, за исключением фтористоводородной, которая разрушает все виды стекол и СВ уже при нормальной температуре, и ортофосфорной, разрушающей СВ при температуре выше 573 К. При введении в алюмосиликатные стекла некоторых оксидов (титана, циркония, церия и др.) кислотостойкость волокон резко повышается.

Химическая стойкость и прочность волокон из Е-стекла под действием минеральных кислот различной концентрации снижается. При обработке кислотой волокон многощелочного состава растворяются все компоненты стекла, за исключением SiO 2 .

Все СВ недостаточно устойчивы к действию щелочных растворов, что обусловлено хорошей растворимостью в щелочах кремнеземного каркаса. Кварцевые и кремнеземные волокна в щелочных средах разрушаются медленнее, чем волокна из обычных стекол. Стойкость СВ к щелочным растворам повышается при введении в стекло оксидов, уплотняющих их структуру. К таковым относятся оксиды циркония, алюминия, железа, цинка, олова, лантана и некоторые др.

Эксплуатационные свойства стекловолокон

Тепло- и огнестойкость. Так как природа стекловолокон неорганическая, они не горят и не поддерживают горение. Высокая температура плавления стекловолокон позволяет использовать их в области высоких температур.

Биостойкость. Стекловолокна устойчивы к воздействию грибков, бактерий и насекомых.

Влагостойкость. Стекловолокна не сорбируют влагу, следовательно, не набухают, не растягиваются и не разрушаются под ее воздействием. Стекловолокна не гниют и сохраняют свои высокие прочностные свойства в среде с повышенной влажностью.

Термические свойства. Стекловолокна имеют низкий коэффициент линейного расширения и большой коэффициент теплопроводности. Эти свойства позволяют эксплуатировать их при повышенных температурах, особенно, если необходима быстрая диссипация температуры.

Электрические свойства. Поскольку стекловолокна не проводят ток, они могут быть использованы как очень хорошие изоляторы. Это особенно выгодно там, где необходимы высокая электрическая прочность и низкая диэлектрическая постоянная.

Таблица 3 - Свойства стекловолокон

Свойства Марка стекла
А С Е S
Физические
Плотность, кг/м 3
Твердость по Моосу - 6,5 6,5 6,5
Механические
Предел прочности при растяжении МПа:
при 22 °С
при 371 °С - -
при 533 °С - -
Модуль упругости при растяжении при 22°С, МПа - 69,о 72,4 85,5
Предел текучести, % - 4,8 4,8 5,7
Упругое восстановление, К -
Термические
Коэффициент линейного термического расширения, 10 -6 К -1 8,6 7,2 5,6
Коэффициент теплопроводности, Вт/(м-К) - - 10,4 -
Удельная теплоемкость при 22 °С - 0,212 0,197 0,176
Температура размягчения, °С -
Электрические
Электрическая прочность, В/мм 19 920
Диэлектрическая постоянная при 22°С: при 60 Гц - 5,9 - 6,4 5,0 - 5,4
при 1 МГц 6,9 6,3 5,1
Потери при 22°С: при 60 Гц 0,005 0,003
при 1 МГц - - 0,002 0,003
Объемное сопротивление при 22 °С и 500 В постоянного тока, Ом-м - - 10 17 10 18
Поверхностное сопротивление при 22 °С и 500 В постоянного тока, Ом-м - - 10 15 10 16
Оптические
Коэффициент преломления - - 1,547 1,423
Акустические
Скорость звука, м/с - -

Свойства СВ во многом определяются их составом. В зависимости от основного назначения могут быть получены волокна с повышенной прочностью или с повышенным модулем упругости (магнийалюмосиликатные композиции типа ВМП, ВМ-1), волокна с повышенной стойкостью к действию кислот (средне-щелочное силикатное стекло типа ТА), тугоплавкие кварцевые волокна (кремнеземные с содержанием SiO 2 не менее 94%), волокна с хорошими электроизоляционными свойствами и высокой прочностью (алюмоборосиликатные композиции). Основные физико-механические свойства СВ, наиболее распространенных в производстве волокнистых стеклопластиков в РФ, приведены в таблице 5.

Таблица 5 – Характеристики стеклянных волокон

Свойства Марка стекла*
MAC АБС КС
Физические:
плотность r, кг/м 3
Механические:
предел прочности при растяжении s, МПа:
при 22 °С
при 371 °С -
пои 533 °С -
Модуль упругости при растяжении Е, МПа, при 22 °С 85,5 72,4
Предел текучести стт, % 5,7 4,8 4,8
Термические: КЛТР a´10 6 , К -1 5,6 7,2
Коэффициент теплопроводности X, Вт/(мК) 10,4
Удельная теплоемкость, Дж/(кгК), при 22 °С 0,176 0,197 0,212
Температура размягчения Т, °С -

Примечание. MAC - магнийалюмосиликатные, АБС - алюмоборосиликатные, КС - кислотостойкие.

Прочность моноволокна £-стекла и S-стекла равна 3,4 и 4,5 ГПа соответственно. Стандартное отклонение примерно ±10 %. Приведенные значения являются усредненным результатом боль­шого числа отдельных измерений. Распределение значений прочно­сти в этих измерениях обычно подчиняется гистограмме (рис. 16.1), составленной фирмой «Оуэнз-Корнинг файбергласс». Полученные значения охватывают диапазон от близких к нулю (на нижнем участке гистограммы) до приближающихся к теоретически пре­дельным- 10,3 ... 13,8 ГПа (на верхнем участке). Причиной такого широкого разброса являются наличие дефектов в волокнах и воздействие на них различных факторов окружающей среды . Основным таким фактором является влажность. Атмосферная влага воздействует на дефектные места в волокне, особенно когда оно находится в напряженном состоянии, что приводит к росту

Трещин и окончательному разрушению волокна. Этот механизм коррозии под напряжением проявляется как при оценке статиче­ской усталости, так и при растяжении. Трещины в волокне раз­виваются из больших поверхностных дефектов, возникающих в процессе вытяжки или при последующем получении ровингов из волокон, а также из сравнительно небольших изъязвлений поверхности, которые могли образоваться при вытяжке или раз­виться под действием коррозии под нагрузкой или без нее. В стек­ловолокне, кроме того, могут быть внутренние раковины.

Результаты испытаний на растяжение стренг или пучков во­локна примерно на 20 % ниже, чем средние значения для моно­волокна. После разрыва отдельных волокон в пучке на оставшиеся волокна приходится большая нагрузка. В результате этого ито­говая прочность снижается. Фактически прочность стренги может быть рассчитана с высокой точностью по кривой распределения прочности моноволокна. Неодинаковое натяжение волокон внутри деформируемой стренги дает аналогичный прогрессирующий эф­фект разрушения.

По данным фирм, выпускающих стекловолокно, ровинги с боль­шим числом отдельных концов (одиночных нитей), но обычно не более 60, имеют примерно такую же удельную прочность, что и ровинги с единым концом (в виде жгута). Такой вывод основан на предположении, что при соединении отдельных стренг в ровинг дисперсии механических свойств существенно не возрастают.

Диаметр моноволокон - еще один параметр, влияющий на их предел прочности при растяжении. В опытах, проведенных в жестко контролируемых условиях, было показано, что проч­ность моноволокна не уменьшается при увеличении диаметра до максимальных для промышленного волокна размеров. Однако для практических целей совершенно очевидно, что прочность волокон большого диаметра ниже, чем у волокон с меньшим диаметром. Допустимые значения прочности регламентируются военными тех­ническими условиями і?-60346 на применяемый для намотки ровинг. Минимальное значение для ровинга из волокон £-стекла с диаметром G (0,09 ... 0,010 мм) составляет 1,93 ГПа. Для во­локон большего диаметра, т. е. до калибра Т (0,023 ... 0,024 мм), максимально допустимое значение предела прочности при растя­жении 1,38 ГПа.

Прочность волокна зависит также от метода испытания отвер­жденных композитов. При сохранении волокон в выпрямленном состоянии и их равномерном нагружении прочность однонаправ­ленных композитов не ниже или даже выше прочности нитей. При испытании волокон по методу «кольцо NOL» их прочность может достигать 2,76 ... 3,1 ГПа. С другой стороны, при более толстой намотке изделий большего размера максимальная проч­ность не превышает 2,07 ГПа. Значения прочности для таких конструкций ниже по ряду причин: повреждение волокон при намотке; нарушение центровки или плохая коллимация; неравно - 202
мерное натяжение слоев при намотке; изменение напряжения при переходе от внутренних слоев к наружным; появление случайных локальных напряжений.

Общий вывод заключается в том, что при определении проч­ности материала для расчета конструкций следует испытывать композит, а не само волокно. Сравнение с данными, полученными при испытании стренг, свидетельствует об эффективности метода их получения. Для определения истинного напряжения волокна в момент разрушения требуется детальный анализ напряжений.

Стекловолокно представляет собой волокна или нити, изготовленные из стекла или его производных, но благодаря сложному процессу производства приобретшее в конечном итоге уникальные свойства, нехарактерные для обычного стекла. Оно не разбивается при ударе, а легко гнется, при этом не деформируясь и не повреждаясь. Из материалов, производимых на его основе, изготавливаются различные изделия, успешно заменяющие традиционные привычные материалы, а сферой применения становятся области строительства, автомобилестроение, дорожные работы в другие направления. В статье речь пойдет о разновидностях стекловолокна.

Производство искусственного волокна и применение материалов на его основе представляет большой интерес как прогрессивное направление бизнеса. Оно занимает сегодня огромную часть отрасли стекольной промышленности с приличными капиталовложениями. Это говорит о том, что стекловолокно востребованный продукт среди ассортимента производимых товаров в современном мире.

Синтетическое стекловолокно может выпускаться из различного типа сырья, среди которых стекло, шлак, различные горные породы и минералы. Стекловолокно может быть произведено методом непрерывных нитей, или другим способом - в виде штапельного волокна.

Стекловолокно фото

Стекловолокно характеристики

Стекловолокно популярно и востребовано как материал благодаря своим замечательным свойствам, которые в значительной мере отличаются от исходного материала. Особое внимание стоит остановить на следующих характеристиках:

высокий уровень прочности, который превосходит прочность легированной стали. Диаметр нитей стекловолокна составляет 7-9 мк. Они произведены из магнийалюмосиликатного стекла и стекла, не содержащего щелочь, обладают самыми большими показателями прочности;
устойчивость к термической обработке. Структура эпоксидного стекловолокна сохраняется даже при сильном нагревании, в условиях, когда природные волокна органического происхождения уже полностью разрушаются;
придание дополнительной прочности в составе других материалов. В этом случае стекловолокно играет роль армирующей основы;
толерантность некоторых видов стекловолокон к химически и термически агрессивных средам - кислотам, горячей воде и воздействию пара высокого давления. Лучшими показателями обладают волокна кремнеземного, кварцевого и каолинового происхождения;
звукопоглощающие свойства. Шумоизолирующий эффект достигается благодаря оригинальному строению материала, в котором пространство, остающееся между волокнами, заполнено микроскопическими пузырьками воздуха;
теплоизолирующие свойства. Небольшая плотность и содержание воздуха среди волокон обеспечивают удержание тепла зимой и отсутствие нагрева летом;
негорючесть и экологичность. Стекловолокно не воспламеняется, не горит и не плавится, что делает его пожаробезопасным материалом и позволяет избежать токсичных веществ, которые выделяются при горении многих синтетических материалов;
способности сохранять первоначальную форму, прекрасно сопротивляться старению и противостоять деформации;
изменение свойств материала при намокании. В мокром виде теряет исходные свойства, а при высыхании восстанавливает их снова;
плохое отношение стекловолокна к изгибам и многочисленным истираниям. Обработка смолами и лаками меняет дело в положительную сторону;
экономичности транспортировки. Стекловолокнистая ткань тонкая, гибкая, но в то же время упругая. При необходимости перевозки ее можно сложить достаточно плотно и структура ткани не будет нарушена. Благодаря этому экономится место в транспорте, а значит, и расходы на транспортировку.
Свойства, которыми будет обладать готовое изделие, в конечном итоге зависят от способа изготовления продукта, химического состава сырья, воздействия факторов окружающей среды и толщины стекловолокна.
Материалы на основе стекловолокна

Само стекловолокно является лишь сырьем для производства различных продуктов - стеклонитей, ровингов и рубленого волокна, из которых впоследствии изготавливаются разные материалы строительного, электроизоляционного, производственного и конструкционного назначения.

Из непрерывных стекловолокнистых нитей получают:

стеклоткани, которые производятся таким же ткацким методом, что и обычное полотно — переплетением продольных и поперечных нитей между собой. В зависимости от вида переплетения — сатинового, полотняного, шашечного или саржевого, плотности и извивистости пряжи ткани отличаются между собой свойствами и назначением. Стеклоткани бывают электроизоляционные, строительные, конструкционные, кремнеземные и ровинговые. В зависимости от марки цена стекловолокна составляет 25-200руб/м2$
армированное стекловолокно и ленты, отличающиеся размером ячейки, видом и плотностью пропитки и предназначенные для дорожных или строительных наружных и внутренних отделочных работ;
пластиковое стекловолокно — композиты с разнообразными свойствами, которые задаются изначально в зависимости от условий эксплуатации. Они позволяют производить изделия любой сложности и конфигурации и поэтому именно стекловолокна в сочетании с полимерами получили самое широкое применение и распространение в самых различных сферах нашей жизни.
Из штапельных стекловолокнистых нитей и рубленых волокон можно купить стекловолокно следующего назначения:

утеплитель - стекловату и стекломаты;
стеклохолсты различной степени толстости, стеклопластики;
такое сырье используется и как компонент строительных растворов.
Каждый из этих материалов имеет свои присущие только ему особенности и индивидуальные характеристики, что предоставляет неограниченные возможности для широчайшего использования их во всех областях человеческой жизни.
Стекловолокно применение

Сегодня без изделий из стекловолокна не обходятся строительные, ремонтные и отделочные работы. Этот материал применяется также и при проведении дорожных работ. Широкое использование он получил в авто- и судостроении, в сфере производства товаров бытового, спортивного и медицинского назначения. А из-за превосходных диэлектрических свойств давно применяется в энергетической отрасли в качестве изоляционных материалов.

Применение стекловолокна в строительстве

Очень много продуктов из стекловолокна используется в строительстве. Одним из них является стеклопластиковая арматура, которая разрабатывалась как замена для стальной. Дело в том, что долгое время сталь являлась практически единственным материалом, у которого имелись необходимые для армирующего элемента свойства - исключительная прочность и долговечность. Альтернативы не было, а значит, приходилось мириться и с недостатками стали. Когда развитие технологий сделало возможным получение материалов с ранее недоступными свойствами, изменились и стандарты производства стройматериалов, в том числе и армирующих. На смену стальной пришла композитная стеклопластиковая арматура.

Она обладает прочностью и надежностью стали, но в то же время в несколько раз легче ее, не подвержена коррозии, устойчива к неблагоприятным воздействиям влаги, имеет низкую теплопроводность, не проводит электричество и полностью химически инертна. Все эти замечательные качества обеспечивают композиту самое широкое использование в самых различных случаях - для армирования фундаментов, бетонных конструкций и дорожного или авиационного полотна, крепления теплоизоляции, в виде армирующих сеток для несущего или облицовочного слоя при строительстве или ремонте зданий, для возведения осветительных опор, ограждений, канализационных и мелиоративных конструкций.
Еще одним изделием из стекловолокна является стеклофибра, которую добавляют в бетонный раствор в качестве скрепляющего элемента. Как известно, обычная бетонная смесь в процессе застывания подвержена усадке, в результате которой образуются микротрещины. Что является нежелательным, так как негативно влияет на качество бетона и его долговечность. Добавление в раствор фибры меняет дело. Когда свежий бетон начинает застывать, внутри раствора химические и физические процессы могут приводить к образованию дефектов. Волокна стекловолокна способны остановить прорастание микротрещин на ранних стадиях его твердения. В некоторых случаях такой состав позволяет обойтись без дополнительного армирования. Стеклофибру применяют для создания газобетонов, пенобетонов и ячеистых бетонов, в сухих смесях и штукатурках, стяжках и стеновых панелей для зданий и т. д. Полученная продукция выходит лучшего качества и с более высокими характеристиками.
Стекловолокно - прекрасный утеплитель. Чем хорошо пользуются в строительстве для теплоизоляции различных ненагруженных конструкций, внутри и снаружи зданий. Для наружных работ применяется в системе вентилируемых фасадов как самостоятельный элемент утепления или в составе сэндвич-панелей. Может использоваться как в рулонах, так и в матах. Внутренние работы включают в себя утепление кровли, чердачного помещения, теплоизоляцию стен и потолков, внутренних перегородок обычных и каркасных зданий. Стекловолоконными изделиями утепляют также различные подходящие к зданиям коммуникации — трубопроводы, системы канализации и вентиляции, отопления. Для этих целей в основном используют иглопробивные материалы. Обладающими паро- и теплоотражающими качествами фольгированными матами изолируют холодильные камеры, сауны и подобные помещения.
Ремонт и отделка помещений также не обходится без изделий из стекловолокна. Их главное назначение - создание армирующего слоя на поверхности при штукатурных работах. Таким образом, реставрация проходит успешно. Множество мелких трещин или одну крупную можно закрыть с помощью шпаклевки стекловолокна.
Кроме этого ее используют как армирующий элемент перед заливкой наливного пола, укладкой гидроизоляции, для укрепления соединений листов гипсокартона. Для более тонкой отделки поверхностей под покраску, при работе с гипсокартоном, для предупреждения появления мелких изъянов и получения идеальной картины в целом используется более изящный вариант армирующего материала - нетканый стеклохолст. Финишная отделка с применением стеклохолста дает всегда отличные результаты, качественное однородное покрытие без дефектов и изъянов. К тому же это еще и гарантия того, что идеальное состояние поверхности в ближайшее время не будет нарушено.
Еще одним отделочным материалом из стекловолокна являются стеклообои — прекрасное декоративное покрытие, но требующее большого количества краски из-за высоких впитывающих свойств. В отличие от обычных обоев, они выносливы, выдерживают механические нагрузки и воздействия химических сред.
Применение стекловолокна в дорожном и промышленном строительстве

Широкое распространение применение стекловолокна получило в промышленном и дорожном строительстве. Здесь оно незаменимо как скрепляющий компонент. Дорожное полотно с уложенной стеклопластиковой арматурой, при условии соблюдения технологии строительства, не растрескивается и не продавливается при нагрузках. Наличие в слоях покрытия дорог стеклосетки гарантирует увеличение производительности и срока их эксплуатации, снижает толщину асфальтного покрытия, предупреждает образование и распространение трещин и выбоин, увеличивает проходимость и долговечность дорог, позволяет увеличить сроки между ремонтами.
В гидротехническом строительстве без укрепляющих стекловолоконных сеток не обходится возведение плотин, набережных, мостов, подпорных стенок, ливневых коллекторов. Значительная часть канализационных емкостей (отстойников, фильтров, септиков) выполнена все из того же стеклопластика.
Из него изготавливаются сидения, устанавливаемые на стадионах, в аэропортах, авто- и ж/д вокзалах; оборудование остановок, бассейнов. Везде, где предусматривается большое скопление людей.
Применение стекловолокна в авто- и судостроение

Стеклоткань и композитный стеклопластик, благодаря малому весу и исключительной прочности, способности хорошо поддаваться механической обработке и окрашиванию, поэтому востребованы в автопромышленности и автоспорте. Из этих материалов производят различные части кузова - двери, крыши, крышки багажников, капоты. А также бампера, спойлеры, обвесы, рейлинги и внутренние детали салона. Стекловолокно применяют для придания дополнительной жесткости шинам, и в глушителях как звукоизоляционный материал.
В тюнинговых ателье изделия из стекловолокна используются для создания отделочных элементов благодаря способности легко копировать форму заготовки для воспроизведения необходимой детали. Простота в обработке, небольшая толщина, гибкость и пластичность материала позволяют изготавливать из него изделия разной степени сложности и формы.
Те же замечательные качества стекловолокна обеспечивают его применение в промышленном масштабе и в судостроительной отрасли. Корпуса моторных и весельных лодок, гоночных и крейсерных яхт, рыболовецких судов малой тоннажности, скутеров и катеров сегодня частично или полностью выполнены из этого материала. Стеклопластиковыми могут быть и другие части суден.
Лодка из стекловолокна видео

Другие способы применения стекловолокна

В зависимости от толщины стекловолокна из него производят различные товары народного потребления и другие изделия:

сантехнические детали - биотуалеты, септики, душевые кабинки, чаши бассейнов;
товары для спорта и отдыха - весла для гребли, лыжные палки, удочки и т. д.;
ящики и контейнеры для бытовых отходов твердого типа;
медицинские изделия, используемые в стоматологии - пломбы и несъемные протезы, ленты для шинирования зубов;
медицинские изделия, используемым в ортопедии - протезы, костыли, трости;
разнообразные виды трубок бытового назначения - антенны, держатели, флагштоки;
электротехнические изделия - индикаторы, предохранители, заземлители.
Это далеко не полный список перечислений всех мест, где может быть использованы изделия из стекловолокна. С каждым днем область их применения все больше расширяется, охватывая все новые и новые сферы нашей деятельности.

Широкое распространение и применение стекловолокна и изделий на его основе стало возможным благодаря достижениям современного производства, высоким технологиям в области химпромышленности, в частности полимеров и композитных материалов, и высоким требованиям к качеству конечного продукта. Стекловолокно - уникальный продукт, который как нельзя лучше отвечает реалиям времени и требуемым характеристикам и свойствам, присущим современным материалам. Поэтому такое его разностороннее применение совсем неудивительно.

Эта ткань настолько необычна, что является поводом очередной раз восхититься современными технологиями. Из неё шьются одежду для людей специфических профессий, чья работа предполагает контакт с вредными химическими веществами, агрессивными кислотами, для пожарников, каждодневно борющихся с огнём.

Этот технический материал более, чем востребован в народном хозяйстве и необходим в радиотехнике и электронике, применяется при производстве космических аппаратов, служит материалом для зданий и строительства водопроводов.

Стеклоткань создаётся из стекловолокна на основе чистого кремнезёма с добавлением бора и алюминия. В процессе производства силикатное стекло в специальных печах расплавляется, чтобы, превратиться в вязкую массу, которая в дальнейшем продавливается через тончайшие фильтры.

После чего получаются эластичные и мягкие волокна. Эти чрезвычайно изящные стеклянные нити, намного миниатюрней по толщине, измеряемого в несколько десятков микрометров, человеческого волоса. При этом волокна наделены фантастической прочностью и невероятной длиной, составляющей до 20 км.

Стеклянные нити пропитываются особыми полимерами, замасливаются парафиновой эмульсией. Благодаря этому хрупкое, в обычном состоянии, со звоном бьющееся, стекло чудесным образом меняет свои былые свойства почти на противоположные и приобретает новые, уникальные особенности.

Таким образом появляется на свет стеклоткань . Гост строго регламентирует её стандарты. Качества этой технической ткани практически парадоксальны. Следует перечислить основные из них.

1. Негорючесть. Данное свойство этот уникальный материал получил от своего прообраза – стекла, также, как и теплоизоляционные характеристики. Он способен выдерживать, не разрушаясь, воздействие открытого огня, правда, строго ограниченный, непродолжительный период. При этом он не проводит электричество, поэтому стеклоткань для изоляции применяют достаточно часто.

2. Устойчивость и гибкость. Благодаря особому строению, ткань невосприимчива к вредным, негативным механическим воздействиям. А восхитительная гибкость даёт возможность, не ломаясь, принимать ей любую предпочтительную форму.

3. Биохимическая инертность. Ингредиенты, из которых делается технический материал непитательны для микроскопических организмов, как следствие, ткань не подвергается гниению. С другой стороны, стеклоткань устойчива к воздействию водной среды, ультрафиолета, химии, прекрасно переносит обработку кислотами и щелочами, прочими агрессивными субстанций.

4. Долговечность и механическая прочность, не знающая аналогов. Характеристики стеклоткани превышают показатели проволоки из стали. Коррозия и механический износ ей тоже нестрашны.

5. Экологическая чистота и простота в применении. Составляющие технической ткани не являются токсичными. Вместе с тем, масса материала незначительна. Экологичность делает удобной, при необходимости, его утилизацию.

В этом случае с ним поступают, как и с прочим строительным мусором. Этим и объясняется востребованность стеклоткани, которая, по прогнозам экономистов в ближайшее время будет только возрастать, особенно в отраслях, где применение стекла нецелесообразно из-за его хрупкости.

Описываемая техническая ткань всё больше становится неотъемлемой частью жизни людей, которых повсюду окружают предметы из стекломатерии. Их можно увидеть в автомобилях, круизных лайнерах, в самолёте. Они привносят разнообразие, удобство, делают наш быт комфортнее.

К недостаткам материала относится необходимость соблюдения строгих правил безопасности при утилизации. Ведь микрочастицы, попадающие в воздух при измельчении стеклоткани, способны нанести относительный вред здоровью, попадая в дыхательные пути. Поэтому работу проводят в масках и перчатках, при измельчении смачивая материал. И хранят утилизационные отходы в герметичных пакетах.

Виды стеклоткани

На сегодняшний день стекломатериал представляется несколькими разновидностями. Каждая из них выделяется собственными характеристиками, на которые во многом влияют не только составляющие компоненты, но и методика переплетения нитей. Они будут перечислены далее.

1. Конструкционная стеклоткань создаётся сатиновым и полотняным плетением, с использованием особых стеклянных алюмоборосиликатных нитей. При полотняном (наиболее плотном) плетении стекловолокна образуют уникальную картину, образным аналогом которой может послужить шахматная доска.

Поэтому изделия из подобного типа тканей с трудом поддаются искривлениям и меняют свои размеры. В сатиновом, волокна располагаются редко, поэтому ткани менее плотны, но чрезвычайно гибки и растяжимы, становясь незаменимыми в поделке предметов со сложной геометрией.

Полученный в результате создания двух упомянутых структур, стекломатериал характеризуется лёгким весом и относительно высокой прочностью, активно применяясь для армирования и в производстве всевозможных изделий.

Данные материалы маркируются начальной буквой «Т ». Стеклоткань такого типа находит самое многогранное использование в промышленности, незаменима в автомобилестроении и судостроении, а также в изготовлении стеклопластика.

2. Электроизоляционные. Часто создаются полотняным плетением, ввиду этого прочность полученного материала достаточно высока. Здесь маркировка отмечена начальной буквой «Э», в случаях сортов из полого волокна – «П».

Данный продукт идеально подходит для электрической изоляции (как можно догадаться из названия), так как не проводит электричество. Кроме того, отличаясь устойчивостью к коррозии, невоспламеняемостью и прочностью, с успехом используется для создания теплоизоляционных труб, фольгированных материалов, печатных плат, стеклопластиковых конструкций: цистерн, лодок и прочего. Из полого стекла изготавливаются теплоизоляционные оболочки и монтажные платы.

3. Фильтрационные. Производятся, в том числе, и путём саржевого плетения. Там тонкие стеклянные волокна располагаются по диагонали, поэтому ткани менее прочны, но более растяжимы, становясь незаменимыми в поделке предметов со сложной геометрией.

Данный материал, применяемый для создания фильтрационных сетей, через которые пропускают газы. Маркировки, применяемые в данном случае, характеризуются индексами «ССФ» и «ТСФ».

4. Строительные. Прочность таких тканей и другие ценные качества становятся важным поводом для применения их в отделочных работах, дорожном строительстве и укреплении самых разных конструкций. Индексами для маркировки являются «ССШ», «СДА», «СС».

5. Базальтовые, кварцевые, кремнезёмные стеклоткани. Предназначены для использования в самых экстремальных условиях. При работе с агрессивными веществами, в средах с высокой радиацией, при огромных температурах, доходящих до 1100°С.

6. Радиотехнические ткани изготавливаются с применением металлических элементов. Это наделяет их способностью к отражению радиоволн и света, что с успехом используется в технике.

7. Изоляционные ткани производятся из бесщелочного стекла. Применяются для армирования строительных теплоизоляционных конструкций.

Среди ранее описанных типов стекломатериала, следует упомянуть ровинговые стеклоткани. Они не относятся к отдельной разновидности, а указывают на тип структуры, которая может относиться к любому из перечисленных видов материала.

Они создаются из ровингов, так принято называть структуры, создаваемые из нескрученных пучков нитей, которые сплетаются в ткань. Они обычно выделены маркировкой «ТР» и поставляется потребителю рулонами или листами значительной площади. Также все стекломатериалы по типу структуры плетения разделяются на следующие типы:

  • тканевые – с упорядочено сплетёнными волокнами;
  • нетканевые – с беспорядочным расположением нитей.

Применение

Об обширной востребованности стеклотканей в самых разных, подчас неожиданных областях, уже многое было сказано. А все виды и способы использования просто невозможно описать. Поэтому сейчас подошло время рассмотреть принципы применения стеклотканей на практике.

Чаще всего описываемый материал оказывается востребованным в производстве стеклопластика, то есть в создании изделий из стекловолоконного наполнителя, скрепляемых в процессе работ посредством специальных связующих веществ. Данные технологии обычно базируются на следующих принципах, осуществляясь по указанным этапам.

1. Производится модель предполагаемого изделия. Она может изготавливаться вручную из глины, пластика, дерева, любого из податливых материалов.

3. Модель покрывается стеклотканью с получением требуемой толщины стенок. При необходимости приклеивание производится в несколько слоёв. Для наилучшего соединения подойдёт полиэфирная и эпоксидная смола . Стеклоткань также может клеиться и многими другими составами.

4. Каждый из слоёв после соединения следует приглаживать валиком. А очередное приклеивание можно начинать, даже не дождавшись окончательного высыхания предыдущего слоя.

5. Завершается цикл только, когда связующее вещество достигнет полной полимеризации. После сушки форму следует убрать, аккуратным снятием.

Наиболее распространённым методом является формовка изделия в матрице. Здесь изготавливается гипсовая форма, что помогает организовать многосерийное производство. Для этого изделие обрабатывается вазелиновым составом, располагается в специальном ящике, после чего заливается гипсом. Далее форма вынимается и используется по назначению.

Прочность конечной продукции обеспечивается не менее, чем четырьмя слоями стеклоткани . Эпоксидная смола, как необходимое связующее, имеет свои особенности, которые невозможно не учитывать. Она может затвердеть уже через четверть часа, поэтому готовится для осуществления работ лишь в определённом количестве.

Весь процесс производства модели из стекломатериала занимает, до полной готовности изделия, не более четырёх дней. При желании, ему можно предать любой желаемый цвет, для этого в связующее следует добавить, соответствующий задумке, краситель.

Фактура тоже может стать поводом для проявления творческой фантазии, создаваясь по собственному усмотрению, если изначально подобрать стекломатериал с нужной структурой и переплетением волокон.

Описываемые ткани часто оказываются востребованными для армирования уже готовых строительных конструкций, а также фанерных лодок. Для этого следует произвести качественное оклеивание выбранного изделия данным материалом.

Ограждение и теплоизоляция печных труб (ещё один из распространённых способов применения материала) предполагают их обмотку. Здесь следует упомянуть стеклоткань ЭЗ-200 .

Этот материал играет роль эффективно защиты не только в упомянутом случае, но и при изоляции для газовых турбин и котельных, из него шьют одежду для электросварщиков и металлургов. Данная ткань обеспечивает защиту при пайке, сварке, резке и расплавлении метала.

В общем, стеклоткань – это совершенно универсальный материал. Он окажется востребованным при строительстве, ремонте, моделировании, тюнинге. Важно только правильно подобрать ткань и оптимальную, с учётом необходимости, технологию.

Цена стеклоткани

Ремонт квартиры, коттеджа или жилого дома – важная часть обустройства современного быта. Именно поэтому среди потребителей стекломатериалов особым спросом пользуются .

Это рулонное покрытие для стен, создаётся из стеклянным нитей, обладающих разнообразной плотностью и толщиной. В этом и заключаются важные характеристики данного пластичного и упругого отделочного материала. В настоящее время потребителям предлагается подобная продукция, обладающая большим выбором фактурных решений и цветовых оттенков.

Наиболее крупными производителями подобных, чрезвычайно удобных в быту и обладающих многими ценными защитными качествами, обоев являются такие страны, как Швеция, США, Германия, Чехия, Китай и Россия. А приобретение пятидесятиметрового рулона может обойтись предполагаемому покупателю по цене от 3 до 7 тысяч рублей.

Стеклоткань – достаточно дешёвый и доступный материал, который наверняка окажется полезным в хозяйственном быту. Стоимость его может указываться при продаже за квадратный или погонный метр. Приблизительная цена стеклоткани в среднем выражается в цифрах от 24 до 60 руб./м 2.

Многие предприятия и фирмы занимаются производством фасадного декора из стеклокомпозита. Они изготавливают декоративные украшения для коммерческих зданий, высотных жилых и частных домов.

Стеклоткань удобна в оформлении тем, что ей возможно придать любую желаемую, даже чрезвычайно сложную форму. Декоративные изделия могут быть совсем небольшими, но отражающими композицию в самых мелких деталях.

Или, наоборот, огромными. К примеру, венчающие карнизы, отличающиеся многометровой высотой. Приобрести такой карниз возможно по цене от полутора и более тысяч рублей, где стоимость зависит от сложности и качества изделия.

Предоставляется шанс выбрать и другие архитектурные декоративные украшения. Они весьма удобны в практическом использовании за счёт совершенно незначительного веса и толщины, а также полого строения конструкции. Подобны изделия, закреплённые на фасадах высоток, за счёт малой массы не несут в себе опасности и не создают дополнительную нагрузку для .

Привлекательность ещё и в том, что поверхность декоративных украшений может быть изготовлена под любой, желаемый натуральный материал, благодаря новейшим технологиям, применяемым для финишной обработки.

Это может быть искусственный камень, облицовочные панели под кирпич и прочие, а также самые разнообразные виды лепнины. Декоративные элементы производятся быстро, надёжно и качественно. А стеклокомпозиции не предполагают последующего ухода и дорогостоящего ремонта.



Поделиться