Структура производства передачи и распределения электрической энергии. Как происходит передача электроэнергии

Электрическая энергия производится на различных масштабах электрических станциях, в основном, с помощью индукционных электромеханических генераторов.

Производство электроэнергии

Существует два основных типа электростанций:

1. Тепловые.

2. Гидравлические.

Это деление вызвано типом двигателя, который вращает ротор генератора. В тепловых электростанциях в качестве источника энергии используется топливо: уголь, газ, нефть, горючие сланцы, мазут. Ротор приводится во вращение паровыми газовыми турбинами.

Самыми экономичными являются тепловые паротурбинные электростанции (ТЭС). Их максимальный КПД достигает 70%. Это с учетом того, что отработанный пар используется на промышленных предприятиях.

На гидроэлектростанциях для вращения ротора используется потенциальная энергия воды. С помощью гидравлических турбин приводится во вращение ротор. Мощность станции будет зависеть от напора и массы воды, проходящей через турбину.

Использование электроэнергии

Электрическая энергия используется почти повсеместно. Конечно, большая часть производимой электроэнергии приходится на промышленность. Помимо этого, крупным потребителем будет являться транспорт.

Многие железнодорожные линии уже давно перешли на электрическую тягу. Освещение жилищ, улиц городов, производственные и бытовые нужды сел и деревень - все это тоже является крупным потребителем электроэнергии.

Огромная часть получаемой электроэнергии превращается в механическую энергию. Все механизмы, используемые в промышленности, приводятся в движение за счет электродвигателей. Потребителей электроэнергии достаточно, и находятся они повсюду.

А производится электроэнергия лишь в немногих местах. Возникает вопрос о передаче электроэнергии, причем на большие расстояния. При передаче на большие расстояния, происходит много потерь электроэнергии. Главным образом, это потери на нагрев электропроводов.

По закону Джоуля-Ленца энергия, расходуемая на нагрев, вычисляется по формуле:

Так как снизить сопротивление до приемлемого уровня практически невозможно, то приходится уменьшать силу тока. Для этого повышают напряжение. Обычно на станциях стоят повышающие генераторы, а в конце линий передач стоят понижающие трансформаторы. И уже с них энергия расходится по потребителям.

Потребность в электрической энергии постоянно увеличивается. Для того чтобы соответствовать запросам на увеличение потребления есть два пути:

1. Строительство новых электростанций

2. Использование передовых технологий.

Эффективное использование электроэнергии

Первый способ требует затрат большого числа строительных и денежных ресурсов. На строительство одной электростанции тратится несколько лет. К тому же, например, тепловые электростанции потребляют много невозобновляемых природных ресурсов, и наносят вред окружающей природной среде.

К атегория: Электромонтажные работы

Производство электрической энергии

Электрическая энергия (электроэнергия) является наиболее совершенным видом энергии и используется во всех сферах и отраслях материального производства. К ее преимуществам относят - возможность передачи на большие расстояния и преобразование в другие виды энергии (механическую, тепловую, химическую, световую и др).

Электрическая энергия вырабатывается на специальных предприятиях - электрических станциях, преобразующих в электрическую другие виды энергии: химическую, топлива, энергию воды, ветра, солнца, атомную.

Возможность передачи электроэнергии на большие расстояния позволяет строить электростанции вблизи мест нахождения топлива или на многоводных реках, что является более экономичным, чем подвоз в больших количествах топлива к электростанциям, расположенным вблизи потребителей электроэнергии.

В зависимости от вида используемой энергии различают электростанции тепловые, гидравлические, атомные. Электростанции, использующие энергию ветра и теплоту солнечных лучей, представляют собой пока маломощные источники электроэнергии, не имеющие промышленного значения.

На тепловых электростанциях используется тепловая энергия, получаемая при сжигании в топках котлов твердого топлива (уголь, торф, горючие сланцы), жидкого (мазут) и газообразного (природный газ, а на металлургических заводах - доменный и коксовый газ).

Тепловая энергия превращается в механическую энергию вращением турбины, которая в генераторе, соединенном с турбиной, преобразуется в электрическую. Генератор становится источником электроэнергии. Тепловые электростанции различают по виду первичного двигателя: паровая турбина, паровая машина, двигатель внутреннего сгорания, локомобиль, газовая турбина. Кроме того, паротурбинные электростанции подразделяют на конденсационные и теплофикационные. Конденсационные станции снабжают потребителей только электрической энергией. Отработанный пар проходит цикл охлаждения и, превращаясь в конденсат, вновь подается в котел.

Снабжение потребителей тепловой и электрической энергией осуществляется теплофикационными станциями, называемыми теплоэлектроцентралями (ТЭЦ). На этих станциях тепловая энергия только частично преобразуется в электрическую, а в основном расходуется на снабжение промышленных предприятий и других потребителей, расположенных в непосредственной близости от электростанций, паром и горячей водой.

Гидроэлектростанции (ГЭС) сооружают на реках, являющихся неиссякаемым источником энергии для электростанций. Они текут с возвышенностей в низины и, следовательно, способны совершать механическую работу. На горных реках сооружают ГЭС, используя естественный напор воды. На равнинных реках напор создается искусственно сооружением плотин, вследствие разности уровней воды по обеим сторонам плотины. Первичными двигателями на ГЭС являются гидротурбины, в которых энергия потока воды преобразуется в механическую энергию.

Вода вращает рабочее колесо гидротурбины и генератор, при этом механическая энергия гидротурбины преобразуется в электрическую, вырабатываемую генератором. Сооружение ГЭС решает кроме задачи выработки электроэнергии также комплекс других задач народнохозяйственного значения - улучшение судоходства рек, орошение и обводнение засушливых земель, улучшение водоснабжения городов и промышленных предприятий.

Атомные электростанции (АЭС) относят к тепловым паротурбинным станциям, работающим не на органическом топливе, а использующим в качестве источника энергии теплоту, получаемую в процессе деления ядер атомов ядерного топлива (горючего), - урана или плутония. На АЭС роль котельных агрегатов выполняют атомные реакторы и парогенераторы.

Электроснабжение потребителей осуществляется преимущественно от электрических сетей, объединяющих ряд электростанций. Параллельная работа электрических станций на общую электрическую сеть обеспечивает рациональное распределение нагрузки между электростанциями, наиболее экономичную выработку электроэнергии, лучшее использование установленной мощности станций, повышение надежности электроснабжения потребителей и отпуска им электроэнергии с нормальными качественными показателями по частоте и напряжению.

Необходимость объединения вызвана неодинаковой нагрузкой электростанций. Спрос потребителей на электроэнергию резко изменяется не только в течение суток, но и в разные времена года. Зимой потребление электроэнергии на освещение возрастает. В сельском хозяйстве электроэнергия в больших количествах нужна летом на полевые работы и орошение.

Разница в степени загрузки станций особо ощутима при значительном отдалении районов потребления электроэнергии друг от друга в направлении с востока на запад, что объясняется разновременностью наступления часов утренних и вечерних максимумов нагрузки. Чтобы обеспечить надежность электроснабжения потребителей и полнее использовать мощность электростанций, работающих в разных режимах, их объединяют в энергетические или электрические системы с помощью электрических сетей высокого напряжения.

Совокупность электростанций, линий электропередачи и тепловых сетей, а также приемников электро- и тепло-энергии, связанных в одно целое общностью режима и непрерывностью процесса производства и потребления электрической и тепловой энергии, называют энергетической системой (энергосистемой). Электрическая система, состоящая из подстанций и линий электропередачи различных напряжений, - часть энергосистемы.

Энергосистемы отдельных районов в свою очередь соединены между собой для параллельной работы и образуют крупные системы, например единая энергетическая система (ЕЭС) европейской части СССР, объединенные системы Сибири, Казахстана, Средней Азии и др.

Теплоэлектроцентрали и заводские электростанции обычно связаны с электросетью ближайшей энергосистемы по линиям генераторного напряжения 6 и 10 кВ или линиям более высокого напряжения (35 кВ и выше) через трансформаторные подстанции. Передача энергии, выработанной мощными районными электростанциями, в электросеть для снабжения потребителей осуществляется по линиям высокого напряжения (110 кВ и выше).



- Производство электрической энергии

Министерство образования и науки Украины

Докучаевский горный техникум

Реферат

по физике на тему:

«Получение, передача и распределение энергии»

Выполнил студент группы ЭРГО 23 1/9 Нарижный С.Г.

Преподаватель: Ушкало И.Г.

Докучаевск – 2004г.


При разработке угольных сланцевых россыпных, рудных и нерудных месторождений основным видом энергии является электрическая энергия, которую предприятия получают от энергосистем страны, а в отдаленных районах – от местных электростанций.

Энергосистемой называют совокупность электростанций, электрических и тепловых сетей, связанных с общностью режима в непрерывном процессе производства, преобразования и распределения электрической и тепловой энергии при общем управлении этим режимом. К электрической части энергосистемы относят совокупность электроустановок электрических станций и электрических сетей.

Электроснабжением называют обеспечение потребителей электрической энергией, а системой электроснабжения – совокупность электроустановок, предназначенных для этой цели. Электроснабжение бывает внешнее и внутреннее.

К внешнему электроснабжению относят воздушные и кабельные линии электропередачи (ЛЭП) от выводов районных подстанций или ответвлений от энергосистем до вводов на шины главных понизительных подстанций (ГПП) предприятий.

К внутреннему электроснабжению относят поверхностные и подземные подстанции (стационарные и передвижные), распределительные пункты высшего и низшего напряжений, воздушные и кабельные ЛЭП и электроприемники горных предприятий.

В настоящее время при проектировании электроснабжений новых горнопромышленных районов и реконструкции старых предусматривают системы глубокого ввода напряжением 35 – 220 кВ, т.е. электроэнергию высшего напряжения подают потребителям, сводя к минимуму количество сетевых звеньев и ступеней промежуточной трансформации.

Конкретное значение подводимого напряжения определяют на основе технико-экономических расчетов, в которых сравнивают первоначальные затраты на строительство, расходы на эксплуатацию, показатели в отношении качества электроэнергии, перспективность при дальнейшем развитии системы электроснабжения.

Электроснабжение горных предприятий должно производиться не менее чем по двум питающим ЛЭП независимо от значения напряжения. В нормальном режиме все питающие ЛЭП должны находиться под нагрузкой и работать раздельно. Возможно применение и двухцепных воздушных ЛЭП на опорах, рассчитанных на повышенные ветровые и гололедные нагрузки (на ступень выше нормативов, установленных для данного района).

В системе внешнего электроснабжения горных предприятий применяют следующие значения напряжения: 220, 110, 35, 10 и 6 кВ. В системе внутреннего электроснабжения для различных нужд предприятия используют следующие напряжения: 6 кВ (10 кВ) – для стационарных приемников электрической энергии, передвижных трансформаторных подстанций, машин и механизмов, применяемых при проходке стволов, а также для высокопроизводительных силовых передвижных установок открытых разработок. Напряжение 10 кВ разрешается применять в отдельных случаях для стационарных установок угольных и сланцевых шахт и стационарных подземных подстанций рудных и нерудных шахт только с разрешения отраслевых министерств;

· 1140В – для высокопроизводительных забойных машин и механизмов в подземных выработках шахт;

· 660В – для сетей, питающих силовые электроприемники в подземных выработках и на открытых горных разработках;

· 330В – для питания сетей, указанных для напряжения 660В;

· 380/220В – для сетей, питающих силовые и осветительные электроприемники на поверхности горных предприятий при трех- или четырехпроводной системе от общих трансформаторов;

· 220 или 127В – для питания ручного инструмента и осветительной сети в подземных выработках шахт.

Для создания рациональных систем электроснабжения необходимо применять комплектные трансформаторные подстанции, трансформаторы с автоматическим регулированием напряжения, обособленное питание потребителей подземных выработок шахт от трансформаторов с расщепленными вторичными обмотками или разделительных трансформаторов с коэффициентом трансформации, равным единице.

Классификация электрических станций, подстанций и электрических сетей

Электрической станцией называют промышленное предприятие (электроустановку), которое служит для производства электрической энергии, а иногда одновременно и для выработки тепловой энергии. Электрические станции отличаются друг от друга своим назначением, родом вырабатываемого тока, видом используемого топлива или энергии и типом первичных машин.

В зависимости от вида используемого топлива или энергии различают тепловые электростанции (ТЭС и ГРЭС), гидроэлектрические (ГЭС), атомные (АЭС). По типу первичных машин электростанции делят на станции с паровыми, гидравлическими, газовыми турбинами, атомными реакторами, двигателями внутреннего сгорания. Станции с паровыми турбинами могут быть конденсационными (КЭС) и теплофикационными (ТЭЦ).

Подстанция это электроустановка, служащая для преобразования и распределения электроэнергии и состоящая из силовых трансформаторов или других преобразователей энергии, распределительных устройств высшего и низшего напряжения, аккумуляторной батареи, устройств управления, защиты и вспомогательных сооружений.

Поверхностные подстанции горных предприятий могут быть классифицированы по двум признакам: назначению и конструктивному оформлению. По назначению они имеют следующие сокращенные названия: ГПП – главная понизительная подстанция, которая получает электроэнергию от энергосистемы или непосредственно от электростанции и распределяет эту энергию электроприемникам предприятия; ЦРП – центральный распределительный пункт, получающий питание аналогично ГПП и распределяющий полученную энергию электроприемникам всего предприятия или отдельной его части. ЦРП в основном применяют на открытых разработках. КТП – комплектные трансформаторные подстанции, состоящие из одного или нескольких трансформаторов, распредустройств высшего и низшего напряжений с защитно-коммутационной аппаратурой. При установке их на открытом воздухе в обозначение добавляют букву Н (наружной установки).

Электрической сетью называют совокупность электроустановок для передачи и распределения электроэнергии, состоящих из подстанций, распредустройств, токопроводов, воздушных и кабельных ЛЭП, работающих на определенной территории.

Воздушной линией (ВЛ) электропередачи называется устройство для передачи и распределения электроэнергии по проводам, расположенным на открытом воздухе и прикрепленным с помощью изоляторов и арматуры к различного рода опорам или кронштейнам и стойкам на инженерных сооружениях (мостах, путепроводах и т. п.). За начало и конец ВЛ принимают линейные порталы распределительных устройств.

Кабельной линией (КЛ) называют линию для передачи электроэнергии, состоящую из одного или нескольких кабелей с соединительными, стопорными и концевыми муфтами (заделками) и крепежными деталями.

Независимым источником питания потребителей электрической энергии называют источник питания, на котором сохраняется напряжение в установленных пределах для после аварийного режима, при исчезновении его на других источниках питания этих потребителей.

Электрические сети выполняют воздушными или кабельными ЛЭП. Главными элементами ВЛ являются: неизолированные провода, опоры, изоляторы, линейная арматура и грозозащитные тросы. В настоящее время применяют алюминиевые и сталеалюминевые провода. По конструкции провода могут быть одно-проволочными, многопроволочными из одного металла и многопроволочными из двух металлов, например алюминия и стали.

Расположение проводов на опорах может быть различным: на одно-цепных линиях – треугольником (рис. а) или горизонтально (рис. б); на двух цепных линиях – обратной елкой (рис. в) или шестиугольником в виде бочки (рис. г). Грозозащитные тросы устанавливают на верхних точках опор.

При любом варианте провода располагают несимметрично, что приводит к неодинаковым значениям реактивных сопротивлений и проводимостей. Чтобы получить одинаковые емкости и индуктивности всех трех фаз ЛЭП на разных участках на протяженных ЛЭП последовательно меняют на опорах взаимное расположение проводов по отношению друг к другу, т. е. применяют так называемую транспозицию проводов.

Опоры выполняют из дерева, стали и железобетона. Основные виды опор: анкерные и промежуточные. Первые устанавливают для жесткого закрепления проводов на концах линии или прямых ее участков, на пересечениях особо важных инженерных сооружений и больших водоемов. Анкерные опоры должны выдерживать одностороннее стяжение двух проводов. Промежуточные опоры служат для поддержания провода на прямых участках ЛЭП между соседними анкерными опорами. У таких опор тяжение проводов на эти опоры не передается. Деревянные опоры, выполняемые из сосны, лиственницы, просты в изготовлении, дешевы. Недостаток деревянных опор – малый срок службы. Для металлических опор используют сталь. Они требуют больших затрат металла и нуждаются в регулярной окраске для защиты от коррозии. Железобетонные опоры изготавливают из арматуры, ненапряженной, покрытой вибро- или центрифугированным бетоном. Такие опоры требуют меньше металла, не подвержены коррозии, долговечнее деревянных, а поэтому и получили распространение при сооружении ЛЭП напряжением до 750 кВ

включительно.
а) в) г)
б)
Варианты расположения проводов на опорах.

Изоляторы воздушных линий изготавливают из фарфора или закаленного стекла. Эти материалы обладают высокой механической и электрической прочностью, стойкостью к атмосферным воздействиям. Фарфоровые изоляторы тяжелее стеклянных и хуже переносят ударные нагрузки. При различных повреждениях фарфор растрескивается, что трудно обнаружить визуально, а закаленное стекло рассыпается. На воздушных ЛЭП применяют изоляторы двух типов: штыревые и подвесные. Первые применяют для ЛЭП напряжением до 35кВ, вторые – для ЛЭП любых напряжений. Подвесные изоляторы собирают в гирлянды, которые на промежуточных опорах называют поддерживающими, а на анкерных – натяжными. Число изоляторов в гирлянде зависит от рабочего напряжения ЛЭП, степени загрязненности атмосферы, материала опор и типа применяемых изоляторов. Например, на ЛЭП-35 число изоляторов в гирлянде три, на ЛЭП-110 – от шести до восьми, а на ЛЭП-220 в поддерживающей гирлянде устанавливают 10-14 изоляторов с диаметром чашки от 255 до 350 мм.

Электрическая энергия для нужд промышленных предприятий жилых районов вырабатывается на электрических станциях. На этих станциях происходит преобразование энергии воды, топлива, атомной энергии и т.д. в электрическую энергию. В этом процессе преобразования энергии можно выделить две основные ступени: сначала первичная энергия в различного рода двигателях преобразуется в механическую энергию, а затем механическая энергия в электромагнитных генераторах преобразуется в электрическую энергию.

В зависимости от вида преобразуемой природной энергии электрические станции разделяют на гидравлические, тепловые, атомные и т.д., а в зависимости от мощности (и назначения) они называются районными и местными. Местные электростанции в отличие от районных имеют ограниченный радиус действия и сравнительно малую мощность.

На районных электрических станциях устанавливают трехфазные электрические генераторы переменного тока. Станции же местного назначения могут иметь и генераторы постоянного тока.

Основным типом тепловых электрических станций являются паротурбинные электрические станции, которые сооружаются на местах нахождения топлива (угля, торфа, сланца, газа и др.), обычно на значительном расстоянии от потребителя.

Паротурбинные станции, которые вырабатывают только электрическую энергию, называются тепловыми электрическими станциями (ТЭС). На них пар, отработавший в турбинах, конденсируется в специальных устройствах и снова подается в котел. Поэтому такие станции часто называются конденсационными. Упрощенная схема конденсационной электрической станции показана на рисунке 8.1.1.

Пар из котла К под давлением 24 МПа и с температурой 838 °К по трубопроводу поступает в турбину Т, где значительная часть внутренней энергии пара превращается в механическую энергию ротора турбины. Из турбины пар поступает в теплообменный аппарат-конденсатор Кр, где за счет проточной воды охлаждается и конденсируется. Конденсат с помощью центробежного насоса Н снова поступает в котел.

Механическая энергия турбины в генераторе Г преобразуется в электрическую энергию, которая по высоковольтной линии и распределительным сетям поступает к потребителям. Схема потерь энергии в процессе ее преобразования, передачи и распределения, показана на рисунке 8.1.2.


За 100% принята энергия топлива, поступающего в котел. Потери энергии в современных паровых котлах составляют примерно 1,5%, в турбине - 55%, а в генераторе - 0,5%. Часть энергии генератора (3%) используется на собственные нужды станции для электропривода насосов, различных механизмов и освещения. Таким образом, КПД современной паротурбинной электростанции составляет 40%.

Существуют электрические тепловые станции, которые одновременно с электрической энергией снабжают потребителей паром и горячей водой. Это так называемые теплоэлектроцентрали (ТЭЦ). На них применяют специальные теплофикационные паровые турбины, которые позволяют производить предварительный отбор пара, еще не полностью отработанного, и использовать его для технологических нужд предприятий и бытовых нужд.

Благодаря тому что в ТЭЦ пар выходит из турбины под ббль- шим давлением (5...7 ат), чем на электростанциях конденсационного типа (0,05...0,06 ат), выработка электроэнергии на 1 кг пара в них меньше, чем на конденсационных электростанциях. Общее же полезное использование теплотворной способности топлива значительно больше и достигает 80%. Однако пар и горячая вода от ТЭЦ могут передаваться потребителям по трубам только в радиусе 12... 15 км, что существенно ограничивает их распространение.

Атомные электрические станции, по существу, являются также тепловыми станциями, но источником энергии в них служит ядер- ная энергия, которая выделяется при делении ядер атомов тяжелых элементов. Деление ядер происходит в специальном устройстве - реакторе, где выделяется большое количество тепла. Простейшая схема атомной электростанции приведена на рисунке 8.1.3.


Она состоит из реактора Р, парогенератора ПГ, турбины Т, электрического генератора Г, теплообменника-конденсатора Кр и центробежных насосов Я.

Ядерный реактор и парогенератор имеют биологическую защиту БЗ от излучения. Выделяющееся в реакторе тепло с помощью жидкого или газообразного теплоносителя поступает по трубам в парогенератор. В парогенераторе теплоноситель омывает трубы, в которые насосом Я закачивается конденсат из турбины, и конденсат снова превращается в пар, поступающий в турбину, а теплоноситель с помощью насосов возвращается в реактор. В отличие от обычной тепловой электростанции атомная электростанция имеет замкнутый контур радиоактивного теплоносителя. Турбины и прочее оборудование, составляющее второй контур, лишенный радиоактивности, связаны с первым лишь через теплообменник-парогенератор.

Атомные реакторы бывают разных типов. В качестве примера приведем некоторые данные реактора, установленного на Нововоронежской АЭС. Он представляет собой стальной цилиндр высотой более Ими диаметром 3,8 м. Толщина стенок корпуса, выполненного из высокопрочной стали, равна 12 см, а его масса 200 т. Теплоносителем служит дистиллированная вода, которая прокачивается через реактор под давлением 100 ат. Эта вода поступает в реактор при температуре 269 °С и покидает его при температуре 300 °С. Под действием теплоносителя в парогенераторе образуется пар давлением 47 ат, который и подается в паровые турбины.

Турбины и электрические генераторы атомной и обычной тепловой электростанций одинаковы.

Электрические генераторы, приводимые во вращение паровыми турбинами, называются турбогенераторами. Паровые турбины быстроходны: Их роторы развивают частоту п = 3000 мин" 1 и более. Поэтому ротор турбогенератора для создания частоты f = 50 Гц обычно имеет одну пару полюсовр :

Гидроэлектрические станции (ГЭС) обычно сооружают на реках (бывают станции, использующие морские приливы). Для их работы необходима разность уровней воды. Это достигается сооружением плотин. На реках с крутыми берегами строят высокие плотины (сотни метров), а на равнинных реках с отлогими берегами возводят относительно невысокие плотины (десятки метров). Преобразование энергии движущейся воды в механическую энергию происходит в гидравлических турбинах. Скорость вращения гидравлических турбин, а, следовательно, и скорость соединенных с ними электрических генераторов (гидрогенераторов) колеблются в пределах от 60 до 750 мин" 1 . Поэтому гидрогенераторы должны иметь несколько пар полюсов. Например, гидротурбина на Угличской ГЭС вращается со скоростью 62,5 мин 1 , ротор генератора для обеспечения частоты 50 Гц имеет 48 пар полюсов.

Стоимость сооружения гидроэлектрических станций значительно больше стоимости тепловых электростанций, но вырабатываемая на них электрическая энергия обходится намного дешевле, чем на тепловых станциях. Поэтому большие капиталовложения, идущие на сооружение гидроэлектростанций, вполне себя окупают.

Гидроэлектрические станции могут быть и местного значения, если они сооружаются на малых реках для небольших промышленных предприятий и населенных пунктов, не охваченных сетями районных станций. Их мощность обычно не превышает нескольких сотен или тысячи киловатт.

К местным станциям следует отнести ветровые, локомобильные и дизельные станции, построенные колхозами и совхозами для нужд сельского хозяйства.

В СНГ находятся крупнейшие в мире тепловые, гидравлические и атомные электростанции. Так, мощности тепловых и атомных электростанций достигают 4 млн. кВт, а мощность Красноярской ГЭС - 6,4 млн. кВт.

Технологические схемы и экологические показатели производства электроэнергии на тепловых и атомных электростанциях, теплоцентралях и ветровых электростанциях. Современные тенденции развития электроэнергетики.

Электроэнергетика - отрасль энергетики, включающая в себя производство, передачу и сбыт электроэнергии. Электроэнергетика является наиболее важной отраслью энергетики, что объясняется такими преимуществами электроэнергии перед энергией других видов, как относительная лёгкость передачи на большие расстояния, распределения между потребителями, а также преобразования в другие виды энергии (механическую, тепловую, химическую, световую и др.). Отличительной чертой электрической энергии является практическая одновременность её генерирования и потребления, так как электрический ток распространяется по сетям со скоростью, близкой к скорости света.

Исторический экскурс : электрическая энергия долгое время была лишь объектом экспериментов и не имела практического применения. Первые попытки полезного использования электричества были предприняты во второй половине XIX века, основными направлениями использования были недавно изобретённый телеграф, гальванотехника, военная. Источниками электричества поначалу служили гальванические элементы. Существенным прорывом в массовом распространении электроэнергии стало изобретение электромашинных источников электрической энергии - генераторов. По сравнению с гальваническими элементами, генераторы обладали большей мощностью и ресурсом полезного использования, были существенно дешевле и позволяли произвольно задавать параметры вырабатываемого тока. Именно с появлением генераторов стали появляться первые электрические станции и сети - электроэнергетика становилась отдельной отраслью промышленности. Первой в истории линией электропередачи (в современном понимании) стала линия Лауфен - Франкфурт, заработавшая в 1891 году. Протяжённость линии составляла 170 км, напряжение 28,3 кВ, передаваемая мощность 220 кВт. Важным этапом стало изобретение электрического трамвая: трамвайные системы являлись крупными потребителями электрической энергии и стимулировали наращивание мощностей электрических станций. Во многих городах первые электрические станции строились вместе с трамвайными системами.

Начало XX века было отмечено так называемой «войной токов» - противостоянием промышленных производителей постоянного и переменного токов. Постоянный и переменный ток имели как достоинства, так и недостатки в использовании. Решающим фактором стала возможность передачи на большие расстояния - передача переменного тока реализовывалась проще и дешевле, что обусловило его победу в этой «войне»: в настоящее время переменный ток используется почти повсеместно. Тем не менее, в настоящее время имеются перспективы широкого использования постоянного тока для дальней передачи большой мощности.

Передача и распределение электрической энергии

Передача электрической энергии от электрических станций до потребителей осуществляется по электрическим сетям. С технической точки зрения, электрическая сеть представляет собой совокупность линий электропередачи (ЛЭП) и трансформаторов, находящихся на подстанциях.

Линии электропередачи представляют собой металлический проводник, по которому проходит электрический ток. Электроснабжение в подавляющем большинстве случаев - трёхфазное, поэтому линия электропередачи, как правило, состоит из трёх фаз, каждая из которых может включать в себя несколько проводов. Конструктивно линии электропередачи делятся на воздушные и кабельные .

o Воздушные ЛЭП подвешены над поверхностью земли на безопасной высоте на специальных сооружениях, называемых опорами. Основным достоинством воздушных линий электропередачи является их относительная дешевизна по сравнению с кабельными. Также гораздо лучше ремонтопригодность (особенно в сравнении с бесколлекторными КЛ): не требуется проводить земляные работы для замены провода, ничем не затруднён визуальный осмотр состояния линии. Однако у воздушных ЛЭП имеется ряд недостатков: широкая полоса отчуждения - в окрестности ЛЭП запрещено ставить какие-либо сооружения и сажать деревья; незащищённость от внешнего воздействия, например, падения деревьев на линию и воровства проводов. По причине уязвимости, на одной воздушной линии часто оборудуют две цепи: основную и резервную. Эстетическая непривлекательность; это одна из причин практически повсеместного перехода на кабельный способ электропередачи в городской черте.

Для воздушных линий переменного тока принята следующая шкала классов напряжений: переменное – 0.4, 6, 10, 20, 35, 110, 150, 220, 330, 400, 500, 750, 1150 кВ; постоянное – 400, 800 кВ

o Кабельные линии (КЛ) проводятся под землёй. Электрические кабели имеют различную конструкцию, однако можно выявить общие элементы. Сердцевиной кабеля являются три токопроводящие жилы (по числу фаз). Кабели имеют как внешнюю, так и междужильную изоляцию. Обычно в качестве изолятора выступает трансформаторное масло в жидком виде, или промасленная бумага. Токопроводящая сердцевина кабеля, как правило, защищается стальной бронёй. С внешней стороны кабель покрывается битумом. Главным достоинством кабельных линий электропередачи (по сравнению с воздушными) является отсутствие широкой полосы отчуждения. К недостаткам кабельных линий электропередачи можно отнести высокую стоимость строительства и последующей эксплуатации. Кабельные линии менее доступны для визуального наблюдения их.

Линии переменного тока.

Большая часть энергии передаётся по линиям электропередач переменного тока.

ЛЭП переменного тока обладают весьма важным преимуществом: в любом месте линии понижающий трансформатор, присоединенный к линии, передает энергию потребителям.

Недостатки линий переменного тока: наличие индуктивного сопротивления линии, которое связано с явлением электромагнитной индукции. Индуктивное сопротивление значительно ухудшает передачу электроэнергии в линии, т. к. приводит к уменьшению напряжения на пути от источника к потребителю. Индуктивность линии вызывает сдвиг по фазе между колебаниями тока и напряжения. Для уменьшения индуктивного сопротивления применяют различные методы: а) например, включают в линию батареи конденсаторы; б) расщепление одного провода на несколько, что приводит к уменьшению индуктивного сопротивления линии.

Б) Электроэнергия может передаваться и по линиям электропередач постоянного тока.


ЛЭП постоянного тока обладает преимуществами по сравнению с линиями переменного тока. Прежде всего, при прохождении постоянного тока нет индуктивного сопротивления. Кроме того, меньшая металлоемкость проводов (используется два провода вместо трех в линиях трехфазного тока); меньше потерь на коронный разряд, отсюда и меньшие радиопомехи. Наконец, главное - использование постоянного тока в линиях электропередач позволяет необычайно повысить устойчивость энергосистемы, которая в случае переменного тока требует строгой синхронности, постоянства частоты всех генераторов, входящих в общую систему. Для постоянного тока такой проблемы нет.

Атомная электростанция (АЭС)

Атомная электростанция (АЭС) - комплекс технических сооружений, предназначенных для выработки электрической энергии путём использования энергии, выделяемой при контролируемой ядерной реакции.

Атомные электростанции классифицируются в соответствии с установленными на них реакторами:

· Реакторы на тепловых нейтронах, использующие специальные замедлители для увеличения вероятности поглощения нейтрона ядрами атомов топлива

ü Реакторы на лёгкой воде

ü Реакторы на тяжёлой воде

  • Реакторы на быстрых нейтронах
  • Субкритические реакторы, использующие внешние источники нейтронов
  • Термоядерные реакторы

Атомные станции по виду отпускаемой энергии можно разделить на:

  • Атомные электростанции (АЭС), предназначенные для выработки только электроэнергии
  • Атомные теплоэлектроцентрали (АТЭЦ), вырабатывающие как электроэнергию, так и тепловую энергию

На рисунке показана схема работы атомной электростанции с двухконтурным водо-водяным энергетическим реактором. Энергия, выделяемая в активной зоне реактора, передаётся теплоносителю первого контура. Далее теплоноситель поступает в теплообменник (парогенератор), где нагревает до кипения воду второго контура. Полученный при этом пар поступает в турбины, вращающие электрогенераторы. На выходе из турбин пар поступает в конденсатор, где охлаждается большим количеством воды, поступающим из водохранилища. Или более простыми словами в реакторе распадается ядерное топливо, при его распаде происходит выделение тепловой энергии, которая кипятит воду, в свою очередь, появившийся пар крутит турбину, а та вращает электрогенератор, который уже и вырабатывает электричество.

Компенсатор давления представляет собой довольно сложную и громоздкую конструкцию, которая служит для выравнивания колебаний давления в контуре во время работы реактора, возникающих за счёт теплового расширения теплоносителя. Давление в 1-м контуре может доходить до 160 атмосфер (ВВЭР-1000).

Помимо воды, в различных реакторах в качестве теплоносителя может применяться также расплавленный натрий или газ. Использование натрия позволяет упростить конструкцию оболочки активной зоны реактора (в отличие от водяного контура, давление в натриевом контуре не превышает атмосферное), избавиться от компенсатора давления, но создаёт свои трудности, связанные с повышенной химической активностью этого металла.

Общее количество контуров может меняться для различных реакторов, схема на рисунке приведена для реакторов типа ВВЭР (Водо-Водяной Энергетический Реактор). Реакторы типа РБМК (Реактор Большой Мощности Канального типа) использует один водяной контур, а реакторы БН (реактор на Быстрых Нейтронах) - два натриевых и один водяной контуры.

В случае невозможности использования большого количества воды для конденсации пара, вместо использования водохранилища, вода может охлаждаться в специальных охладительных башнях (градирнях), которые благодаря своим размерам обычно являются самой заметной частью атомной электростанции.

Достоинства атомных станций:

Небольшой объём используемого топлива и возможность его повторного использования после переработки;

  • Высокая мощность: 1000-1600 МВт на энергоблок;
  • Низкая себестоимость энергии, особенно тепловой.
  • Возможность размещения в регионах, расположенных вдали от крупных водноэнергетических ресурсов, крупных месторождений угля, в местах, где ограничены возможности для использования солнечной или ветряной электроэнергетики.
  • При работе АЭС в атмосферу выбрасывается некоторое количество ионизированного газа, однако обычная тепловая электростанция вместе с дымом выводит еще большее количество радиационных выбросов, из-за естественного содержания радиоактивных элементов в каменном угле.

Недостатки атомных станций:

· Облучённое топливо опасно, требует сложных и дорогих мер по переработке и хранению;

· Нежелателен режим работы с переменной мощностью для реакторов, работающих на тепловых нейтронах;

· Большие капитальные вложения, как удельные, на 1 МВт установленной мощности для блоков мощностью менее 700-800 МВт, так и общие, необходимые для постройки станции, её инфраструктуры, а также в случае возможной ликвидации.

Ветровые электростанции

Ветрогенератор (ветроэлектрическая установка или сокращенно ВЭУ) - устройство для преобразования кинетической энергии ветра в электрическую.

Ветрогенераторы можно разделить на две категории: промышленные и домашние (для частного использования). Промышленные устанавливаются государством или крупными энергетическими корпорациями. Как правило, их объединяют в сети, в результате получается ветряная электростанция. Её основное отличие от традиционных (тепловых, атомных) - полное отсутствие, как сырья, так и отходов. Единственное важное требование для ВЭС - высокий среднегодовой уровень ветра. Мощность современных ветрогенераторов достигает 6 МВт.

1. Фундамент

2. Силовой шкаф, включающий силовые контакторы и цепи управления

4. Лестница

5. Поворотный механизм

6. Гондола

7. Электрический генератор

8. Система слежения за направлением и скоростью ветра (анемометр)

9. Тормозная система

10. Трансмиссия

11. Лопасти

12. Система изменения угла атаки лопасти

13. Колпак ротора.

Принцип действия ветряных электростанций прост: ветер крутит лопасти ветряка, приводя в движение вал электрогенератора. Тот в свою очередь вырабатывает энергию электрическую. Получается, что ветроэлектростанции работают, как игрушечные машины на батарейках, только принцип их действия противоположен. Вместо преобразования электрической энергии в механическую, энергия ветра превращается в электрический ток.

Каковы недостатки ветровых энергетических установок?

Прежде всего, их работа неблагоприятно влияет на работу телевизионной сети. Вот какой любопытный пример можно привести в этой связи. Несколько лет тому назад от жителей Оркнейских островов (Великобритания) стали поступать необычные жалобы. Оказалось, что при работе ветровой станции, построенной на одном их холмов, возникают такие сильные помехи в работе телевизионной сети, что на экранах телевизоров пропадает изображение. Выход нашли в строительстве рядом с ветровой установкой мощного телевизионного ретранслятора, который позволил усиливать телевизионные сигналы. По имеющимся данным, ветровая энергетическая установка мощностью 0,1 МВт может вызвать искажение телевизионных сигналов на расстоянии до 0,5 км.

Другая неожиданная особенность ветровых установок проявилась в том, что они оказались источником достаточно интенсивного инфразвукового шума, неблагоприятно действующего на человеческий организм, вызывающего постоянное угнетенное состояние, сильное беспричинное беспокойство и жизненный дискомфорт. Как показал опыт эксплуатации большого числа ветровых установок в США, этот шум не выдерживают ни животные, ни птицы, покидая район размещения станции, т.е. территории самой ветровой станции и примыкающие к ней становятся непригодными для жизни людей, животных и птиц.

Однако главный недостаток этого вида энергии наряду с изменчивостью скорости ветра - это низкая интенсивность, что требует значительной территории для размещения ветровой установки. Из проведенных специалистами расчетов следует, что оптимальным для ветрового колеса является диаметр 100 м. При таких геометрических размерах и плотности энергии на единицу площади ветрового колеса 500 Вт/м 2 (скорость ветра 9,2 м/с) из ветрового потока можно получить электрическую мощность, близкую к 1 МВт. На площади 1 км 2 можно разместить 2-3 установки указанной мощности с учетом того, что они должны находиться одна от, другой на расстоянии, равном трем их высотам, чтобы не мешать друг другу, и не снижать эффективности своей работы.

Примем для оценки, что на площади 1 км 2 размещено 3 установки, т.е. с 1 км 2 можно снять 3 МВт электрической мощности. Это означает, что для размещения ветровой станции электрической мощностью 1000 МВт нужна площадь, равная 330 км 2 . Если сравнивать ветровые и тепловые электростанции по энерговыработке в течение года, то полученное значение следует увеличить не менее чем в 2-3 раза. Для сравнения укажем, что площадь Курской АЭС мощностью 4000 МВт вместе с вспомогательными сооружениями, водоемом-охладителем и жилым поселком составляет 30 км2, т.е. на 1000 МВт электрической мощности приходится 7,5 км2. Другими словами, размер территории ветровой станции в расчете на 1000 МВт на 2 порядка превышает площадь, занимаемую современной АЭС.

Несмотря на это, отдельные ученые считают, что следует развивать крупномасштабную ветроэнергетику. Перед войной у нас в стране только в колхозах и совхозах работало более 8000 ветровых установок. В 1930г. на базе отдела ветродвигателей ЦАГИ был создан Центральный ветроэнергетический институт, в 1938 г. было организовано конструкторское бюро по ветровым энергетическим установкам. В предвоенные годы и после войны было разработано и выпущено довольно большое число (примерно 10 тыс.шт.) разнообразных ветровых установок. Интенсивная работа по использованию энергии ветра ведется в ряде зарубежных стран.

Итак, можно указать следующие достоинства и недостатки энергии ветра: отсутствие влияния на тепловой баланс атмосферы Земли, потребления кислорода, выбросов углекислого газа и других загрязнителей, возможность преобразования в различные виды энергии (механическую, тепловую, электрическую), но при этом низкая плотность энергии, приходящейся на единицу площади ветрового колеса; непредсказуемые изменения скорости ветра в течение суток и сезона, требующие резервирования ветровой станции или аккумулирования произведенной энергии; отрицательное влияние на среду обитания человека и животных, на телевизионную связь и пути сезонной миграции птиц. Отечественный и зарубежный опыт свидетельствует о технической осуществимости и целесообразности сооружения и эксплуатации ветровых энергетических установок небольшой мощности для удаленных поселков и отгонных пастбищ, а также в аграрном секторе.

Тепловые электростанции

Наиболее распространены тепловые электрические станции (ТЭС), использующие тепловую энергию, выделяемую при сжигании органического топлива (твердого, жидкого и газообразного).

На тепловых электростанциях вырабатывается около 76% электроэнергии, производимой на нашей планете. Это обусловлено наличием органического топлива почти во всех районах нашей планеты; возможностью транспорта органического топлива с места добычи на электростанцию, размещаемую близ потребителей энергии; техническим прогрессом на тепловых электростанциях, обеспечивающим сооружение ТЭС большой мощностью; возможностью использования отработавшего тепла рабочего тела и отпуска потребителям, кроме электрической, также и тепловой энергии (с паром или горячей водой) и т.п.

На схеме представлена классификация тепловых электрических станций на органическом топливе.

Тепловой электрической станцией называется комплекс оборудования и устройств, преобразующих энергию топлива в электрическую и (в общем случае) тепловую энергию.

Тепловые электростанции характеризуются большим разнообразием и их можно классифицировать по различным признакам.

По назначению и виду отпускаемой энергии электростанции разделяются на районные и промышленные.

Районные электростанции – это самостоятельные электростанции общего пользования, которые обслуживают все виды потребителей района (промышленные предприятия, транспорт, население и т.д.). Районные конденсационные электростанции, вырабатывающие в основном электроэнергию, часто сохраняют за собой историческое название – ГРЭС (государственные районные электростанции). Районные электростанции, вырабатывающие электрическую и тепловую энергию (в виде пара или горячей воды), называются теплоэлектроцентралями (ТЭЦ). Как правило, ГРЭС и районные ТЭЦ имеют мощность более 1 млн. кВт.

Промышленные электростанции – это электростанции, обслуживающие тепловой и электрической энергией конкретные производственные предприятия или их комплекс, например завод по производству химической продукции. Часто промышленные электростанции работают на общую электрическую сеть, но не подчиняются диспетчеру энергосистемы.

По виду используемого топлива тепловые электростанции разделяются на электростанции, работающие на органическом топливе и ядерном горючем.

За конденсационными электростанциями, работающими на органическом топливе, во времена, когда еще не было атомных электростанций (АЭС), исторически сложилось название тепловых (ТЭС – тепловая электрическая станция). Именно в таком смысле ниже будет употребляться этот термин, хотя и ТЭЦ, и АЭС, и газотурбинные электростанции (ГТЭС), и парогазовые электростанции (ПГЭС) также являются тепловыми электростанциями, работающими на принципе преобразования тепловой энергии в электрическую.

В качестве органического топлива для ТЭС используют газообразное, жидкое и твердое топливо. Большинство ТЭС России, особенно в европейской части, в качестве основного топлива потребляют природный газ, а в качестве резервного топлива – мазут, используя последний ввиду его высокой стоимости только в крайних случаях; такие ТЭС называют газомазутными.

По типу теплосиловых установок, используемых на ТЭС для преобразования тепловой энергии в механическую энергию вращения роторов турбоагрегатов, различают паротурбинные, газотурбинные и парогазовые электростанции.

Основой паротурбинных электростанций являются паротурбинные установки (ПТУ), которые для преобразования тепловой энергии в механическую используют самую сложную, самую мощную и чрезвычайно совершенную энергетическую машину – паровую турбину. ПТУ – основной элемент ТЭС, ТЭЦ и АЭС.

ПТУ, имеющие в качестве привода электрогенераторов конденсационные турбины и не использующие тепло отработавшего пара для снабжения тепловой энергией внешних потребителей, называются конденсационными электростанциями. ПТУ, оснащённые теплофикационными турбинами и отдающие тепло отработавшего пара промышленным или коммунально-бытовым потребителям, называют теплоэлектроцентралями (ТЭЦ).

Газотурбинные тепловые электростанции (ГТЭС) оснащаются газотурбинными установками (ГТУ), работающими на газообразном или, в крайнем случае, жидком (дизельном) топливе. В настоящее время в России функционирует одна ГТЭС (ГРЭС-3 им. Классона, г. Электрогорск Московской обл.) мощностью 600 МВт и одна ГТУ-ТЭЦ (в г. Электросталь Московской обл.).

Схема тепловой электростанции (на угле)


Тепловые электростанции работают по такому принципу: топливо сжигается в топке парового котла. Выделяющееся при горении тепло испаряет воду, циркулирующую внутри расположенных в котле труб, и перегревает образовавшийся пар. Пар, расширяясь, вращает турбину, а та, в свою очередь, - вал электрического генератора. Затем отработавший пар конденсируется; вода из конденсатора через систему подогревателей возвращается в котел.

Преимущества ТЭС:
1. Используемое топливо достаточно дешево.
2. Требуют меньших капиталовложений по сравнению с другими электростанциями.
3. Могут быть построены в любом месте независимо от наличия топлива. Топливо может транспортироваться к месту расположения электростанции железнодорожным или автомобильным транспортом.
4. Занимают меньшую площадь по сравнению с гидроэлектростанциями.
5. Стоимость выработки электроэнергии меньше, чем у дизельных электростанций.

Недостатки:
1. Загрязняют атмосферу, выбрасывая в воздух большое количество дыма и копоти.
2. Более высокие эксплуатационные расходы по сравнению с гидроэлектростанциями.

ВОПРОСЫ:

1. Дайте определение отрасли электроэнергетика.

2. Какими преимуществами обладает электроэнергия по сравнению с энергией других видов?

3. С изобретением, какого прибора связывают появление первых электрических станции?

4. Что, с технической точки зрения, из себя представляет электрическая сеть?

5. Назовите типы линий электропередач с точки зрения их конструкторских особенностей. Перечислите их достоинства и недостатки.

6. Изобразите схему передачи энергии по линиям переменного тока. Достоинства и недостатки такого способа передачи.

7. Изобразите схему передачи энергии по линиям постоянного тока. Какого их преимущество по сравнению с линиями переменного тока?

8. Заполните таблицу:

9. Чем обусловлено широкое распространение тепловых электростанций


Похожая информация.




Поделиться