Технология тэц. Особенности работы тэц

Что такое и каковы же принципы работы ТЭС? Общее определение таких объектов звучит примерно следующим образом - это энергетические установки, которые занимаются переработкой природной энергии в электрическую. Для этих целей также используется топливо природного происхождения.

Принцип работы ТЭС. Краткое описание

На сегодняшний день наибольшее распространение получили именно На таких объектах сжигается которое выделяет тепловую энергию. Задача ТЭС - использовать эту энергию, чтобы получить электрическую.

Принцип работы ТЭС - это выработка не только но и производство тепловой энергии, которая также поставляется потребителям в виде горячей воды, к примеру. Кроме того, эти объекты энергетики вырабатывают около 76% всей электроэнергии. Такое широкое распространение обусловлено тем, что доступность органического топлива для работы станции довольно велико. Второй причиной стало то, что транспортировка топлива от места его добычи к самой станции - это довольно простая и налаженная операция. Принцип работы ТЭС построен так, что имеется возможность использовать отработавшее тепло рабочего тела для вторичной поставки его потребителю.

Разделение станций по типу

Стоит отметить, что тепловые станции могут делиться на типы в зависимости от того, какой именно они производят. Если принцип работы ТЭС заключается лишь в производстве электрической энергии (то есть тепловая энергия не поставляет потребителю), то ее называют конденсационной (КЭС).

Объекты, предназначенные для производства электрической энергии, для отпуска пара, а также поставки горячей воды потребителю, имеют вместо конденсационных турбин паровые. Также в таких элементах станции имеется промежуточный отбор пара или же устройство противодавления. Главным преимуществом и принципом работы ТЭС (ТЭЦ) такого типа стало то, что отработанный пар также используется в качестве источника тепла и поставляется потребителям. Таким образом, удается сократить потерю тепла и количество охлаждающей воды.

Основные принципы работы ТЭС

Прежде чем перейти к рассмотрению самого принципа работы, необходимо понять, о какой именно станции идет речь. Стандартное устройство таких объектов включает в себя такую систему, как промежуточный перегрев пара. Она необходима потому, что тепловая экономичность схемы с наличием промежуточного перегрева, будет выше, чем в системе, где она отсутствует. Если говорить простыми словами, принцип работы ТЭС, имеющей такую схему, будет гораздо эффективнее при одних и тех же начальных и конечных заданных параметрах, чем без нее. Из всего этого можно сделать вывод, что основа работы станции - это органическое топливо и нагретый воздух.

Схема работы

Принцип работы ТЭС построен следующим образом. Топливный материал, а также окислитель, роль которого чаще всего берет на себя подогретый воздух, непрерывным потоком подаются в топку котла. В роли топлива могут выступать такие вещества, как уголь, нефть, мазут, газ, сланцы, торф. Если говорить о наиболее распространенном топливе на территории Российской Федерации, то это угольная пыль. Далее принцип работы ТЭС строится таким образом, что тепло, которое образуется за счет сжигания топлива, нагревает воду, находящуюся в паровом котле. В результате нагрева происходит преобразование жидкости в насыщенный пар, который по пароотводу поступает в паровую турбину. Основное предназначение этого устройства на станции заключается в том, чтобы преобразовать энергию поступившего пара, в механическую.

Все элементы турбины, способные двигаться, тесно связываются с валом, вследствие чего они вращаются, как единый механизм. Чтобы заставить вращаться вал, в паровой турбине осуществляется передача кинетической энергии пара ротору.

Механическая часть работы станции

Устройство и принцип работы ТЭС в ее механической части связан с работой ротора. Пар, который поступает из турбины, имеет очень высокое давление и температуру. Из-за этого создается высокая внутренняя энергия пара, которая и поступает из котла в сопла турбины. Струи пара, проходя через сопло непрерывным потоком, с высокой скоростью, которая чаще всего даже выше звуковой, воздействуют на рабочие лопатки турбины. Эти элементы жестко закреплены на диске, который, в свою очередь, тесно связан с валом. В этот момент времени происходит преобразование механической энергии пара в механическую энергию турбин ротора. Если говорить точнее о принципе работы ТЭС, то механическое воздействие влияет на ротор турбогенератора. Это из-за того, что вал обычного ротора и генератора тесно связываются между собой. А далее происходит довольно известный, простой и понятный процесс преобразования механической энергии в электрическую в таком устройстве, как генератор.

Движение пара после ротора

После того как водяной пар проходит турбину, его давление и температура значительно опускаются, и он поступает в следующую часть станции - конденсатор. Внутри этого элемента происходит обратное превращение пара в жидкость. Для выполнения этой задачи внутри конденсатора имеется охлаждающая вода, которая поступает туда посредством труб, проходящих внутри стен устройства. После обратного преобразования пара в воду, она откачивается конденсатным насосом и поступает в следующий отсек - деаэратор. Также важно отметить, что откачиваемая вода, проходит сквозь регенеративные подогреватели.

Основная задача деаэратора - это удаление газов из поступающей воды. Одновременно с операцией очистки, осуществляется и подогрев жидкости так же, как и в регенеративных подогревателях. Для этой цели используется тепло пара, которое отбирается из того, что следует в турбину. Основное предназначение операции деаэрации состоит в том, чтобы понизить содержание кислорода и углекислого газа в жидкости до допустимых значений. Это помогает снизить скорость влияние коррозии на тракты, по которым идет поставка воды и пара.

Станции на угле

Наблюдается высокая зависимость принципа работы ТЭС от вида топлива, которое используется. С технологической точки зрения наиболее сложным в реализации веществом является уголь. Несмотря на это, сырье является основным источником питания на таких объектах, число которых примерно 30% от общей доли станций. К тому же планируется увеличивать количество таких объектов. Также стоит отметить, что количество функциональных отсеков, необходимых для работы станции, гораздо больше, чем у других видов.

Как работают ТЭС на угольном топливе

Для того чтобы станция работала непрерывно, по железнодорожным путям постоянно привозят уголь, который разгружается при помощи специальных разгрузочных устройств. Далее имеются такие элементы, как по которым разгруженный уголь подается на склад. Далее топливо поступает в дробильную установку. При необходимости есть возможность миновать процесс поставки угля на склад, и передавать его сразу к дробилкам с разгрузочных устройств. После прохождения этого этапа раздробленное сырье поступает в бункер сырого угля. Следующий шаг - это поставка материала через питатели в пылеугольные мельницы. Далее угольная пыль, используя пневматический способ транспортировки, подается в бункер угольной пыли. Проходя этот путь, вещество минует такие элементы, как сепаратор и циклон, а из бункера уже поступает через питатели непосредственно к горелкам. Воздух, проходящий сквозь циклон, засасывается мельничным вентилятором, после чего подается в топочную камеру котла.

Далее движение газа выглядит примерно следующим образом. Летучее вещество, образовавшееся в камере топочного котла, проходит последовательно такие устройства, как газоходы котельной установки, далее, если используется система промежуточного перегрева пара, газ подается в первичный и вторичный пароперегреватель. В этом отсеке, а также в водяном экономайзере газ отдает свое тепло на разогрев рабочего тела. Далее установлен элемент, называющийся воздухоперегревателем. Здесь тепловая энергия газа используется для подогрева поступающего воздуха. После прохождения всех этих элементов, летучее вещество переходит в золоуловитель, где очищается от золы. После этого дымовые насосы вытягивают газ наружу и выбрасывают его в атмосферу, использую для этого газовую трубу.

ТЭС и АЭС

Довольно часто возникает вопрос о том, что общего между тепловыми и и есть ли сходство в принципах работы ТЭС и АЭС.

Если говорить об их сходстве, то их несколько. Во-первых, обе они построены таким образом, что для своей работы используют природный ресурс, являющийся ископаемым и иссекаемым. Кроме этого, можно отметить, что оба объекта направлены на то, чтобы вырабатывать не только электрическую энергию, но и тепловую. Сходства в принципах работы также заключаются и в том, что ТЭС и АЭС имеют турбины и парогенераторы, участвующие в процессе работы. Далее имеются лишь некоторые отличие. К ним можно отнести то, что, к примеру, стоимость строительства и электроэнергии, полученной от ТЭС гораздо ниже, чем от АЭС. Но, с другой стороны, атомные станции не загрязняют атмосферу до тех пор, пока отходы утилизируются правильным образом и не происходит аварий. В то время как ТЭС из-за своего принципа работы постоянно выбрасывают в атмосферу вредные вещества.

Здесь кроется и главное отличие в работе АЭС и ТЭС. Если в тепловых объектах тепловая энергия от сжигания топлива передается чаще всего воде или преобразуется в пар, то на атомных станциях энергию берут от деления атомов урана. Полученная энергия расходится для нагрева самых разных веществ и вода здесь используется довольно редко. К тому же все вещества находятся в закрытых герметичных контурах.

Теплофикация

На некоторых ТЭС в их схемах может быть предусмотрена такая система, которая занимается теплофикацией самой электростанции, а также прилегающего поселка, если таковой имеется. К сетевым подогревателям этой установки, пар отбирается от турбины, а также имеется специальная линия для отвода конденсата. Вода подводится и отводится по специальной системе трубопровода. Та электрическая энергия, которая будет вырабатываться таким образом, отводится от электрического генератора и передается потребителю, проходя через повышающие трансформаторы.

Основное оборудование

Если говорить об основных элементах, эксплуатирующихся на тепловых электрических станциях, то это котельные, а также турбинные установки в паре с электрическим генератором и конденсатором. Основным отличием основного оборудования от дополнительного стало то, что оно имеет стандартные параметры по своей мощности, производительности, по параметрам пара, а также по напряжению и силе тока и т. д. Также можно отметить, что тип и количество основных элементов выбираются в зависимости от того, какую мощность необходимо получить от одной ТЭС, а также от режима ее эксплуатации. Анимация принципа работы ТЭС может помочь разобраться в этом вопросе более детально.

К.т.н. А.А.Хараим, ООО «Газпром энергохолдинг»,
к.э.н. В.Н. Ильич, Центр энерго-экономического анализа
и финансовой оценки (Центр ЭНЭКАН), г. Москва

Введение

В крупных и средних городах России обеспечение потребителей электрической и тепловой энергией осуществляется в основном от теплоэлектроцентралей. ТЭЦ обладают самой передовой технологией для энергоснабжения - осуществляется комбинированное производство в одной установке электрической и тепловой энергии. Когенерационные технологии позволяют использовать 85-90% энергии топлива, сжигаемого для выработки электрической и тепловой энергии, снижают на 20-30% общий расход топлива на ТЭЦ по сравнению с их раздельным производством на ГРЭС и в котельных.

В настоящее время ТЭЦ производят около 30% электрической и тепловой энергии в России, обеспечивают ежегодно экономию топлива примерно 20 млн т у. т., улучшая экологическую обстановку в городах и промышленных центрах. Предусматривается значительный рост ТЭЦ за счет модернизации и, прежде всего, широкого внедрения систем теплофикации на базе высокоэффективных ПГУ-ТЭЦ, ГТУ-ТЭЦ. Это должно внести существенный вклад в экономию топливно-энергетических ресурсов в электроэнергетике, которая по государственной программе на период до 2020 г. должна составить 26-27% от общей экономии по Российской Федерации. Ожидается сдерживание роста цен на электрическую и тепловую энергию для предприятий и населения, уменьшение вредных выбросов и сбросов в окружающую среду от ТЭЦ.

Однако за последние два десятилетия положение действующих ТЭЦ систематически ухудшалось. Причинами этого ухудшения являются:

■ резкое снижение потребления тепловой энергии из-за кризиса промышленности в 90-е гг;

■ увеличение потерь и аварийности в тепловых сетях в силу их износа и недостаточности финансовых ресурсов для поддержания в нормальном состоянии. Возможности капиталовложений в тепловое хозяйство жестко ограничены предельным ростом тарифов на тепловую энергию, которые зачастую ниже себестоимости содержания тепловых сетей.

Существенное систематическое снижение эффективности ТЭЦ обусловлено отдельными законодательными и другими правовыми нормами (или их отсутствием), а также действиями государства и его органов (далее - Регулятор) по регламентации функционирования ТЭЦ на территориальном регулируемом рынке тепловой энергии и экстерриториальном свободном оптовом рынке электрической энергии (ОРЭ).

Для правильного понимания особенностей производства энергии, выявления и анализа причин снижения или потери эффективности работы ТЭЦ из-за недостатков государственного регулирования, для подготовки предложений по их устранению с целью улучшения экономического положения ТЭЦ и, в конечном счете, повышения эффективности электро- и теплоснабжения потребителей целесообразно использовать модель нормальной работы ТЭЦ. В основу модели следует принять нижеизложенные особенности и систему оценки деятельности ТЭЦ.

Особенности ТЭЦ

ТЭЦ при наличии комбинированного производства электрической и тепловой энергии, обладают принципиальными особенностями, которые нельзя не учитывать при разработке и применении правил регулирования их деятельности. К ним относятся следующие.

1. Оба продукта одновременно должны производиться и доставляться в соотношениях и объемах близких к предусмотренным проектами ТЭЦ промышленным и социально-бытовым потребителям непосредственно от ТЭЦ или через сети (тепловые - в радиусе до 10-12 км; электрические - на территории поселения и за его пределами). Это должно позволять, во-первых, максимально использовать преимущества теплофикации и, во-вторых, заключать и гарантированно исполнять прямые договора по физическим поставкам, уменьшать потери и вероятность отключений энергии обоих видов из-за повреждений в сетях.

2. Несколько начальных этапов производства (подача топлива в котел, нагрев пара в пароперегревателе) переходят в единый технологический процесс частичного или полного срабатывания пара в турбине (в зависимости от ее типа) для совместной (комбинированной) выработки как электрической, так и тепловой энергии. В этом процессе сработанный пар называется отборным и является основным продуктом ТЭЦ. Именно комбинированное производство электрической и тепловой энергии на ТЭЦ позволяет снижать расходы топлива по сравнению с раздельным их производством на ГРЭС и котельных. Этот процесс предопределяет довольно жесткую зависимость объема выработки электроэнергии от объема отпуска пара. Кроме того, эта связь обуславливается распределением нагрузки между основным оборудованием ТЭЦ. Так, потребность в паре для отопления определяется температурой наружного воздуха, а для технологических нужд зависит от особенностей применяемых технологий промышленными потребителями, что требует соответствующего состава и режима работы оборудования ТЭЦ. Спрос на местном рынке на тепловую энергию и на оптовом рынке на электрическую энергию от ТЭЦ в каждый момент времени слабо коррелируют друг с другом, что создает весьма серьезные риски для ТЭЦ. О рисках и практической невозможности разделения затрат топлива и ведения бизнеса по видам энергии на разных рынках будет рассмотрено далее.

3. Наряду с совместным производством осуществляется индивидуальное производство, когда:

■ остающаяся часть пара после его частичного срабатывания в турбине (для совместной выработки энергии) используется для производства и отпуска конденсационной электрической энергии. Понятие «конденсационная» связано с тем, что отработанный пар из турбины поступает в конденсатор пара;

■ после указанных в п. 2 данного раздела начальных этапов пар через редукционную охладительную установку (РОУ) отпускается в виде готового продукта промышленным потребителям. Раздельное (индивидуальное) производство обоих продуктов требует больших расходов топлива, чем совместное. Из-за неэффективности конденсационных режимов выгода ТЭЦ во время неотопительного сезона при участии в торговле на оптовом рынке довольно ограничена. Однако содержание мощности в этот период требует соответствующих расходов.

4. Оптимизация работы ТЭЦ заключается в таких ее загрузках со стороны потребителей на рынках тепловой и электрической энергии, которые обеспечивали бы максимальное использование мощностей ТЭЦ для увеличения комбинированной (совместной) и снижения индивидуальной (раздельной) выработки электрической и тепловой энергии. Данный режим работы выгоден для ТЭЦ, т.к. при этом обеспечиваются низкие расходы топлива, выгоден он потребителям и городу в целом в связи с возможностью установления для них пониженных тарифов на тепловую и электрическую энергию. В результате экономии топлива уменьшаются выбросы в окружающую среду вредных продуктов его сгорания, а также тепловые сбросы от ТЭЦ. Такой режим также выгоден всему обществу в связи с экономией для будущих поколений топливных ресурсов.

5. Производство тепловой энергии на ТЭЦ первично по отношению к производству электроэнергии (как это следует из вышеизложенных особенностей), что предопределяет необходимость расположения ТЭЦ в городах и производственных узлах.

6. ТЭЦ в части производства и отпуска тепловой энергии в сети занимают монопольное или частично монопольное положение.

Оценка эффективности ТЭЦ

Рассмотрим систему оценки эффективности производства и функционирования ТЭЦ адекватную их вышеизложенным особенностям.

Энергетическая эффективность производства на ТЭЦ оценивается по двум показателям.

Первый показатель - это коэффициент использования теплоты топлива (КИТ). КИТ является отражением баланса энергии при ее преобразовании на ТЭЦ и рассчитывается по отданным в сети объемам энергии:

КИТ = (Э + Q) B*Q н (1)

где Э и Q - объем соответственно отпущенной от ТЭЦ электрической и тепловой энергии; В*Q н - израсходованная теплота сгорания топлива.

Вторым объективным показателем энергетической эффективности ТЭЦ является удельная выработка электрической энергии на тепловом потреблении, т.е. отборном паре:

Wэ=Э тп /Q тп, (2)

где Э тп - выработанная отборным паром электроэнергия; Q тп - отданная в сеть теплота этого пара.

Энергетическая эффективность комбинированного производства на ТЭЦ тем выше, чем более высоких значений достигают показатели КИТ и Wэ.

Определение значений показателей использования топлива на ТЭЦ требуют профессиональных знаний, применения энергетических характеристик, алгоритмов расчетов по выбору состава и оптимизации загрузки оборудования.

Экономическая эффективность ТЭЦ оценивается безубыточностью (убыточностью) как любая функционирующая коммерческая единица. ТЭЦ имеет определенную область существования, в пределах которой сохраняет целостность, если обеспечивается прибыльность ее деятельности в течение довольно продолжительного периода времени. В пространстве существования можно выделить зону комфортного существования.

Под воздействием внешней среды (включая Регулятора) ТЭЦ может быть перемещена из зоны комфорта. Здесь возможны два исхода:

первый - за пределы области существования. Например, при длительной убыточной работе ТЭЦ будет признана банкротом, и может прекратить свое существование или будет преобразована в котельную;

второй - при сравнительно более благоприятных внешних обстоятельствах ТЭЦ покидает зону комфорта, но остается в пределах своей области существования. В данной ситуации возникает необходимость нахождения (в т.ч. Регулятором) способа возвращения ТЭЦ в зону комфорта.

ТЭЦ может находиться в зоне комфорта, а ее деятельность признана экономически эффективной, если ее рентабельность составляет 10-20%.

Основным показателем экономической деятельности ТЭЦ и определяющим ее рентабельность является прибыль:

П р = (Q*T q +Э*Ц э)-(З п +З пер), (3)

где Q и Э - объемы и Т q Ц э - тариф и цена продаваемой соответственно тепловой и электрической энергии; З п, З пер - затраты соответственно постоянные и переменные.

Переменные затраты ТЭЦ в подавляющей массе состоят из расходов на топливо. Поэтому в целях упрощения, но без потери сущности нашего анализа, примем, что:

где Q отп, Э к, Q и - объемы отпущенной тепловой энергии из отборов турбин, электроэнергии в конденсационном режиме и тепловой энергии через РОУ или от пиковой водогрейной котельной (ПВК); b к, b q и - удельные расходы топлива отпущенной от ТЭЦ соответственно конденсационной электрической и тепловой (отпущенной через РОУ или от ПВК) энергии; Ц т - цена топлива.

Значение показателей прибыли, рентабельности существенно зависит не только от значений тарифов на электрическую и тепловую энергию, но и от того, по какой методике они формируются.

Решения Регулятора и их влияние на эффективность ТЭЦ

Рассмотрим решения Регулятора по отношению к ТЭЦ в свете их вышеизложенных особенностей и показателей эффективности, а также ответственности Регулятора за устойчивое (комфортное) состояние ТЭЦ. При этом для выявления результатов действий только Регулятора примем, что деятельность менеджмента, персонала ТЭЦ и Территориальной генерирующей компании (ТГК) осуществляется безошибочно.

1. Об удельных расходах, о делении топлива и о формировании тарифов на электрическую и тепловую энергию от ТЭЦ.

Для отражения энергетической эффективности, деления топлива и затрат, установления тарифов ТЭЦ в соответствии с действующим законодательством РФ, нормативно-правовыми актами Правительства РФ и федеральных органов исполнительной власти обязательными к использованию являются удельные расходы топлива на отпуск электроэнергии (Ь э) и тепловой энергии (Ь т).

В советское время для выигрышного сравнения энергетической эффективности электроэнергетической отрасли СССР с развитыми капиталистическими странами официально применялся «физический» метод деления общего расхода топлива на виды энергии, который и обеспечивал минимальные значения удельного расхода топлива на электроэнергию от ТЭЦ. Согласно этому методу принято всю экономию топлива за счет комбинированного производства относить на электрическую энергию. Этот метод прост и понятен всем специалистам.

«Физический» метод деления общего расхода топлива использовался для определения и анализа эффективности использования теплоты сжигаемого топлива, расчетов и установления тарифов на виды энергии от ТЭЦ в течение 50 лет (с 1946 по 1996 гг.).

Следует подчеркнуть, что «физический» метод обладает определенной долей условности, т.к. вопрос выделения доли топлива, использованного для получения того иного вида энергии в комбинированном производстве, сам по себе представляет сложную задачу. Использование данного метода проблематично при решении экономических задач ТЭЦ и энергосистем. Поэтому, начиная с IV Всесоюзного энергетического съезда в 1928 г, в результате более чем восьмидесятилетних дискуссий, учеными и практиками теплоэнергетики предложено более десятка методов распределения топлива на ТЭЦ. Понятно, что каждый метод имеет свои преимущества и недостатки, но, при этом, отсутствует научно-обоснованный критерий для выбора такого метода. Между величинами показателей, рассчитанными разными методами, имеются значительные расхождения. Так, для условной ТЭЦ с составом оборудования: три энергоблока Т-180-210-130 с пылеугольными котлами Е-670-140 и девять водогрейных пылеугольных котлов типа КВТК-100 выполнено шесть расчетов различными методами. Максимальные отклонения значений удельных расходов топлива на отпуск электрической и тепловой энергии получены между расчетами «эксергетическим» методом (учитывает работоспособность тепла отборного пара) и «физическим» методом, которые соответственно составляют +153% и -28% .

В условиях новейшего реформирования российского народного хозяйства проявилось несовершенство нормативной базы в области расчета и регулирования тарифов на электрическую и тепловую энергию, отпускаемую от ТЭЦ. Резкое снижение в начале 90-х гг. прошлого столетия объемов потребления тепловой энергии промышленностью на 30% повлияло на рост тарифов на тепловую энергию от ТЭЦ, которые оказались в ряде регионов выше тарифов котельных. Это привело к вводу промышленными предприятиями и отдельными муниципальными предприятиями новых котельных, в результате чего снижение отпуска тепла от ТЭЦ продолжилось. ТЭЦ стали терять конкурентоспособность на рынках тепла. Вследствие этого стала снижаться доля экономически эффективной выработки электрической энергии на базе теплового потребления.

В целях поддержания конкурентоспособности ТЭЦ Регулятор в лице Минтопэнерго РФ ввел в 1996 г. новую методику (РД 34.08.552-95), которая действует по настоящее время. Эту методику можно назвать «компромиссной». Она позволила понизить удельные расходы топлива ТЭЦ на тепловую энергию и увеличить на электрическую, приведя их к уровням, которые получаются при выработке того же количества энергии в раздельной схеме производства тепла и электроэнергии. В результате смены методики удельный расход топлива по всем ТЭЦ на тепловую энергию уменьшился на 18,5%, а на электрическую энергию вырос на 10,9%. Замедлились темпы падения отпуска тепла от ТЭЦ. Если за период с 1992 по 1996 гг. ежегодное уменьшение отпуска тепла от ТЭЦ равнялось 5%, то за период с 1996 по 2007 гг. оно составило 1,74%.

Однако новая методика не изменила главный порок ценообразования, которое целиком привязано к порядку деления топлива между производством обоих видов энергии в комбинированном едином цикле производства, не учитывает различную экономическую конъюнктуру спроса на рынках энергии и не создает возможности для гибкого поведения ТЭЦ в рамках такой конъюнктуры.

Таким образом, проигнорировано то, что комбинированное производство является единым технологическим, термодинамическим циклом, физически неразделимо, и только в нем экономически эффективное совместное производство обоих видов энергии жестко связано для каждого режима работы оборудования ТЭЦ. О необходимости отказа от дальнейших дискуссий и применения любых методов деления расходов топлива на ТЭЦ, отказа от использования их при тарифообразовании, от создания новых основ ценообразования на энергию, производимой на ТЭЦ, было указано в решении отраслевой научно-практической конференции «Вопросы формирования тарифов на электрическую и тепловую энергию, производимую на ТЭЦ» (март 2000 г.).

Для реализации решений указанной конференции авторы настоящей статьи подготовили комплект проектов по новому порядку формирования тарифов на энергию от ТЭЦ, который учитывал все произошедшие экономические изменения в окружающей среде и положение в ней самой ТЭЦ. Основы предложенного порядка были изложены в . Комплект проектов включал: «Методические указания по расчету тарифов на электрическую и тепловую энергию, производимую электрическими электростанциями в режиме комбинированной выработки»; «Методические указания по расчету расхода топлива на тепловых электростанциях с комбинированной выработкой электрической и тепловой энергии»; «Примеры расчетов тарифов и расходов топлива на ТЭЦ в соответствии с методическими указаниями». Был предложен ряд дополнений и изменений в нормативно-правовые акты Правительства, министерств и ведомств РФ, обеспечивающих возможность применения упомянутых методических указаний. К сожалению, эти проекты не нашли у Регулятора должного отклика в связи с подготовкой к переходу к свободному рынку электроэнергии, а также подготовкой проекта закона «О теплоснабжении».

2. О включении ТЭЦ в состав отрасли электроэнергетики.

Определено, что «электроэнергетика - отрасль экономики РФ, включающая комплекс экономических отношений, возникающий в процессе производства (в т.ч. производства в режиме комбинированной выработки электрической и тепловой энергии) и передачи электрической энергии...». В упомянутом комплексе нашли отражение лишь особенности участия на оптовом рынке электроэнергии и особенности оперативно-диспетчерского управления работой ТЭЦ, но не осуществлена увязка с экономическими отношениями при производстве и обороте тепловой энергии ТЭЦ на местном рынке тепловой энергии.

Федеральным законом от 26 марта 2003 г. № 36-ФЗ «Об особенностях функционирования электроэнергетики в переходный период» было предусмотрено следующее положение. Тепловые электростанции, являющиеся основными производителями тепловой энергии в регионе обслуживания и производящие электрическую энергию, не востребованную на рынке электрической энергии, в течение трех лет с момента окончания переходного периода реформирования электроэнергетики могут быть выведены из эксплуатации. А в случае отказа в выводе указанных мощностей одновременно принимается решение о необходимых мероприятиях по перепрофилированию таких электростанций в котельные. Отметим, что переходный период реформирования электроэнергетики завершился с запуском в 2011 г. долгосрочного рынка электрической мощности.

3. Об оптовом рынке электрической энергии и ТЭЦ.

Если при постоянных тарифах на электрическую и тепловую энергию для ТЭЦ главной задачей являлось исключение любых режимов работы, кроме комбинированной выработки энергии, то в условиях свободного ценообразования основным ориентиром становится прибыль.

Правила функционирования оптового рынка электроэнергии (ОРЭ), установленные постановлением Правительства РФ от 30 августа 2006 г. № 529, изменили принципы ценообразования у поставщиков электроэнергии на ОРЭ, обеспечив переход от регулирования тарифов (основу которых составляли принятые Регулятором затраты) к формированию рыночных цен на энергию. Претерпели изменения приоритеты, и у электростанций на первое место явно вышли экономические параметры (в частности - прибыль), сменив технические параметры (удельные топливные показатели, КПД).

Уровни тарифов на электрическую энергию, поставляемую электростанциями, в том числе ТЭЦ, на оптовый рынок, стали формироваться по утверждаемым государством правилам ОРЭ, которые оказались не увязаны с регулированием для ТЭЦ тарифов на тепловую энергию.

На ОРЭ для ТЭЦ стали характерными следующие ситуации. Первая - обусловленная большим спросом на энергию, загрузкой генераторов с высокой себестоимостью и, как следствие, приводящая к повышению стоимости энергии на рынке. При ценах выше себестоимости конденсационной выработки становится целесообразным производство электроэнергии на ТЭЦ в конденсационном цикле. Во второй ситуации, характерной для второй ценовой зоны, на оптовом рынке формируются низкие цены из-за использования в покрытии спроса преимущественно ГЭС с очень низкой себестоимостью. В этой ценовой зоне во многих точках поставки энергии низкие цены держатся месяцами. При этом себестоимость производства электроэнергии на ТЭЦ даже в комбинированном режиме выше цены на рынке и поэтому отпуск электроэнергии может приводить лишь к убыткам. В этих случаях наиболее выгодным с точки зрения прибыльности на ТЭЦ является режим отпуска тепловой энергии с частичным или полным переносом тепловой нагрузки на РОУ. Из-за необходимости выполнять принятые обязательства по поставкам электроэнергии на оптовый рынок, при серьезных отклонениях фактических температур наружного воздуха от прогнозных ТЭЦ вынуждены изменять объемы отпуска тепловой энергии, применяя неэффективные режимы работы оборудования.

Таким образом, ТЭЦ при работе на ОРЭ и на местный рынок тепла не обеспечивает свое первоначальное назначение - оптимальное совместное производство электрической и тепловой энергии при наименьших затратах топлива по сравнению с их раздельным производством. В борьбе за прибыльность ТЭЦ ведет режимы работы экономически не выгодные как для себя, компании, в состав которой она входит, так для потребителей и общества в целом.

Подчеркнем, что, несмотря на рост объема реализуемой по рыночным ценам электроэнергии на ОРЭ, удельные расходы топлива на отпуск электроэнергии и тепловой энергии ТЭЦ вместо требуемого (ожидаемого) уменьшения даже выросли и составили соответственно в 2006 г. - 334 г/кВт. ч и 143 кг/Гкал, а в 2008 г. - 336 г/кВт.ч и 144 кг/Гкал. В целях повышения конкурентоспособности на ОРЭ ТЭЦ в 2010 г начали стихийный возврат к физическому методу деления затрат при расчетах тарифов на тепловую энергию и при подаче ценовых заявок на рыночную цену. Это привело к удельным расходам топлива на отпуск электроэнергии и теплоэнергии - 329 г/кВт.ч и 152 кг/Гкал.

В результате действия всех вышеизложенных негативных регулятивных факторов КИТ на ТЭЦ России в период с 1992 по 2008 гг. уменьшился на 8,8% (с 0,57 до 0,52), а с 2006 г. - года запуска рынка электроэнергии - темпы снижения КИТ увеличились . Доля электроэнергии, вырабатываемой на ТЭЦ в режиме комбинированной выработки, снизилась за период с 1980 по 2008 гг. на 30%.

В соответствии с постановлением Правительства Российской Федерации от 27 декабря 2010 г. № 1172 и последующими нормативно-правовыми актами Правительства, министерств и ведомств РФ действуют новые правила работы оптового рынка электроэнергии и мощности. Наибольшие изменения в правилах работы ОРЭ связаны с прекращением правил работы оптового рынка переходного периода и введением нового порядка торговли мощностью. Отметим, что такие рынки существуют далеко не во всех странах. Примерами рынков без торговли мощностью являются рынки Великобритании и Nord Pool (в этом рынке участвуют Норвегия, Швеция, Финляндия, Дания, Германия, Эстония).

Мощность для торговли выбирается по результатам конкурентного отбора мощности (КОМ) на соответствующий год. По итогам КОМ в каждой из выделенных зон свободного перетока (ЗСП) - территорий, в которых отсутствуют ограничения по передаче энергии, и в которых определены с учетом специфики товара пониженные пороги доминирования в 20% (на других рынках - 35-50%), стоимость мощности определяется по самой высокой цене из отобранных заявок генерирующих компаний. При этом в КОМ не участвуют мощности с весьма высокой стоимостью, предусмотренной договорами на поставку мощности (ДПМ), которые подписали власти с собственниками компаний в обмен на их обязательства строить электростанции. Такая, с позволения сказать, «конкуренция» в ЗСП позволяет производителям электроэнергии (в случае с ТЭЦ из-за низкой рентабельности по изложенным выше причинам) идти на завышение стоимости мощности в заявках на КОМ. Поэтому Регулятор был вынужден ввести предельный уровень цен в большинстве ЗСП. По итогам КОМ с применением предельного уровня цен определяется единая (маржинальная) цена мощности для всех отобранных поставщиков. Эта цена соответствует максимальной из цен, указанных в отобранных на КОМ в этой ЗСП ценовых заявках поставщиков. Исходя из этой же цены рассчитывается стоимость мощности, приобретаемой покупателями в этой ЗСП по итогам КОМ. Так, при проведении отбора на 2011 г., ФАС России установила необходимость применения предельного уровня цен в 24 ЗСП из 27. Величины предельного уровня цены на мощность для КОМ на 2012 г. были установлены Правительством РФ отдельно для первой и второй ценовой зоны оптового рынка. В 24 ЗСП, в которых отбор проводился с применением предельного размера, цена КОМ сложилась равной предельному размеру цены на мощность.

Электростанции, не прошедшие отбор на КОМ согласно новым правилам ОРЭ, могут участвовать в торговле только электрической энергией и быть выведены из эксплуатации или же перейти в категорию «вынужденных генераторов». В эту категорию попадают объекты, которые нельзя остановить - например, от которых зависит теплоснабжение потребителей или стабильность работы всей энергосистемы. По итогам КОМ десятки ТЭЦ (в 2011 г. - 87 ТЭЦ) отнесены к «вынужденным генераторам», а для полусотни ТЭЦ установлены специальные высокие цены на мощность. Электрическая мощность указанных ТЭЦ составляет примерно треть от мощности всех тепловых электростанций в стране. Как было упомянуто выше в соответствии с положением Федерального закона от 26 марта 2003 г. № 36-ФЗ «Об особенностях функционирования электроэнергетики в переходный период. » эти электрические мощности после 2013 г. должны быть ликвидированы.

В итоге можно утверждать, что цели реформы электроэнергетики не достигнуты. На оптовом рынке в связи с отсутствием рыночных механизмов стимулирования инвестиции не осуществляются (за исключением договоров ДПМ), сохраняется монополизм, цена формируется не по законам спроса и предложения, а через КОМ с предельными ценами, т.е. не рыночным методом. ТЭЦ при работе на ОРЭ и местном рынке тепла не могут использовать технологически заложенные в них экономические преимущества, становятся убыточными и находятся на грани вывода из эксплуатации. При этом для восполнения вывода в значительных объемах мощностей ТЭЦ необходимые ресурсы отсутствуют. Демонтаж оборудования ТЭЦ и переоборудование их в котельные не выгодны как собственникам ТЭЦ, так и потребителям тепловой энергии и обществу в целом. Представители тепловой электроэнергетики в лице председателя наблюдательного совета «Совета производителей электроэнергии», председателя совета директоров «Энел ОГК-5», генерального директора E.On Russia Power (ОГК-4) после введения новых правил ОРЭ признали вложения инвесторов в российскую электроэнергетику ошибкой .

4. О регулятивных решениях по ТЭЦ.

Через 7 лет после введения в действие Федерального закона «Об электроэнергетике» был принят Этот закон наряду с основополагающими положениями о развитии и функционировании систем теплоснабжения определил приоритет комбинированной выработки электрической и тепловой энергии. Он также указал, что вывод из эксплуатации источников тепловой энергии, функционирующих в режиме комбинированной выработки, осуществляется с учетом положений законодательства Российской Федерации об электроэнергетике. ФЗ установил сущность, порядок, способы государственного регулирования тарифов на тепловую энергию, в том числе вырабатываемую в комбинированном режиме на ТЭЦ.

Во исполнение ФЗ которыми предусмотрено, что расходы на топливо, общие затраты и тарифы на тепловую энергию ТЭЦ определяются с использованием нормативов удельных расходов условного топлива на производство 1 Гкал тепловой энергии.

Данным Постановлением введены в действие «Правила распределения удельного расхода топлива при производстве электрической и тепловой энергии в режиме комбинированной выработки электрической и тепловой энергии». Правила установили, что расчет планируемых и фактических нормативов удельного расхода условного топлива осуществляется регулируемой организацией (ТЭЦ) с использованием метода распределения расхода топлива, установленного методическими указаниями по распределению удельного расхода условного топлива при производстве электрической и тепловой энергии в режиме комбинированной выработки электрической и тепловой энергии. Методические указания должны утверждаться Минэнерго России в целях тарифного регулирования в сфере теплоснабжения. Указанные нормативы удельного расхода условного топлива для каждого расчетного периода регулирования тарифов по используемому регулируемой организацией методу распределения расхода топлива должны утверждаться Регулятором. Однако методические указания Минэнерго России до настоящего времени не опубликованы.

Невозможно в логике раздельного регулирования тарифов на электрическую и тепловую энергию решить проблему долгосрочного регулирования с применением метода доходности инвестированного капитала. В разрабатываемых ФСТ методических указаниях предложены такие нормы, которые делают практическое применение метода невозможным и неинтересным для инвесторов.

Из изложенного видно, что законодательство о теплоснабжении не только не устранило, а сохранило действие факторов неэффективного использования ТЭЦ в системе тепло- и электроснабжения, указанных в настоящей статье.

Выводы и предложения

1. Действующие в отношении ТЭЦ законодательные и нормативно-правовые положения препятствуют приоритетному использованию наиболее эффективной технологии комбинированной выработки электрической и тепловой энергии и требуют изменений.

2. Практически все ТЭЦ ТГК, мелкие и средние электростанции и даже часть ТЭС оптовых генерирующих компаний (ОГК) физически выдают свою мощность непосредственно в распределительные электрические сети на территории субъектов Российской Федерации, но будучи выведенными на ОРЭ участвуют в виртуальной конкуренции. Ценообразование на ОРЭ и проекция цены с него на розничный рынок электроэнергии обеспечивают постоянный рост цен (тарифов) для конечных потребителей. Розничный рынок без электростанций на нем представляет собой не рынок, а всего лишь зону сбора денег гарантирующим поставщиком и другими энергосбытовыми компаниями в пользу всех участников «рыночного процесса».

■ не позволяет потребителям розничных рынков заключать прямые и выгодные для себя договора на поставку электрической и тепловой энергии от ТЭЦ;

■ не мотивирует (с выгодой для местного бизнеса) развитие местных, экономически более эффективных электростанций с выдачей энергии по более надежным схемам внешнего электроснабжения. Строительство малых и средних по мощности ТЭЦ, блок-ТЭЦ для потребителей экономически выгоднее, чем покупка электроэнергии на ОРЭ (экономия согласно расчетам составляет более 1 руб. на каждый кВт.ч) .

Да, рынок - всегда лучше, но только там, где это эффективно и где действительно присутствует конкуренция, а не искусственно поддерживаемая иллюзия. Конкуренция - это не цель, а лишь средство обеспечения стабильных низких цен. Причем потребителю не важно, каким образом эти цены образованы: в конкурентной борьбе или как результат грамотного государственного регулирования. Лучше усовершенствовать государственное регулирование и значительно увеличить в нем роль экспертизы со стороны потребителей, чем пытаться поддерживать иллюзию рынка и бороться с его несовершенством.

Предлагается вывести все ТЭЦ на розничный рынок электроэнергии и регулировать долгосрочные тарифы на тепловую и электрическую энергию, производимую в режиме комбинированной выработки.

В то же время, создание особых условий для реализации преимуществ комбинированного режима не означает искусственных преференций для тех ТЭЦ, оборудование которых морально устарело и физически изношено, тепловая экономичность низкая, а расходы на содержание непомерно высоки. Такие ТЭЦ окажутся вне зоны комфортных условий и будут выводиться из эксплуатации в любом случае.

3. Государственное регулирование, поведение ТГК при формировании и функционировании ТЭЦ должны учитывать изложенные выше особенности и принципы оценки эффективности их работы, а также обеспечивать систему работы ТЭЦ по схеме, представленной ниже, при любых моделях оптового и розничного рынков электроэнергии.

4. Первым регулируемым параметром доходности ТЭЦ должен являться тариф на тепловую энергию. Его значение должно обеспечивать полное покрытие всех затрат ТЭЦ, с максимально возможной по схеме теплоснабжения загрузкой по теплу на долгосрочную перспективу, т.е. при максимальном использовании ТЭЦ в режиме комбинированной выработки. Естественно для этого не нужно применение методов деления расходов топлива.

Для стимулирования ведения на ТЭЦ эффективного комбинированного производства энергии тариф на тепловую энергию должен быть выше минимального значения, обеспечивающего полное покрытие всех затрат ТЭЦ, но не превышать предельного значения, равного тарифу новой альтернативной котельной. В случае превышения предельного уровня тарифа на тепло может рассматриваться вопрос о выводе ТЭЦ из эксплуатации. Значение тарифа на тепловую энергию ТЭЦ (подлежащее утверждению) должно находиться между его минимальным и предельным значениями. При этом с одной стороны нужно сдержать рост тарифа для потребителя, а с другой - предоставить возможность для ТЭЦ предлагать потребителям более низкий тариф для удержания и увеличения потребления ими тепла. Увеличение тепловой нагрузки ТЭЦ повысит ее экономичность, что, в свою очередь, позволит предлагать потребителям более низкие тарифы (цены) на электрическую энергию.

5. Регулятор должен поддерживать ТЭЦ (ТГК) в формировании ими для долгосрочных договорных (прямых или через подразделение энергосбыта) отношений потребителей электроэнергии трех групп:

первая группа - комбинированные потребители тепловой и электрической энергии. Это потребители, подключенные к системе теплоснабжения от ТЭЦ и потребляющие электроэнергию. Отношение их электропотребления к теплопотреблению характеризует степень желательности для ТЭЦ, чем выше это отношение, тем выше привлекательность. В случае недостатка электроэнергии от ТЭЦ (ТГК) подразделение энергосбыта, которому необходимо предоставить право торговли на оптовом рынке, для потребителей этой группы может покупать недостающую энергию у других поставщиков (производителей);

вторая группа - крупные потребители электроэнергии (независимо от рынка их участия), желательность которых определяется стабильностью их электропотребления;

третья группа - потребители розничного рынка электроэнергии, не зависящие от ТЭЦ по теплоснабжению, которые потребляют электроэнергию в объемах, необходимых для приобретения совместно с потребителями двух первых групп полного объема производимой электроэнергии в режиме комбинированного производства на ТЭЦ.

В пределах тарифов на электрическую и тепловую энергию, рассчитанных на условия работы ТЭЦ в соответствии с принципами п. 4 данного раздела и утверждаемых Регулятором, ТГК (ТЭЦ) подготавливает для включения в долгосрочные договоры с потребителями подлежащие утверждению ценовые условия для потребителей:

■ первой группы - в виде тарифного меню, которое позволит удовлетворительно компенсировать расходы ТЭЦ, а потребителю минимизировать его совокупные расходы на тепло- и электропотребление;

■ второй группы - в качестве фиксированной или понятной формулы цены на гарантированные объемы потребления электроэнергии, что застрахует потребителя от возможных колебаний цены в долгосрочной перспективе;

■ третьей группы - тариф со скидкой по сравнению с тарифом, учитывающим утвержденные тарифы для ТЭЦ и тепловой сети. Это обеспечит потребителю страхование рисков от участия в оперативных сделках по покупке энергии. Источником для скидок может быть разница оплаты услуг компаниям «Энергосбыт» и сбытовому подразделению ТЭЦ (ТГК).

6. ТЭЦ (ТГК) должно иметь возможность получать дополнительную экономическую выгоду путем участия на оптовом и розничном рынках для покупки (а также для продажи) электроэнергии, выработанной в конденсационном режиме.

7. При предоставлении ТЭЦ условий, изложенных в п. 2-6 данного раздела, и не обеспечении рентабельной работы, по отношению к ним Регулятор должен предусмотреть условия, процедуры и сроки проведения мер, определяющие вопросы дальнейшего существования ТЭЦ.

Литература

1. Славина Н.А., Косматов Э.М., Барыкин Е.Е. О методах распределения затрат на ТЭЦ // Электрические станции. 2001. № 11.

2. Новости теплоснабжения. 2003. № 11.

3. Кожуховский И., Басов В. Эффективность когенерации и рынок электроэнергии // Энергорынок. 2011. № 1.

4. Перетолчина А., Дербилова Е. Приговор реформе//Ведомости. 2011. № 47.

5. Нигматулин Б. И. Атомная энергетика России. Реальность, вызовы и иллюзии // Энергорынок. 2012. № 3.

На тепловых электростанциях люди получают практически всю необходимую энергию на планете. Люди научились получать электрический ток иным образом, но все еще не принимают альтернативные варианты. Пусть им невыгодно использовать топливо, они не отказываются от него.

В чем секрет тепловых электростанций?

Тепловые электростанции неслучайно остаются незаменимыми. Их турбина вырабатывает энергию простейшим способом, используя горение. За счет этого удается минимизировать расходы на строительство, считающиеся полностью оправданными. Во всех странах мира находятся такие объекты, поэтому можно не удивляться распространению.

Принцип работы тепловых электростанций построен на сжигании огромных объемов топлива. В результате этого появляется электроэнергия, которая сначала аккумулируется, а потом распространяется по определенным регионам. Схемы тепловых электростанций почти остаются постоянными.

Какое топливо используется на станции?

Каждая станция использует отдельное топливо. Оно специально поставляется, чтобы не нарушался рабочий процесс. Этот момент остается одним из проблематичных, так как появляются транспортные расходы. Какие виды использует оборудование?

  • Уголь;
  • Горючие сланцы;
  • Торф;
  • Мазут;
  • Природный газ.

Тепловые схемы тепловых электростанций строятся на определенном виде топлива. Причем в них вносятся незначительные изменения, обеспечивающие максимальный коэффициент полезного действия. Если их не сделать, основной расход будет чрезмерным, поэтому не оправдает полученный электрический ток.

Типы тепловых электростанций

Типы тепловых электростанций - важный вопрос. Ответ на него расскажет, каким образом появляется необходимая энергия. Сегодня постепенно вносятся серьезные изменения, где главным источником окажутся альтернативные виды, но пока их применение остается нецелесообразным.

  1. Конденсационные (КЭС);
  2. Теплоэлектроцентрали (ТЭЦ);
  3. Государственные районные электростанции (ГРЭС).

Электростанция ТЭС потребует подробного описания. Виды различны, поэтому только рассмотрение объяснит, почему осуществляется строительство такого масштаба.

Конденсационные (КЭС)

Виды тепловых электростанций начинаются с конденсационных. Такие ТЭЦ применяются исключительно для выработки электроэнергии. Чаще всего она аккумулируется, сразу не распространяясь. Конденсационный метод обеспечивает максимальный КПД, поэтому подобные принципы считаются оптимальными. Сегодня во всех странах выделяют отдельных объекты крупного масштаба, обеспечивающие обширные регионы.

Постепенно появляются атомные установки, заменяющие традиционное топливо. Только замена остается дорогостоящим и длительным процессом, так как работа на органическом топливе отличается от иных способов. Причем отключение ни одной станции невозможно, ведь в таких ситуациях целые области остаются без ценной электроэнергии.

Теплоэлектроцентрали (ТЭЦ)

ТЭЦ используются сразу для нескольких целей. В первую очередь они используются для получения ценной электроэнергии, но сжигание топлива также остается полезным для выработки тепла. За счет этого теплофикационные электростанции продолжают применяться на практике.


Важной особенностью является том, что такие тепловые электростанции виды другие превосходят относительно небольшой мощностью. Они обеспечивают отдельные районы, поэтому нет необходимости в объемных поставках. Практика показывает, насколько выгодно такое решение из-за прокладки дополнительных линий электропередач. Принцип работы современной ТЭС является ненужной только из-за экологии.

Государственные районные электростанции

Общие сведения о современных тепловых электростанциях не отмечают ГРЭС. Постепенно они остаются на заднем плане, теряя свою актуальность. Хотя государственные районные электростанции остаются полезными с точки зрения объемов выработки энергии.

Разные виды тепловых электростанций дают поддержку обширным регионам, но все равно их мощность недостаточна. Во времена СССР осуществлялись крупномасштабные проекты, которые сейчас закрываются. Причиной стало нецелесообразное использование топлива. Хотя их замена остается проблематичной, так как преимущества и недостатки современных ТЭС в первую очередь отмечают большие объемы энергии.

Какие электростанции являются тепловыми? Их принцип построен на сжигании топлива. Они остаются незаменимыми, хотя активно ведутся подсчеты по равнозначной замене. Тепловые электростанции преимущества и недостатки продолжают подтверждать на практике. Из-за чего их работа остается необходимой.

Проведём экскурсию по Чебоксарской ТЭЦ-2, посмотрим, как электричество и тепло вырабатываются:

Напомню, кстати, что труба - самое высокое промышленное сооружение в Чебоксарах. Аж 250 метров!

Начнём с общих вопросов, к которым относится в первую очередь безопасность.
Разумеется, ТЭЦ, как и ГЭС, предприятие режимное, и просто так туда не пускают.
А если уж пустили, хоть даже на экскурсию, то инструктаж по технике безопасности пройти всё равно придётся:

Ну, нам это не в диковинку (как и сама ТЭЦ не в диковинку, я работал там лет 30 назад;)).
Да, ещё одно жёсткое предупреждение, не могу пройти мимо:

Технология

Главным рабочим веществом на всех тепловых электростанциях является, как ни странно, вода.
Потому что она легко превращается в пар и обратно.
Технология у всех одинакова: надо получить пар, который будет вращать турбину. На оси турбины помещается генератор.
В атомных электростанциях вода разогревается за счёт выделения тепла при распаде радиоактивного топлива.
А в тепловых - за счёт сжигания газа, мазута и даже, до недавних пор, угля.

Куда девать отработанный пар? Однако, обратно в воду и снова в котёл!
А куда девать тепло отработанного пара? Да на подогрев воды, поступающей в котёл - для повышения кпд всей установки в целом.
И на подогрев воды в теплосети и водопроводе (горячая вода)!
Так что в отопительный сезон из тепловой станции извлекается двойная польза - электричество и тепло. Соответственно, такое комбинированное производство и называется ТЭЦ (теплоэлектроцентраль).

Но летом всё тепло израсходовать с пользой не удаётся, поэтому пар, вышедший из турбины, охлаждается, превращаясь в воду, в градирнях, после чего вода возвращается в замкнутый производственный цикл. А в тёплых бассейнах градирен ещё и рыбу разводят;)

Чтобы не изнашивались теплосети и котёл, вода проходит специальную подготовку в химическом цехе:

А по всему замкнутому кругу воду гоняют циркуляционные насосы:

Наши котлы могут работать как на газе (жёлтые трубопроводы), так и на мазуте (чёрные). С 1994 работают на газе. Да, котлов у нас 5 штук!
Для горения в горелки необходима подача воздуха (синие трубопроводы).
Вода кипит, и пар (паропроводы красного цвета) проходит через специальные теплообменники - пароперегреватели, которые повышают температуру пара до 565 градусов, а давление, соответственно, до 130 атмосфер. Это вам не скороварка на кухне! Одна маленькая дырочка в паропроводе обернётся большой аварией; тонкая струя перегретого пара режет металл, как масло!

И вот такой пар уже подаётся на турбины (в больших станциях несколько котлов могут работать на общий паровой коллектор, от которого питаются несколько турбин).

В котельном цехе всегда шумно, потому что горение и кипение - весьма бурные процессы.
А сами котлы (ТГМЕ-464) представляют собой грандиозные сооружения высотой с двадцатиэтажный дом, и показать их целиком можно только на панораме из множества кадров:

Ещё один ракурс на подвал:

Пульт управления котла выглядит так:

На дальней стене располагается мнемосхема всего техпроцесса с лампочками, индицирующими состояние задвижек, классические приборы с самописцами на бумажной ленте, табло сигнализации и другие индикаторы.
А на самом пульте классические кнопки и ключи соседствуют с компьютерным дисплеем, где крутится система управления (SCADA). Здесь же есть самые ответственные выключатели, защищённые красными кожухами: "Останов котла" и "Главная паровая задвижка" (ГПЗ):

Турбины

Турбин у нас 4.
Они имеют очень сложную конструкцию, чтобы не пропустить ни малейшего кусочка кинетической энергии перегретого пара.
Но снаружи ничего не видно - всё закрыто глухим кожухом:

Серьёзный защитный кожух необходим - турбина вращается с высокой скоростью 3000 оборотов в минуту. Да ещё по ней проходит перегретый пар (выше говорил, как он опасен!). А паропроводов вокруг турбины множество:

В этих теплообменниках отработанным паром подогревается сетевая вода:

Кстати, на фото у меня самая старая турбина ТЭЦ-2, так что не удивляйтесь брутальному виду устройств, которые будут показаны ниже:

Вот это механизм управления турбиной (МУТ), который регулирует подачу пара и, соответственно, управляет нагрузкой. Его раньше крутили вручную:

А это Стопорный клапан (его надо долго вручную взводить после того, как он сработал):

Малые турбины состоят из одного так называемого цилиндра (набора лопастей), средние - из двух, большие - из трёх (цилиндры высокого, среднего и низкого давления).
С каждого цилиндра пар уходит в промежуточные отборы и направляется в теплообменники - подогреватели воды:

А в хвосте турбины должен быть вакуум - чем он лучше, тем выше кпд турбины:

Вакуум образуется за счёт конденсации остатков пара в конденсационной установке.
Вот мы и прошлись по всему пути воды на ТЭЦ. Обратите внимание также на ту часть пара, которая идёт на подогрев сетевой воды для потребителя (ПСГ):

Ещё один вид с кучей контрольных точек. Не забываем, что контролировать на турбине необходимо кучу давлений и температур не только пара, но и масла в подшипниках каждой её части:

Да, а вот и пульт. Он обычно находится в той же комнате, что и у котлов. Несмотря на то, что сами котлы и турбины стоят в разных помещениях, управление котлотурбинным цехом нельзя разделять на отдельные кусочки - слишком всё связано перегретым паром!

На пульте мы видим пару средних турбин с двумя цилиндрами, кстати.

Автоматизация

В отличие от , процессы на ТЭЦ более быстрые и ответственные (кстати, все помнят слышный во всех краях города громкий шум, похожий на самолётный? Так это изредка срабатывает паровой клапан, стравливая чрезмерное давление пара. Представьте, как это слышится вблизи!).
Поэтому автоматизация здесь пока запаздывает и в основном ограничивается сбором данных. А на пультах управления мы видим сборную солянку различных SCADA и промышленных контроллеров, занимающихся локальным регулированием. Но процесс идёт!

Электричество

Ещё раз посмотрим общий вид турбинного цеха:

Обратите внимание, слева под жёлтым кожухом - электрические генераторы.
Что происходит с электричеством дальше?
Оно отдаётся в федеральные сети через ряд распределительных устройств:

Электрический цех - очень непростое место. Достаточно взглянуть на панораму пульта управления:

Релейная защита и автоматика - наше всё!

На этом обзорную экскурсию можно завершить и всё-таки сказать пару слов про насущные проблемы.

Тепло и коммунальные технологии

Итак, мы выяснили, что ТЭЦ даёт электричество и тепло. И то, и другое, разумеется, поставляется потребителям. Теперь нас, главным образом, будет интересовать тепло.
После перестройки, приватизации и разделения всей единой советской промышленности на отдельные кусочки во многих местах получилось так, что электростанции остались в ведомстве Чубайса, а городские теплосети стали муниципальными. И на них образовался посредник, который берёт деньги за транспортировку тепла. А как эти деньги тратятся на ежегодный ремонт изношенных на 70% теплосетей, вряд ли нужно рассказывать.

Так вот, из-за многомиллионных долгов посредника "НОВЭК" в Новочебоксарске ТГК-5 уже перешла на прямые договора с потребителями.
В Чебоксарах пока этого нет. Более того, чебоксарские «Коммунальные технологии» на сегодня проект развития своих котельных и теплосетей аж на 38 миллиардов (ТГК-5 справилась бы всего за три).

Все эти миллиарды так или иначе будут включены в тарифы на тепло, которые устанавливает городская администрация "из соображений социальной справедливости". Между тем, сейчас себестоимость тепла, вырабатываемого ТЭЦ-2, в 1.5 раза меньше, чем на котельных КТ. И такое положение должно сохраниться и в будущем, потому что чем крупнее электростанция, тем она эффективнее (в частности, меньше эксплуатационных затрат + окупаемость тепла за счёт производства электроэнергии).

А что с точки зрения экологии?
Безусловно, одна большая ТЭЦ с высокой трубой лучше в экологическом плане, чем десяток мелких котельных с маленькими трубами, дым из которых практически останется в городе.
Самым же плохим в смысле экологии является ныне популярное индивидуальное отопление.
Маленькие домашние котлы не обеспечивают такой полноты сгорания топлива, как большие ТЭЦ, да и все выхлопные газы остаются не просто в городе, а буквально над окнами.
Кроме того, мало кто задумывается о повышенной опасности дополнительного газового оборудования, стоящего в каждой квартире.

Какой выход?
Во многих странах при центральном отоплении используются поквартирные регуляторы, которые позволяют экономнее потреблять тепло.
К сожалению, при нынешних аппетитах посредников и изношенности теплосетей преимущества центрального отопления сходят на нет. Но всё-таки, с глобальной точки зрения, индивидуальное отопление более уместно в коттеджах.

Другие посты о промышленности:

Тепловые электростанции могут быть с паровыми и газовыми турбинами, с двигателями внутреннего сгорания. Наиболее распространены тепловые станции с паровыми турбинами, которые в свою очередь подразделяются на: конденсационные (КЭС) — весь пар в которых, за исключением небольших отборов для подогрева питательной воды, используется для вращения турбины, выработки электрической энергии;теплофикационные электростанции - теплоэлектроцентрали (ТЭЦ), являющиеся источником питания потребителей электрической и тепловой энергии и располагающиеся в районе их потребления.

Конденсационные электростанции

Конденсационные электростанции часто называют государственными районными электрическими станциями (ГРЭС). КЭС в основном располагаются вблизи районов добычи топлива или водоемов, используемых для охлаждения и конденсации пара, отработавшего в турбинах.

Характерные особенности конденсационных электрических станции

  1. в большинстве своем значительная удаленность от потребителей электрической энергии, что обуславливает необходимость передавать электроэнергию в основном на напряжениях 110-750 кВ;
  2. блочный принцип построения станции, обеспечивающий значительные технико-экономические преимущества, заключающиеся в увеличении надежности работы и облегчении эксплуатации, в снижении объема строительных и монтажных работ.
  3. Механизмы и установки, обеспечивающие нормальное функционирование станции, составляют систему ее .

КЭС могут работать на твердом (уголь, торф), жидком (мазут, нефть) топливе или газе.

Топливоподача и приготовление твердого топлива заключается в транспортировке его из складов в систему топливоприготовления. В этой системе топливо доводится до пылевидного состояния с целью дальнейшего вдувания его к горелкам топки котла. Для поддержания процесса горения специальным вентилятором в топку нагнетается воздух, подогретый отходящими газами, которые отсасываются из топки дымососом.

Жидкое топливо подается к горелкам непосредственно со склада в подогретом виде специальными насосами.


Подготовка газового топлива состоит в основном в регулировании давления газа перед сжиганием. Газ от месторождения или хранилища транспортируется по газопроводу к газораспределительному пункту (ГРП) станции. На ГРП осуществляется распределение газа и регулирование его параметров.

Процессы в пароводяном контуре

Основной пароводяного контур осуществляет следующие процессы:

  1. Горение топлива в топке сопровождается выделением тепла, которое нагревает воду, протекающую в трубах котла.
  2. Вода превращается в пар с давлением 13…25 МПа при температуре 540..560 °С.
  3. Пар, полученный в котле, подается в турбину, где совершает механическую работу - вращает вал турбины. Вследствие этого вращается и ротор генератора, находящийся на общем с турбиной валу.
  4. Отработанный в турбине пар с давлением 0,003…0,005 МПа при температуре 120…140°С поступаетв конденсатор, где превращается в воду, которая откачивается в деаэратор.
  5. В деаэраторе происходит удаление растворенных газов, и прежде всего кислорода, опасного ввиду своей коррозийной активности.Система циркуляционного водоснабжения обеспечивает охлаждение пара в конденсаторе водой из внешнего источника (водоема, реки, артезианской скважины). Охлажденная вода, имеющая на выходе из конденсатора температуру, не превышающую 25…36 °С, сбрасывается в систему водоснабжения.

Интересное видео о работе ТЭЦ можно посмотреть ниже:

Для компенсации потерь пара в основную пароводяную систему насосом подается подпиточная вода, предварительно прошедшая химическую очистку.

Следует отметить, что для нормальной работы пароводяных установок, особенно со сверх критическими параметрами пара, важное значение имеет качество воды, подаваемой в котел, поэтому турбинный конденсат пропускается через систему фильтров обессоливания. Система водоподготовки предназначена для очистки подпиточной и конденсатной воды, удаления из нее растворенных газов.

На станциях, использующих твердое топливо, продукты сгорания в виде шлака и золы удаляются из топки котлов специальной системой шлака- и золоудаления, оборудованной специальными насосами.

При сжигании газа и мазута такой системы не требуется.

На КЭС имеют место значительные потери энергии. Особенно велики потери тепла в конденсаторе (до 40..50 % общего количества тепла, выделяемого в топке), а также с отходящими газами (до 10 %). Коэффициент полезного действия современных КЭС с высокими параметрами давления и температуры пара достигает 42 %.

Электрическая часть КЭС представляет совокупность основного электрооборудования (генераторов, ) и электрооборудования собственных нужд, в том числе сборных шин, коммутационной и другой аппаратуры со всеми выполненными между ними соединениями.

Генераторы станции соединяются в блоки с повышающими трансформаторами без каких-либо аппаратов между ними.

В связи с этим на КЭС не сооружается распределительное устройство генераторного напряжения.

Распределительные устройства на 110-750 кВ в зависимости от количества присоединений, напряжения, передаваемой мощности и требуемого уровня надежности выполняются по типовым схемам электрических соединений. Поперечные связи между блоками имеют место только в распределительных устройствах высшего или в энергосистеме, а также по топливу, воде и пару.

В связи с этим каждый энергоблок можно рассматривать как отдельную автономную станцию.

Для обеспечения электроэнергией собственных нужд станции выполняются отпайки от генераторов каждого блока. Для питания мощных электродвигателей (200 кВт и более) используется генераторное напряжение, для питания двигателей меньшей мощности и осветительных установок - система 380/220 В. Электрические схемы собственных нужд станции могут быть различными.

Ещё одно интересное видео о работе ТЭЦ изнутри:

Теплоэлектроцентрали

Теплоэлектроцентрали, являясь источниками комбинированной выработки электрической и тепловой энергии, имеют значительно больший, чем КЭС, (до 75 %). Это объясняется тем. что часть отработавшего в турбинах пара используется для нужд промышленного производства (технологии), отопления, горячего водоснабжения.

Этот пар или непосредственно поступает для производственных и бытовых нужд или частично используется для предварительного подогрева воды в специальных бойлерах (подогревателях), из которых вода через теплофикационную сеть направляется потребителям тепловой энергии.

Основное отличие технологии производства энергии на в сравнении с КЭС состоит в специфике пароводяного контура. Обеспечивающего промежуточные отборы пара турбины, а также в способе выдачи энергии, в соответствии с которым основная часть ее распределяется на генераторном напряжении через генераторное распределительное устройство (ГРУ).

Связь с другими станциями энергосистемы выполняется на повышенном напряжении через повышающие трансформаторы. При ремонте или аварийном отключении одного генератора недостающая мощность может быть передана из энергосистемы через эти же трансформаторы.

Для увеличения надежности работы ТЭЦ предусматривается секционирование сборных шин.

Так, при аварии на шинах и последующем ремонте одной из секций вторая секция остается в работе и обеспечивает питание потребителей по оставшимся под напряжениям линиям.

По таким схемам сооружаются промышленные с генераторами до 60 мВт, предназначенные для питания местной нагрузки в радиусе 10 км.

На крупных современных применяются генераторы мощностью до 250 мВт при общей мощности станции 500-2500 мВт.

Такие сооружаются вне черты города и электроэнергия передается на напряжении 35-220 кВ, ГРУ не предусматривается, все генераторы соединяются в блоки с повышающими трансформаторами. При необходимости обеспечить питание небольшой местной нагрузки вблизи блочной предусматриваются отпайки от блоков между генератором и трансформатором. Возможны и комбинированные схемы станции, при которых на имеется ГРУ и несколько генераторов соединены по блочным схемам.



Поделиться