Тэц строение. Что такое тэц и как она работает

Комбинированное производство тепла и электроэнергии

Комбинированное производство тепла и электроэнергии (ТЭЦ), также называемое когенерацией, является процессом одновременного производства электрической и тепловой энергии. Это означает, что тепло, вырабатываемое для производства электроэнергии, регенерируется и используется. Процесс производства на ТЭЦ может базироваться на использовании паровых или газовых турбин, или двигателей внутреннего сгорания. Первичным источником для производства энергии может быть широкий диапазон топлив, включая биомассу, отходы и ископаемые виды топлива, а также, геотермальная или солнечная энергия.

Финляндия - ведущая страна в области использования когенерации

Количество энергии, которую Финляндия экономит ежегодно, используя источники комбинированного производства энергии, равно более чем 10 процентам всей первичной энергии, используемой в стране, или 20 процентам потребления ископаемого топлива в Финляндии. Приблизительно одна треть электричества, используемого в Финляндии, получена на ТЭЦ. Промышленные ТЭЦ и ТЭЦ централизованного теплоснабжения, соответственно составляют 45 и 55 процентов в системе комбинированного производства. Промышленность использует более половины всей электроэнергии, потребляемой в Финляндии, и почти 40 процентов этого количества, произведена ТЭЦ. В зависимости от годового изменения климата, почти 75 - 80 процентов теплоэнергии для централизованного теплоснабжения производится на ТЭЦ.

Широко используется в течение многих десятилетий

Потребление энергии на душу населения в Финляндии, наиболее высокое среди стран Организации Экономического Сотрудничества и Развития. Это объясняется большой долей энергоемких отраслей промышленности, таких как, целлюлозная и бумажная промышленность, в финской экономике. В результате этого, экономичному использованию и надежному распределению энергии всегда уделялось особенное внимание в Финляндии. Географические и климатические особенности страны обеспечили основу для развития ТЭЦ в централизованном теплоснабжении. Эффективность производства энергии является существенным фактором, так как, ежегодная потребность в тепле и количество часов использования энергии высоки.

История использования промышленных ТЭЦ

Комбинированное производство энергии в промышленности, является результатом потребности в производстве тепла для собственных нужд.

Первые промышленные ТЭЦ в Финляндии были построены, уже в начале 20-х и 30-х годов. ТЭЦ были выбраны потому, что это был наиболее надежный и экономичный способ производства электроэнергии. Местные источники энергии часто использовались как отправная точка.

Индустриальные ТЭЦ противодавления, в качестве топлива, главным образом используют жидкие щелочные отходы, образующиеся при производстве целлюлозы. Черный щелочной раствор является подходящим для сжигания, из-за наличия органических деревянных остатков, которые он содержит. Целлюлозная и бумажная промышленность, не единственные отрасли, которые используют свои отходы для сжигания на ТЭЦ. Металлургическая и химическая промышленности, также производят отходы, которые могут быть превращены в тепло и электричество в процессе когенерации.

Централизованное теплоснабжение, как часть когенерации

Из-за северного местоположения страны, централизованное теплоснабжение - естественный выбор для Финляндии. Планы относительно организации централизованной системы теплоснабжения были осуществлены после II Мировой войны. Когенерация тепловой и электрической энергии производилась при использовании отходов древесины, производимых

деревообрабатывающей промышленностью, это оказалось эффективной концепцией производства энергии, при сохранении окружающей среды. Таким образом, финская централизованная система теплоснабжения базировалась на принципе ТЭЦ с самого начала.

Приблизительно половина зданий в Финляндии подключена к централизованной системе теплоснабжения. В самых крупных городах, эта цифра превышает 90 процентов. Большинство офисных и общественных зданий в стране, также, подключены к централизованной системе теплоснабжения. ТЭЦ обеспечивают примерно три четверти тепла, потребляемого ежегодно. Если сравнивать раздельное производство электрической и тепловой энергии, когенерация позволяет сэкономить, приблизительно треть топлива. Большинство теплопроизводящих компаний, принадлежит муниципалитетам, но доля частных предприятий постоянно увеличивается.

Централизованное теплоснабжение обеспечивает необходимую тепловую нагрузку для ТЭЦ, и это дает большой потенциал для использования возобновляемых источников энергии, типа биотоплива и отходов. Цель Европейского союза, удвоение доли когенерации в производстве энергии, не может быть достигнута без дальнейшего развития этой сферы. Таким образом, централизованное теплоснабжение, должно быть признано важной темой в повестке дня европейской энергетической политики.

ТЭЦ для централизованной системы охлаждения

Если говорить о централизованном теплоснабжении, охлаждение зданий, может также происходить, при помощи тепловой энергии. В течение зимних месяцев высокая температура используется для нагрева помещений, но в летнее время, тепла требуется немного. Это избыточное тепло, может использоваться для производства холода в системе кондиционирования помещений.

Централизованная система охлаждения существует сегодня, только в трех финских городах, но перспективы многообещающие. На сегодняшний день, централизованная система охлаждения в Хельсинки, самая крупная в Финляндии. Тридцать процентов холода получается за счет холодной морской воды, посредством простых теплообменников.


Использование ТЭЦ позволяет производить энергию наиболее экономически выгодным путем

Основная задача ТЭЦ - производить энергию наиболее экономически выгодным путем. Поэтому, комбинированное производство тепла и электроэнергии должно быть дешевле альтернативных способов. Доходность различных вариантов производства должна быть предварительно оценена для полного периода эксплуатации электростанции. ТЭЦ обычно требует больших инвестиций, чем обычные технологии производства энергии, но она потребляет меньше топлива.

В результате, ТЭЦ более дешевы в эксплуатации, чем электростанции схожей мощности. Тепло, производимое ТЭЦ, может использоваться как для централизованного теплоснабжения жилых районов, так и для промышленных нужд. Передача тепла на длинные расстояния является дорогостоящей. Поэтому лучше строить ТЭЦ близко к населенным пунктам и промышленным объектам, где тепловая энергия будет использоваться.



Высокая эффективность

ТЭЦ максимально используют энергию сгорающего топлива, производя электричество и тепло с минимальными потерями. Их КПД достигает 80 - 90 процентов. В то время, как обычные конденсационные электростанции достигают КПД 35 - 40 процентов.

Высокая отказоустойчивость

ТЭЦ имеют высокий уровень отказоустойчивости, позволяя не прерывать процесс производства энергии. В то же самое время, ТЭЦ высоко автоматизированы, таким образом, минимизируя число требуемого персонала и сокращая затраты на эксплуатацию и обслуживание.

Производство электричества и тепла могут быть легко приведены в соответствие с уровнем потребления, который может изменяться очень быстро. Надежность системы централизованного теплоснабжения в Финляндии в течение отопительного сезона, составляет 99,98 процента.

В среднем, теплоснабжение для отдельно взятого клиента, в течение отопительного периода, прерывается только один раз в шесть



Широкий спектр используемого топлива

В комбинированном производстве тепловой и электрической энергии может использоваться широкий спектр видов топлива, включая низкокалорийное и влажное, например индустриальные отходы и биотопливо. Оптимальная комбинация различных видов топлива определяется для каждой ТЭЦ в отдельности, в зависимости от местной ситуации с топливом. Обычно используются следующие виды топлива: природный газ, уголь, промышленные газы, торф и другие виды возобновляемых ресурсов (например, отходы деловой древесины, муниципальные отходы и древесная щепа). Мазут используется в небольших количествах, обычно в качестве подсветки для других топлив.

Традиционно, использование биотоплива при когенерации, связано с технологическими процессами лесной промышленности. По многим причинам, ТЭЦ - идеально подходит для использования биотоплива. Поскольку их теплотворная способность низка, а транспортировка дорогостояща, они имеют тенденцию быть местными видами топлива.



Эффективное производство энергии наносит меньший вред природе

Высокая эффективность и низкий уровень выбросов в процессе когенерации, самый приемлемый, с точки зрения окружающей среды, способ производства энергии. Современные ТЭЦ используют эффективные методы сжигания топлива, чтобы снизить выбросы окислов азота.

Снижение количества сжигаемого для производства энергии топлива, уменьшает негативное влияние на окружающую среду. Например, количество выбрасываемого углекислого газа, при сжигании ископаемого топлива, снижается в зависимости от количества используемого топлива. То же самое происходит и с такими загрязняющими веществами, как сера и окислы азота.

Изучение качества воздуха в крупнейших городах Финляндии показывает, что выбросы серы серьезно снизились и это является прямым результатом использования технологии когенерации и централизованной системы теплоснабжения.



Все преимущества использования ТЭЦ, с точки зрения воздействия на окружающую среду, были осознаны в течение нескольких последних лет. Не смотря на это, экономическая сторона дела, играет решающую роль при принятии решения о постройке того или иного типа источника энергии. Поэтому стоимость энергии произведенной в процессе когенерации, должна быть конкурентоспособной по сравнению с другими источниками энергии.

ТЭЦ и централизованная система теплоснабжения поддерживаются властями, потому что являются мощными инструментами для снижения выбросов углекислого газа. Целью энергетической стратегии Финляндии, является приведение выбросов углекислого газа в соответствие с Киотским Протоколом, в котором говорится, что к 2010 году, уровень выбросов должен быть снижен до показателей 1990 года. Благодаря централизованной системе теплоснабжения и ТЭЦ, в 2004 году Финляндия снизила выбросы углекислого газа в атмосферу на 8 миллионов тонн. Что равно, примерно, трем четвертям планового годового снижения выбросов в соответствии с Киотским Протоколом.


Широкий спектр применения ТЭЦ

Эволюция технологии ТЭЦ, в данный момент, идет в сторону уменьшения мощности. Небольшие источники позволяют в больших количествах

использовать местные виды топлива, такие как: древесина и другие возобновляемые виды, и отказаться от вторичных энергоносителей природных горючих ископаемых.

Технологии предварительной подсушки топлива могут увеличить теплопроизводительность процесса когенерации. Другие современные технологии сжигания, например, газификация или сжигание при избыточном давлении, повышающие производство электроэнергии на ТЭЦ, находятся сейчас на стадии развития. Все это делается для того, чтобы малые ТЭЦ могли быть конкурентоспособными.

Улучшение технологии производства электроэнергии, приведет к увеличению производства тепла. Технология комбинированного цикла, основанная на газификации твердого топлива, может привести к интересным результатам. В этом случае, газ может быть использован в газовой турбине, а выработанное тепло, будет работать в паровой турбине. В этом случае, соотношение производимого электричества и тепла может быть 1:1, сейчас оно составляет 0.5.

Огромный рыночный потенциал существует для использования когенерации для выработки энергии из различных отходов.



Энергетическая политика Финляндии и ТЭЦ

Энергетическая политика Финляндии базируется на трех китах: энергия, экономика и окружающая среда. Устойчивое и безопасное энергоснабжение, конкурентоспособные цены на энергию и минимизация негативного воздействия на окружающую среду, в соответствии с международными обязательствами. Основным и самым важным фактором, влияющим на энергетическую политику, является международное сотрудничество в области снижения выбросов парникового газа. Среди других факторов, влияющих на энергетическую политику, нужно выделить необходимость предотвращения экологических катастроф и адаптирование экономической активности к принципам устойчивого развития.

Когенерация всегда играла основную роль в энергетической политике Финляндии и останется важнейшей ее частью и в будущем. Комбинированный цикл является эффективным способом производства тепла и электроэнергии. Он способствует развитию местных возобновляемых источников энергии. Все эти моменты означают только одно - ТЭЦ является огромным вкладом в снижение выбросов парниковых газов.



В соответствии с решением Правительства, для бесперебойного и безопасного энергоснабжения, необходимо обеспечить производство энергии, основываясь на нескольких видах топлива, поставляемого из различных источников. Целью является создание в будущем гибкой, децентрализованной и сбалансированной энергетической системы. Со своей стороны, Правительство продолжает обеспечить все условия для создания подобной системы, и фокусируется на энергии, произведенной в своей стране, другими словами на возобновляемых энергетических ресурсах и биотопливе.

Правительство, и в будущем, продолжит поддерживать комбинированный цикл производства тепла и электричества. Предпосылкой решений, касательно источников энергии является то, что потребление тепла должно быть с наибольшей эффективностью связано с процессом когенерации. Достаточное внимание, также, должно быть уделено техническому и экономическому аспектам. Высокий статус процесса когенерации определен тем, что общая эффективность источников энергии является важным фактором в области выделенных квот на вредные выбросы. Инвестируя в постоянное развитие технологии, возможно во всеоружии подойти к моменту в будущем, когда обязательства по снижению выбросов парниковых газов, станут очень жесткими. Кроме технологии, развитие сосредотачивается на всей цепочке эксплуатации, доставки и торговли. Возобновляемые источники энергии и энергоэффективность, остаются важными секторами. Постоянные и интенсивные инвестиции послужат разработке и внедрению в жизнь новых, экономичных решений для процесса когенерации, промышленного производства энергии, малой энергетики и эффективного использования энергии.

Правительственные инвестиции, в основном, будут направлены в проекты, внедряющие новые энергетические технологии, с одной стороны, и связанные с особыми технологическими рисками, связанными с демонстрационным характером этих проектов.






Высокоэффективная технология комбинированного цикла

Компания Helsinki Energy

Благодаря своей передовой технологии сжигания газа, ТЭЦ района Vuosaari в Хельсинки, являются одними из самых эффективных и чистых. На них применяется технология комбинированного цикла, при которой скомбинировано два процесса - газовая и паровая турбины. Если сравнивать традиционную схему производства энергии с технологией комбинированного цикла, то во втором случае, мы имеем более высокую эффективность в производстве электричества и, соответственно более высокий выход электроэнергии, в пропорции к производимой тепловой энергии.

В процессе комбинированного цикла, ТЭЦ Vuosaari достигает КПД, превышающий 90 процентов, т. е. теряется менее 10 процентов произведенной энергии. Если мы говорим о потерях энергии, то это чаще всего, тепловые потери. Тепло теряется с дымовыми газами, охлаждающей жидкостью, а также, самом процессе производства.

Производство электроэнергии - 630 МВт

Производство тепла - 580 МВт

Топливо - природный газ 650-800 миллионов м3/г



Малые ТЭЦ с процессом газификации


Компания Kokem ä en Lampo Oy

Первые малые ТЭЦ, работающие по технологии Novel, газификации топлива в слое, были построены в 2004 году. Станция оборудована полной технологической цепочкой газоочистки, состоящей из установки реформинга газа, фильтра и кислотно-щелочного скруббера для удаления остатков азотных соединений. Для производства электричества используются три газовые турбины по 0.6 мВт и один газовый котел для регенерации тепла.

Газификатор Novel является новой разработкой, принцип его действия основан на подаче топлива под давлением, такой способ дает возможность использования волокнистого биотоплива с низкой объемной плотностью. В газификаторе может использоваться широкий спектр отходов биологического происхождения с влажностью от 0 до 55 процентов и размером частиц от опилок до крупной щепы.

Производство электроэнергии – 1.8 МВт

Производство тепла – 4.3 МВт

Тепловая мощность топливосушилки 429 кВт

Емкость топливохранилища – 7.2 МВт


Комплексный подход для достижения рентабельности

Компания Vapo Oy

Постройка ТЭЦ, расширение и модернизация производства топливных гранул в Ilomantsi были завершены в ноябре 2005 года. ТЭЦ была оборудована котлом для сжигания в «кипящим слое». Модернизация производства топливных гранул заключалась в постройке нового приемника для сырья, сушилки, третьей линии для производства гранул, системы конвейеров и бункера. ТЭЦ, производство гранул и сушилка управляются из одной диспетчерской. В качестве топлива используются фрезерный торф и древесина. Потребление топлива, примерно 75 ГВт в год.

Емкость топливохранилища – 23 МВт

Производство тепла для теплоснабж. – 8 МВт


От каменного угля к биотопливу


Компания Porvoon Energia Oy

ТЭЦ Tolkkinen была переведена с каменного угля на биомассу. Компания, хотела убить двух зайцев одним выстрелом - снизить потребление угля и снизить нагрузку на окружающую среду. Котел с цепной колосниковой решёткой был заменен котлом с «кипящем слоем» в 2000 году. Это предоставило хорошую возможность использовать различные типы древесины и древесных отходов в качестве топлива. Одновременно, были модернизированы системы подачи воздуха, отсоса дымовых газов, сбора золы, подачи топлива, контрольные приборы и автоматика. Скруббер для утилизации отходящего тепла, который сможет поднять эффективность станции на более чем 7 МВт, будет достроен в 2006 году.

Емкость топливохранилища – 54 МВт

Производство пара – 46 МВт

Производство электроэнергии 7 МВт

Производство тепла – 25 МВт


Энергия для ЦБК и системы теплоснабжения

Компания Kymin Voima Oy

ТЭЦ Kymin Voima находится в собственности компаний Pohjolan Voima Oy и Kouvolan Seudun Sahko Oy. Она расположена на ЦБК компании UPM Kymi, на ТЭЦ используется технология сжигания топлива в «кипящем слое». Она производит энергию, как для технологического процесса, так и для систем централизованного

теплоснабжения городов Kouvola и Kuusankoski. В качестве топлива используются: древесная кора, рубочные отходы, шламы, торф, газ и мазут. Потребление топлива составляет примерно 2,100 ГВт/год.

Производство электроэнергии – 76 МВт

Технологический пар – 125 MWth

Пр-во технологического тепла – 15 MWth

Производство тепла для теплоснабж. – 40 MWth


ТЭЦ Forssa сжигает только древесину

Компания Vapo Oy

Forssa Bio Power Plant - первая в Финляндии ТЭЦ (1996 год), в системе централизованного теплоснабжения, использующая в качестве топлива только древесину. Для промышленных нужд древесное топливо, широко использовалось и до этого. Процесс сжигания происходит в «кипящем слое». Эта технология позволяет применять практически все остальные доступные виды топлива. Основным видом топлива, являются отходы деревообрабатывающей промышленности. Например опилки и кора, вместе с рубочными отходами и отходами строительства. При сжигании древесины не происходит выбросов серы, а выбросы окислов азота незначительны.

Производство электроэнергии – 17 МВт

Производство тепла для теплоснабж. – 48 МВт


Гибкая технология

Компания Oy Ahlholmens Kraft Ab

ТЭЦ AK2 принадлежит компании Oy Ahlholmens Kraft Ab. Теплоисточник гибок в эксплуатации, поэтому вне зависимости от объемов выработки электричества, тепло производится в том количестве, которое необходимо в данный момент. КПД установки при производстве тепла, составляет более 80%, поэтому, производство не наносит ущерба окружающей среде. Тепло поставляется в город Pietarsaari и на ЦБК компании UPM.

Основными видами топлива являются уголь и различные виды биотоплива. Такие как: древесная кора, щепа, другие отходы лесной промышленности и торф.

Производство электроэнергии – 240 МВт

Технологический пар – 100 МВт

Производство тепла для теплоснабж. – 60 МВт

5.7. Организационная структура управления ТЭЦ и основные функции персонала

На электростанции имеют место административно-хозяйственное, производственно-техническое и оперативно-диспетчерское управление.

Административно-хозяйственным управителем является директор. В непосредственном подчинении его находится один из основных отделов ТЭЦ - планово-экономический отдел ПЭО.

В ведении ПЭО находятся вопросы планирования производства. Основной задачей планирования производства является разработка перспективных и текущих планов эксплуатации ТЭЦ и контроль за выполнением плановых показателей.

Бухгалтерия ТЭЦ осуществляет учет денежных и материальных средств станции; расчеты по заработной плате персонала (расчетная часть), текущее финансирование (банковские операции), расчеты по договорам (с поставщиками), составление бухгалтерской отчетности и балансов, и соблюдение финансовой деятельности.

В ведении отдела материально-технического снабжения находится снабжение станции всеми необходимыми эксплуатационными материалами, запасными частями и материалами, инструментами для ремонта.

Отдел кадров занимается вопросами подбора и изучения кадров, оформляет прием и увольнение работников.

Техническим руководителем ТЭЦ является первый заместитель директора – главный инженер. В непосредственном подчинении его находится производственно-технический отдел ПТО.

ПТО ТЭЦ разрабатывает и осуществляет мероприятия по совершенствованию производства, производит эксплуатационно-наладочные испытания оборудования, разрабатывает эксплуатационные нормы и режимные карты оборудования, разрабатывает вместе с ПЭО годовые и месячные технические планы и плановые задания по отдельным агрегатам и ведет учет расхода топлива, воды, электроэнергии; составляет техническую отчетность ТЭЦ. В составе ПТО имеются три основных группы: технического (энергетического) учета (ТУ), наладки и испытаний (НИ), ремонтно-конструкторская (РК). К основному производству относятся цеха: электроцех, турбинный и котельный и др.

Кроме основного производства рассматривают вспомогательное производство. К вспомогательным цехам на ТЭЦ относятся: цех тепловой автоматики и измерений ТАИ, участок теплоснабжения и подземной канализации, в ведении которого находятся обще станционные мастерские, отопительные и вентиляционные установки производственных и служебных зданий, канализация. Ремонтно-строительный цех, который осуществляет эксплуатационный надзор за производственными и служебными зданиями и их ремонтом, ведет работы по содержанию в надлежащем виде дорог и всей территории ТЭЦ. Все цеха ТЭЦ (основные и вспомогательные) в административно-техническом отношении подчиняются главному инженеру. Руководителем каждого цеха является начальник цеха, подчиненный по всем производственно-техническим вопросам главному инженеру станции, а по административно-хозяйственным директору ТЭЦ.

Энергетическое оборудование цехов обслуживается цеховым эксплуатационным дежурным персоналом, организованным в сменные бригады. Работой каждой смены руководят дежурные начальники смен основных цехов, подчиненные начальнику смены станции (НСС).

НСС осуществляет оперативное руководство всем дежурным эксплуатационным персоналом станции в течение смены. НСС в административно-техническом отношении подчиняется только дежурному диспетчеру энергосистемы и выполняет все его распоряжения по оперативному управлению производственным процессом ТЭЦ.

В оперативном отношении НСС является единоначальником на станции в течение соответствующей смены, и его распоряжения выполняются сменным дежурным персоналом через соответствующих начальников смен основных цехов. Помимо этого дежурный инженер станции немедленно реагирует на все неполадки в цехах и принимает меры к их устранению.


5.8. Составление бизнес-плана

5.8.1. Цели разработки проекта

В данном разделе проекта содержатся сведения о технической и экономической осуществимости проекта новой электростанции.

ТЭЦ расположена в Восточной Сибири. Электростанция предназначена для электро и теплоснабжения промышленного района. Общая электрическая нагрузка потребителей в районе размещения составляет примерно 50 МВт. ТЭЦ полностью обеспечивает местную нагрузку, а избыток мощности передает в систему. Станция связана с системой по линии электропередачи напряжением 110 кВ.

Промышленный район до строительства ТЭЦ получал электроэнергию от соседних энергосистем. Для того чтобы исключить зависимость от соседних энергосистем, создается Акционерное общество открытого типа, которое будет осуществлять строительство и эксплуатацию ТЭЦ и продавать электроэнергию с шин электростанции в энергосистему. Последнее представляет собой АО, осуществляющее распределение электроэнергии и доведение ее до потребителей.

Целью создания АО ТЭЦ является получение высокой прибыли на акционерную долю капитала и обеспечение надежного и экономичного энергоснабжения потребителей.


По напряжению: Uуст= UР - по току: Imax < Iуст 2,8868< 4,125 - по роду установки: внутренней. Выбираем реактор типа РБДГ-10-4000-0,18 9 ВЫБОР АППАРАТОВ И ТОКОВЕДУЩИХ ЧАСТЕЙ ДЛЯ ЗАДАННЫХ ЦЕПЕЙ 9.1 Выбор сборных шин и ошиновки на стороне 220 кВ. - Провести выбор сечения сборных шин по допустимому току при максимальной нагрузки на шинах. - Выбираем провод АС 240/32 ...


Условию послеаварийного режима, если ток меньше или равен А. А. Условие выполняется, усиления линии не требуется 4. Выбор принципиальной схемы подстанции Выбор главной схемы является определяющим при проектировании электрической части подстанций, так как он определяет состав элементов и связей между ними. Главная схема электрических соединений подстанций зависит от следующих факторов...

Теплоэлектроцентраль (ТЭЦ)

Наибольшее распространение ТЭЦ получили в СССР. Первые теплопроводы были проложены от электростанций Ленинграда и Москвы (1924, 1928). С 30-х гг. началось проектирование и строительство ТЭЦ мощностью 100-200 Мвт. К концу 1940 мощность всех действующих ТЭЦ достигла 2 Гвт, годовой отпуск тепла - 10 8 Гдж, а протяжённость тепловых сетей (См. Тепловая сеть) - 650 км. В середине 70-х гг. суммарная электрическая мощность ТЭЦ составляет около 60 Гвт (при общей мощности электростанций Теплоэлектроцентраль 220 и тепловых электростанций Теплоэлектроцентраль 180 Гвт ). Годовая выработка электроэнергии на ТЭЦ достигает 330 млрд. квт․ч, отпуск тепла - 4․10 9 Гдж; мощность отдельных новых ТЭЦ - 1,5-1,6 Гвт при часовом отпуске тепла до (1,6-2,0)․10 4 Гдж; удельная выработка электроэнергии при отпуске 1 Гдж тепла - 150-160 квт․ч. Удельный расход условного топлива на производство 1 квт․ч электроэнергии составляет в среднем 290 г (тогда как на ГРЭС - 370 г ); наименьший среднегодовой удельный расход условного топлива на ТЭЦ около 200 г/квт․ч (на лучших ГРЭС - около 300 г/квт․ч ). Такой пониженный (по сравнению с ГРЭС) удельный расход топлива объясняется комбинированным производством энергии двух видов с использованием тепла отработавшего пара. В СССР ТЭЦ дают экономию до 25 млн. т условного топлива в год (Теплоэлектроцентраль 11% всего топлива, идущего на производство электроэнергии).

ТЭЦ - основное производственное звено в системе централизованного теплоснабжения. Строительство ТЭЦ - одно из основных направлений развития энергетического хозяйства в СССР и др. социалистических странах. В капиталистических странах ТЭЦ имеют ограниченное распространение (в основном промышленные ТЭЦ).

Лит.: Соколов Е. Я., Теплофикация и тепловые сети, М., 1975; Рыжкин В. Я., Тепловые электрические станции, М., 1976.

В. Я. Рыжкин.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Синонимы :

Смотреть что такое "Теплоэлектроцентраль" в других словарях:

    - (ТЭЦ), паротурбинная тепловая электростанция, вырабатывающая и отпускающая потребителям одновременно 2 вида энергии: электрическую и тепловую (в виде горячей воды, пара). В России мощность отдельных ТЭЦ достигает 1,5 1,6 ГВт при часовом отпуске… … Современная энциклопедия

    - (ТЭЦ теплофикационная электростанция), тепловая электростанция, вырабатывающая не только электрическую энергию, но и тепло, отпускаемое потребителям в виде пара и горячей воды … Большой Энциклопедический словарь

    ТЕПЛОЭЛЕКТРОЦЕНТРАЛЬ, и, жен. Тепловая электростанция, вырабатывающая электроэнергию и тепло (горячую воду, пар) (ТЭЦ). Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова Большая политехническая энциклопедия

    ТЭЦ 26 (Южная ТЭЦ) в Москве … Википедия

Однажды, когда мы въезжали в славный город Чебоксары, с восточного направления моя супруга обратила внимание на две огромные башни, стоящие вдоль шоссе. «А что это такое?» – спросила она. Поскольку мне абсолютно не хотелось показать жене свою неосведомленность, я немного покопался в своей памяти и выдал победное: «Это ж градирни, ты что, не знаешь?». Она немного смутилась: «А для чего они нужны?» «Ну что-то там охлаждать, вроде бы». «А чего?». Потом смутился я, потому что совершенно не знал как выкручиваться дальше.

Может быть этот вопрос так и остался навсегда в памяти без ответа, но чудеса случаются. Через несколько месяцев после этого случая, вижу в своей френдленте пост о наборе блогеров, желающих посетить Чебоксарскую ТЭЦ-2, ту самую, что мы видели с дороги. Приходиться резко менять все свои планы, упустить такой шанс будет непростительно!

Так что же такое ТЭЦ?

Согласно Википедии ТЭЦ – сокращенное от теплоэлектроцентраль – это разновидность тепловой станции, которая производит не только электроэнергию, но и является источником тепла, в виде пара или горячей воды.

О том как все устроено, я расскажу ниже, а здесь можно посмотреть парочку упрощенных схем работы станции.

Итак, все начинается с воды. Поскольку вода (и пар, как её производное) на ТЭЦ является основным теплоносителем, перед тем как она попадет в котел, её необходимо предварительно подготовить. Для того, что бы в котлах не образовывалась накипь, на первом этапе, воду необходимо умягчить, а на втором, очистить её от всевозможных примесей и включений.

Происходит все это на территории химического цеха, в котором расположены все эти емкости и сосуды.

Вода перекачивается огромными насосами.

Работа цеха контролируется отсюда.

Вокруг много кнопочек…

Датчиков…

А также совсем непонятных элементов…

Качество воды проверяется в лаборатории. Здесь все по-серьезному…

Полученную здесь воду, в дальнейшем мы будем называть «Чистой водой».

Итак, с водой разобрались, теперь нам нужно топливо. Обычно это газ, мазут или уголь. На Чебоксарской ТЭЦ-2 основным видом топлива является газ, поступающий по магистральному газопроводу Уренгой – Помары – Ужгород. На многих станциях существует пункт подготовки топлива. Здесь природный газ, так же как и вода очищается от механических примесей, сероводорода и углекислого газа.

ТЭЦ – объект стратегический, работающий 24 часа в сутки и 365 дней в году. Поэтому здесь везде, и на всё, есть резерв. Топливо не является исключением. В случае отсутствия природного газа, наша станция может работать на мазуте, который хранится в огромных емкостях, расположенных через дорогу.

Теперь мы получили Чистую воду и подготовленное топливо. Следующий пункт нашего путешествия – котлотурбинный цех.

Состоит он из двух отделений. В первом находятся котлы. Нет, не так. В первом находятся КОТЛЫ. По другому написать, рука не поднимается, каждый, с двенадцатиэтажный дом. Всего на ТЭЦ-2 их пять штук.

Это сердце ТЭЦ, и здесь происходит основное действие. Газ, поступающий в котел, сгорает, выделяя сумасшедшее количество энергии. Сюда же подается «Чистая вода». После нагрева она превращается в пар, точнее в перегретый пар, имеющий температуру на выходе 560 градусов, а давление 140 атмосфер. Мы тоже назовем его «Чистый пар», потому что он образован из подготовленной воды.

Кроме пара, на выходе мы еще имеем выхлоп. На максимальной мощности, все пять котлов потребляют почти 60 кубометров природного газа в секунду! Чтобы вывести продукты сгорания, нужна недетская «дымовая» труба. И такая тоже имеется.

Трубу видно практически из любого района города, учитывая высоту 250 метров. Подозреваю, что это самое высокое строение в Чебоксарах.

Рядом находится труба чуть поменьше. Снова резерв.

Если ТЭЦ работает на угле, необходима дополнительная очистка выхлопа. Но в нашем случае этого не требуется, так как в качестве топлива используется природный газ.

В втором отделении котлотурбинного цеха находятся установки, вырабатывающие электроэнергию.

В машинном зале Чебоксарской ТЭЦ-2 их установлено четыре штуки, общей мощностью 460 МВт (мегаватт). Именно сюда подается перегретый пар из котельного отделения. Он, под огромным давлением направляется на лопатки турбины, заставляя вращаться тридцатитонный ротор, со скоростью 3000 оборотов в минуту.

Установка состоит из двух частей: собственно сама турбина, и генератор, вырабатывающий электроэнергию.

А вот как выглядит ротор турбины.

Повсюду датчики и манометры.

И турбины, и котлы, в случае аварийной ситуации можно остановить мгновенно. Для этого существуют специальные клапаны, способные перекрыть подачу пара или топлива за какие-то доли секунды.

Интересно, а есть такое понятие как промышленный пейзаж, или промышленный портрет? Здесь есть своя красота.

В помещении стоит страшный шум, и чтобы расслышать соседа приходиться сильно напрягать слух. К тому же очень жарко. Хочется снять каску и раздеться до футболки, но делать этого нельзя. По технике безопасности, одежда с коротким рукавом на ТЭЦ запрещена, слишком много горячих труб.

Основную часть времени цех пустой, люди здесь появляются один раз в два часа, во время обхода. А управление работой оборудования ведется с ГрЩУ (Групповые щиты управления котлами и турбинами).

Вот так выглядит рабочее место дежурного.

Вокруг сотни кнопок.

И десятки датчиков.

Есть механические, есть электронные.

Это у нас экскурсия, а люди работают.

Итого, после котлотурбинного цеха, на выходе мы имеем электроэнергию и частично остывший и потерявший часть давления пар. С электричеством вроде бы попроще. На выходе с разных генераторов напряжение может быть от 10 до 18 кВ (киловольт). С помощью блочных трансформаторов оно повышается до 110 кВ, а дальше электроэнергию можно передавать на большие расстояния с помощью ЛЭП (линий электропередач).

Оставшийся «Чистый пар» отпускать на сторону невыгодно. Так как он образован из «Чистой воды», производство которой довольно сложный и затратный процесс, его целесообразней охладить и вернуть обратно в котел. И так по замкнутому кругу. Зато с его помощью и с помощью теплообменников можно нагреть воду или произвести вторичный пар, которые спокойно продавать сторонним потребителям.

В общем-то именно таким образом мы с вами получаем тепло и электричество в свои дома, имея привычный комфорт и уют.

Ах, да. А для чего же все-таки нужны градирни?

Снабжение населения теплом и электроэнергией является одной из основных задач государства. Кроме того, без выработки электричества невозможно представить себе развитую производящую и перерабатывающую промышленность, без которой экономика страны не может существовать в принципе.

Одним из способов решения проблемы нехватки энергии является строительство ТЭЦ. Расшифровка этого термина довольно проста: это так называемая теплоэлектроцентраль, являющаяся одной из наиболее распространенных разновидностей тепловых электростанций. В нашей стране они весьма распространены, так как работают на органическом ископаемом топливе (уголь), к характеристикам которого предъявляют весьма скромные требования.

Особенности

Вот что такое ТЭЦ. Расшифровка понятия вам уже знакома. Но какие же особенности имеет данная разновидность электростанций? Ведь неслучайно же их выделяют в отдельную категорию!?

Дело в том, что они вырабатывают не только электроэнергию, но и тепло, которое подается потребителям в виде горячей воды и пара. Нужно заметить, что электричество является побочным продуктом, так как пар, который подается в системы отопления, сперва вращает турбины генераторов. Комбинирование двух предприятий (котельной и электростанции) хорошо тем, что удается значительно сократить потребление топлива.

Впрочем, это же приводит к довольно незначительному «ареалу распространения» ТЭЦ. Расшифровка проста: так как от станции подается не только электричество, которое с минимальными потерями можно транспортировать на тысячи километров, но и нагретый теплоноситель, их нельзя располагать на значительном удалении от населенного пункта. Неудивительно, что практически все ТЭЦ построены в непосредственной близости от городов, жителей которых они отапливают и освещают.

Экологическое значение

Благодаря тому, что при постройке такой электростанции удается избавиться от многих старых городских котельных, которые играют чрезвычайно негативную роль в экологическом состоянии района (огромное количество копоти), чистоту воздуха в городе порой удается повысить на порядок. Кроме того, новые ТЭЦ позволяют ликвидировать завалы мусора на городских свалках.

Новейшее очистительное оборудование позволяет эффективно очищать выброс, а энергетическая эффективность такого решения оказывается чрезвычайно велика. Так, выделение энергии от сжигания тонны нефти идентично тому ее объему, которое выделяется при утилизации двух тонн пластика. А уж этого «добра» хватит на десятки лет вперед!

Чаще всего строительство ТЭЦ предполагает использование ископаемого топлива, о чем мы уже говорили выше. Впрочем, в последние годы планируется создание которые будут монтироваться в условиях труднодоступных регионов Крайнего Севера. Так как подвоз топлива туда исключительно затруднен, атомная энергетика является единственным надежным и постоянным источником энергии.

Какими они бывают?

Бывают ТЭЦ (фото которых есть в статье) промышленные и «бытовые», отопительные. Как несложно догадаться из названия, промышленные электростанции обеспечивают электричеством и теплом крупные производственные предприятия.

Зачастую строятся еще на этапе возведения завода, составляя вместе с ним единую инфраструктуру. Соответственно, «бытовые» разновидности возводятся неподалеку от спальных микрорайонов города. В промышленных передается в виде горячего пара (не больше 4-5 км), в случае отопительных - при помощи горячей воды (20-30 км).

Сведения об оборудовании станций

Основным оборудованием этих предприятий являются турбинные агрегаты, которые переводят механическую энергию в электричество, и котлы, ответственные за выработку пара, который вращает маховики генераторов. В состав турбинного агрегата входит как сама турбина, так и синхронный генератор. Трубины с противодавлением 0,7—1,5 Мн/м2 ставят на те ТЭЦ, которые снабжают теплом и энергией промышленные объекты. Модели же с давлением 0,05—0,25 Мн/м2 служат для обеспечения бытовых потребителей.

Вопросы КПД

В принципе, все выработанное тепло можно использовать полностью. Вот только количество электроэнергии, которое вырабатывается на ТЭЦ (расшифровка этого термина вам уже известна), напрямую зависит от тепловой нагрузки. Проще говоря, в весенне-летний период ее выработка снижается едва ли не до нуля. Таким образом, установки с противодавлением используются только для снабжения промышленных мощностей, у которых величина потребления более-менее равномерна на протяжении всего периода.

Установки конденсирующего типа

В этом случае для снабжения потребителей теплом используется лишь так называемый «пар отбора», а все остальное тепло зачастую попросту теряется, рассеиваясь в окружающей среде. Чтобы снизить потери энергии, такие ТЭЦ должны работать с минимальным выпуском тепла в конденсирующую установку.

Впрочем, еще со времен СССР строятся такие станции, в которых конструктивно предусмотрен гибридный режим: они могут работать как обычные конденсационные ТЭЦ, но их турбинный генератор вполне допускает функционирование в режиме противодавления.

Универсальные разновидности

Неудивительно, что именно установки с конденсацией пара получили максимальное распространение в силу своей универсальности. Так, только они дают возможность практически независимо регулировать электрическую и тепловую нагрузку. Даже если тепловой нагрузки вовсе не предвидится (в случае особенно жаркого лета) население будет снабжаться электроэнергией по прежнему графику (Западная ТЭЦ в Петербурге).

«Тепловые» разновидности ТЭЦ

Как вы уже могли понять, выработка тепла на такого рода электростанциях отличается крайней неравномерностью на протяжении года. В идеальном случае около 50% горячей воды или пара идет на обогрев потребителей, а весь остальной теплоноситель используется для выработки электричества. Именно так работает Юго-Западная ТЭЦ в Северной столице.

Отпуск тепла в большинстве случаев выполняется по двум схемам. Если используется открытый вариант, то горячий пар от турбин идет непосредственно к потребителям. В случае если была выбрана закрытая схема работы, теплоноситель подается после прохождения теплообменников. Выбор схемы определяется исходя из многих факторов. В первую очередь учитывается расстояние от обеспечиваемого теплом и электричеством объекта, количество населения и сезон. Так, Юго-Западная ТЭЦ в Петербурге работает по закрытой схеме, так как она обеспечивает большую эффективность.

Характеристики используемого топлива

Может использоваться твердое, жидкое и Так как ТЭЦ зачастую строятся в непосредственной близости от крупных населенных пунктов и городов, зачастую приходится использовать достаточно ценные его виды, газ и мазут. Применение же в качестве такового угля и мусора в нашей стране достаточно ограниченно, так как далеко не на всех станциях установлено современное эффективное воздухоочистительное оборудование.

Чтобы очистить выхлоп установок, используются специальные уловители твердых частиц. Чтобы рассеивать твердые частицы в достаточно высоких слоях атмосферы, строят трубы высотой в 200—250 метров. Как правило, все теплоэлектроцентрали (ТЭЦ) стоят на достаточно большом расстоянии от источников водоснабжения (реки и водохранилища). А потому используется искусственные системы, включающие в свой состав градирни. Прямоточное снабжение водой встречается крайне редко, в весьма специфичных условиях.

Особенности газовых станций

Особняком стоят газовые ТЭЦ. Теплоснабжение потребителей осуществляется не только за счет энергии, которая вырабатывается при сжигании но и при утилизации тепла газов, которые при этом образуются. КПД таких установок чрезвычайно высоко. В некоторых случаях в качестве ТЭЦ могут использоваться и атомные станции. Это особенно распространено в некоторых арабских странах.

Там эти станции играют сразу две роли: обеспечивают снабжение населения электроэнергией и технической водой, так как попутно исполняют функции А сейчас рассмотрим основные ТЭЦ нашей страны и ближнего зарубежья.

Юго-Западная, Санкт-Петербург

В нашей стране известностью пользуется Западная ТЭЦ, которая расположена в Санкт-Петербурге. Зарегистрирована как ОАО «Юго-Западная ТЭЦ». Строительство этого современного объекта преследовало сразу несколько функций:

  • Компенсация сильного дефицита тепловой энергии, который мешал интенсификации программы жилищного строительства.
  • Повышение надежности и энергетической эффективности городской системы в целом, так как именно с этим аспектом имел проблемы Санкт-Петербург. ТЭЦ позволила частично решить эту проблему.

Но эта станция известна еще и тем, что одной из первых в России стала соответствовать строжайшим экологическим требованиям. Для нового предприятия городское правительство выделило площадь более 20 Га. Дело в том, что под строительство была отведена резервная площадь, оставшаяся от Кировского района. В тех краях был старый сборник золы от ТЭЦ-14, а потому район был не пригоден для строительства жилья, но чрезвычайно удачно расположен.

Запуск состоялся в конце 2010 года, причем на церемонии присутствовало практически все руководство города. В строй были введены две новейшие автоматические котельные установки.

Мурманская

Город Мурманск известен как база нашего флота на Балтийском море. Но еще он характеризуется крайней суровостью климатических условий, что накладывает определенные требования на его энергетическую систему. Неудивительно, что Мурманская ТЭЦ во многом является совершенно уникальным техническим объектом даже в масштабах всей страны.

Она была введена в эксплуатацию еще в 1934 году, и с тех пор продолжает исправно снабжать жителей города теплом и электроэнергией. Впрочем, в первые пять лет Мурманская ТЭЦ являлась обычной электростанцией. Первые 1150 метров теплотрассы были проложены только в 1939 году. Дело в запущенной Нижне-Туломской ГЭС, которая практически полностью перекрывала потребности города в электричестве, а потому появилась возможность высвободить часть тепловой выработки для отопления городских домов.

Станция характерна тем, что весь год работает в сбалансированном режиме, так как ее тепловая и «энергетическая» выработки приблизительно равны. Впрочем, в условиях полярной ночи ТЭЦ в некоторые пиковые моменты начинает использовать большую часть топлива именно для выработки электроэнергии.

Новополоцкая станция, Белоруссия

Проектирование и строительство этого объекта началось в августе 1957 года. Новая Новополоцкая ТЭЦ должна была решить вопрос не только теплоснабжения города, но и обеспечения электричеством строившегося в том же районе нефтеперерабатывающего завода. В марте 1958 года проект был окончательно подписан, одобрен и утвержден.

Первую очередь ввели в эксплуатацию в 1966 году. Вторая была запущена в 1977 году. Тогда же Новополоцкая ТЭЦ была в первый раз модернизирована, ее пиковую мощность увеличили до 505 МВт, а чуть позже заложили третью очередь строительства, завершенную в 1982 году. В 1994 г. станция была переведена на сжиженный природный газ.

К настоящему моменту в модернизацию предприятия уже вложено порядка 50 миллионов американских долларов. Благодаря столь внушительным денежным вливаниям предприятие не только было полностью переведено на газ, но и получило огромное количество совершенно нового оборудования, которое позволит станции прослужить еще десятки лет.

Выводы

Как ни странно, но на сегодняшний день именно устаревшие ТЭЦ являются действительно универсальными и перспективными станциями. Используя современные нейтрализаторы и фильтры, нагревать воду можно, сжигая практически весь мусор, который производит населенный пункт. При этом достигается тройная выгода:

  • Разгружаются и расчищаются свалки.
  • Город получает дешевую электроэнергию.
  • Решается проблема с отоплением.

Кроме того, в прибрежных районах вполне реально строительство ТЭЦ, которые одновременно будут являться опреснителями морской воды. Такая жидкость вполне пригодна для полива, для животноводческих комплексов и промышленных предприятий. Словом, настоящая технология будущего!



Поделиться