Теория массового обслуживания вероятность. Модели систем массового обслуживания

Достаточно часто при анализе экономических систем приходится решать так называемые задачи массового обслуживания, возникающие в следующей ситуации. Пусть анализируется система технического обслуживания автомобилей, состоящая из некоторого количества станций различной мощности. На каждой из станций (элемента системы) могут возникать, по крайней мере, две типичные ситуации:

  1. число заявок слишком велико для данной станции, возникают очереди, и за задержки в обслуживании приходится платить;
  2. на станцию поступает слишком мало заявок и теперь уже приходится учитывать потери, вызванные простоем станции.

Ясно, что цель системного анализа в данном случае заключается в определении некоторого соотношения между потерями доходов по причине очередей и потерями по причине простоя станций.

Теория массового обслуживания специальный раздел теории систем – это раздел теории вероятности, в котором изучаются системы массового обслуживания с помощью математических моделей.

Система массового обслуживания (СМО) – это модель, включающая в себя: 1) случайный поток требований, вызовов или клиентов, нуждающихся в обслуживании; 2) алгоритм осуществления этого обслуживания; 3) каналы (приборы) для обслуживания.

Примерами СМО являются кассы, АЗС, аэропорты, продавцы, парикмахеры, врачи, телефонные станции и другие объекты, в которых осуществляется обслуживание тех или иных заявок.

Задача теории массового обслуживания состоит в выработке рекомендаций по рациональному построению СМО и рациональной организации их работы с целью обеспечения высокой эффективности обслуживания при оптимальных затратах.

Главная особенность задач данного класса – явная зависимость результатов анализ и получаемых рекомендаций от двух внешних факторов: частоты поступления и сложности заказов (а значит и времени их исполнения).

Предмет теории массового обслуживания – это установление зависимости между характером потока заявок, производительностью отдельного канала обслуживания, числом каналов и эффективностью обслуживания.

В качестве характеристик СМО рассматриваются:

  • средний процент заявок, получающих отказ и покидающих систему не обслуженными;
  • среднее время «простоя» отдельных каналов и системы в целом;
  • среднее время ожидания в очереди;
  • вероятность того, что поступившая заявка будет немедленно обслужена;
  • закон распределения длины очереди и другие.

Добавим, что заявки (требования) поступают в СМО случайным образом (в случайные моменты времени), с точками сгущения и разрежения. Время обслуживания каждого требования также является случайным, после чего канал обслуживания освобождается и готов к выполнению следующего требования. Каждая СМО, в зависимости от числа каналов и их производительности, обладает некоторой пропускной способностью. Пропускная способность СМО может быть абсолютной (среднее число заявок, обслуживаемых в единицу времени) и относительной (среднее отношение числа обслуженных заявок к числу поданных).

3.1 Модели систем массового обслуживания.

Каждую СМО может характеризовать выражением: (a / b / c) : (d / e / f) , где

a - распределение входного потока заявок;

b - распределение выходного потока заявок;

c – конфигурация обслуживающего механизма;

d – дисциплина очереди;

e – блок ожидания;

f – емкость источника.

Теперь рассмотрим подробнее каждую характеристику.

Входной поток заявок – количество поступивших в систему заявок. Характеризуется интенсивностью входного потока l .

Выходной поток заявок – количество обслуженных системой заявок. Характеризуется интенсивностью выходного потока m .

Конфигурация системы подразумевает общее число каналов и узлов обслуживания. СМО может содержать:

  1. один канал обслуживания (одна взлетно-посадочная полоса, один продавец);
  2. один канал обслуживания, включающий несколько последовательных узлов (столовая, поликлиника, конвейер);
  3. несколько однотипных каналов обслуживания, соединенных параллельно (АЗС, справочная служба, вокзал).

Таким образом, можно выделить одно- и многоканальные СМО.

С другой стороны, если все каналы обслуживания в СМО заняты, то подошедшая заявка может остаться в очереди, а может покинуть систему (например, сбербанк и телефонная станция). В этом случае мы говорим о системах с очередью (ожиданием) и о системах с отказами.

Очередь – это совокупность заявок, поступивших в систему для обслуживания и ожидающих обслуживания. Очередь характеризуется длиной очереди и ее дисциплиной.

Дисциплина очереди – это правило обслуживания заявок из очереди. К основным типам очереди можно отнести следующие:

  1. ПЕРППО (первым пришел – первым обслуживаешься) – наиболее распространенный тип;
  2. ПОСППО (последним пришел – первым обслуживаешься);
  3. СОЗ (случайный отбор заявок) – из банка данных.
  4. ПР – обслуживание с приоритетом.

Длина очереди может быть

  • неограничена – тогда говорят о системе с чистым ожиданием;
  • равна нулю – тогда говорят о системе с отказами;
  • ограничена по длине (система смешанного типа).

Блок ожидания – «вместимость» системы – общее число заявок, находящихся в системе (в очереди и на обслуживании). Таким образом, е=с+ d .

Емкость источника , генерирующего заявки на обслуживание – это максимальное число заявок, которые могут поступить в СМО. Например, в аэропорту емкость источника ограничена количеством всех существующих самолетов, а емкость источника телефонной станции равна количеству жителей Земли, т.е. ее можно считать неограниченной.

Количество моделей СМО соответствует числу всевозможных сочетаний этих компонент.

3.2 Входной поток требований.

С каждым отрезком времени [a , a + T ], свяжем случайную величину Х , равную числу требований, поступивших в систему за время Т .

Поток требований называется стационарным , если закон распределения не зависит от начальной точки промежутка а , а зависит только от длины данного промежутка Т . Например, поток заявок на телефонную станцию в течение суток (Т =24 часа) нельзя считать стационарным, а вот с 13 до 14 часов (Т =60 минут) – можно.

Поток называется без последействия , если предыстория потока не влияет на поступления требований в будущем, т.е. требования не зависят друг от друга.

Поток называется ординарным , если за очень короткий промежуток времени в систему может поступить не более одного требования. Например, поток в парикмахерскую – ординарный, а в ЗАГС – нет. Но, если в качестве случайной величины Х рассматривать пары заявок, поступающих в ЗАГС, то такой поток будет ординарным (т.е. иногда неординарный поток можно свести к ординарному).

Поток называется простейшим , если он стационарный, без последействия и ординарный.

Основная теорема. Если поток – простейший, то с.в. Х [ a . a + T ] распределена по закону Пуассона, т.е. .

Следствие 1 . Простейший поток также называется пуассоновским.

Следствие 2 . M (X )= M [ a , a + T ] )= l T , т.е. за время Т l T заявок. Следовательно, за одну единицу времени в систему поступает в среднем l заявок. Эта величина и называется интенсивностью входного потока.

Рассмотрим ПРИМЕР.

В ателье поступает в среднем 3 заявки в день. Считая поток простейшим, найти вероятность того, что в течение двух ближайших дней число заявок будет не менее 5.

Решение.

По условию задачи, l =3, Т =2 дня, входной поток пуассоновский, n ³5. при решении удобно ввести противоположное событие, состоящее в том, что за время Т поступит меньше 5 заявок. Следовательно, по формуле Пуассона, получим

^

3.3 Состояние системы. Матрица и граф переходов.

В случайный момент времени СМО переходит из одного состояния в другое: меняется число занятых каналов, число заявок и очереди и пр. Таким образом, СМО с n каналами и длиной очереди, равной m , может находиться в одном из следующих состояний:

Е 0 – все каналы свободны;

Е 1 – занят один канал;

Е n – заняты все каналы;

Е n +1 – заняты все каналы и одна заявка в очереди;

Е n + m – заняты все каналы и все места в очереди.

Аналогичная система с отказами может находиться в состояниях E 0 E n .

Для СМО с чистым ожиданием существует бесконечное множество состояний. Таким образом, состояниеE n СМО в момент времени t – это количество n заявок (требований), находящихся в системе в данный момент времени, т.е. n = n (t ) – случайная величина, E n (t ) – исходы этой случайной величины, а P n (t ) – вероятность пребывания системы в состоянии E n .

С состоянием системы мы уже знакомы. Отметим, что не все состояния системы равнозначны. Состояние системы называется источником , если система может выйти из этого состояния, но не может в него вернуться. Состояние системы называется изолированным, если система не может выйти из этого состояния или в него войти.

Для наглядности изображения состояний системы используют схемы (так называемые графы переходов), в которых стрелки указывают возможные переходы системы из одного состояния в другое, а также вероятности таких переходов.

Рисунок 3.1 – граф переходов

Сост. Е 0 Е 1 Е 2
Е 0 Р 0,0 Р 0,1 Р 0,2
Е 1 Р 1,0 Р 1,1 Р 1,2
Е 2 Р 2,0 Р 2,2 Р 2,2

Также иногда удобно воспользоваться матрицей переходов. При этом первый столбец означает исходные состояния системы (текущие), а далее приведены вероятности перехода из этих состояний в другие.

Так как система обязательно перейдет из одного

состояния в другое, то сумма вероятностей в каждой строке всегда равна единице.

3.4 Одноканальные СМО.

3.4.1 Одноканальные СМО с отказами.

Будем рассматривать системы, удовлетворяющие требованиям:

(Р/Е/1):(–/1/¥) . Предположим также, что время обслуживания требования не зависит от количества требований, поступивших в систему. Здесь и далее «Р» означает, что входной поток распределен по закону Пуассона, т.е. простейший, «Е» означает, что выходной поток распределен по экспоненциальному закону. Также здесь и далее основные формулы даются без доказательства.

Для такой системы возможно два состояния: Е 0 – система свободна и Е 1 – система занята. Составим матрицу переходов. Возьмем D t – бесконечно малый промежуток времени. Пусть событие А состоит в том, что в систему за время D t поступило одно требование. Событие В состоит в том, что за время D t обслужено одно требование. Событие А i , k – за время D t система перейдет из состояния E i в состояние E k . Так как l – интенсивность входного потока, то за время D t в систему в среднем поступает l*D t требований. То есть, вероятность поступления одного требования Р(А)= l* D t , а вероятность противоположного событияР(Ā)=1- l*D t . Р(В)= F (D t )= P (b < D t )=1- e - m D t = m D t – вероятность обслуживания заявки за время D t . Тогда А 00 – заявка не поступит или поступит, но будет обслужена. А 00 =Ā+А* В. Р 00 =1- l*D t . (мы учли, что(D t ) 2 – бесконечно малая величина)

А 01 – заявка поступит, но не будет обслужена. А 01 =А* . Р 01 = l*D t .

А 10 – заявка будет обслужена и новой не будет. А 10 =В* Ā. Р 10 = m*D t .

А 11 – заявка не будет обслужена или поступит новая, которая еще не обслужена. А 11 =* А. Р 01 =1- m*D t .

Таким образом, получим матрицу переходов:

Сост. Е 0 Е 1
Е 0 1-l* Dt l* Dt
Е 1 m* Dt 1-m* Dt

Вероятность простоя и отказа системы.

Найдем теперь вероятность нахождения системы в состоянии Е 0 в любой момент времени t (т.е. р 0 ( t ) ). График функции
изображен на рисунке 3.2.

Асимптотой графика является прямая
.

Очевидно, начиная с некоторого момента t ,


1

Рисунок 3.2

Окончательно получим, что
и
, где р 1 (t ) – вероятность того, что в момент времени t система занята (т.е. находится в состоянии Е 1 ).

Очевидно, что в начале работы СМО протекающий процесс не будет стационарным: это будет «переходный», нестационарный режим. Спустя некоторое время (которое зависит от интенсивностей входного и выходного потока) этот процесс затухнет и система перейдет в стационарный, установившийся режим работы, и вероятностные характеристики уже не будут зависеть от времени.

Стационарный режим работы и коэффициент загрузки системы.

Если вероятность нахождения системы в состоянии Е k , т.е. Р k (t ), не зависит от времени t , то говорят, что в СМО установился стационарный режим работы. При этом величина
называется коэффициентом загрузки системы (или приведенной плотностью потока заявок). Тогда для вероятностейр 0 (t ) ир 1 (t ) получаем следующие формулы:
,
. Можно также сделать вывод:чем больше коэффициент загрузки системы, тем больше вероятность отказа системы (т.е. вероятность того, что система занята).

На автомойке один блок для обслуживания. Автомобили прибывают по пуассоновскому распределению с интенсивностью 5 авто/час. Среднее время обслуживания одной машины – 10 минут. Найти вероятность того, что подъехавший автомобиль найдет систему занятой, если СМО работает в стационарном режиме.

Решение. По условию задачи, l =5, m y =5/6. Надо найти вероятность р 1 – вероятность отказа системы.
.

3.4.2 Одноканальные СМО с неограниченной длиной очереди.

Будем рассматривать системы, удовлетворяющие требованиям: (Р/Е/1):(d/¥/¥). Система может находиться в одном из состояний E 0 , …, E k , … Анализ показывает, что через некоторое время такая система начинает работать в стационарном режиме, если интенсивность выходного потока превышает интенсивность входного потока (т.е. коэффициент загрузки системы меньше единицы). Учитывая это условие, получим систему уравнений

решая которую найдем, что . Таким образом, при условии, что y <1, получим
Окончательно,
и
– вероятность нахождения СМО в состоянии Е k в случайный момент времени.

Средние характеристики системы.

За счет неравномерного поступления требований в систему и колебания времени обслуживания, в системе образуется очередь. Для такой системы можно исследовать:

  • n – количество требований, находящихся в СМО (в очереди и на обслуживании);
  • v – длину очереди;
  • w – время ожидания начала обслуживания;
  • w 0 – общее время нахождения в системе.

Нас будут интересовать средние характеристики (т.е. берем математическое ожидание от рассматриваемых случайных величин, и помним, что y <1).

– среднее число заявок в системе.

– средняя длина очереди.

– среднее время ожидания начала обслуживания, т.е. время ожидания в очереди.

– среднее время, которое заявка проводит в системе – в очереди и на обслуживании.

На автомойке один блок для обслуживания и есть место для очереди. Автомобили прибывают по пуассоновскому распределению с интенсивностью 5 авто/час. Среднее время обслуживания одной машины – 10 минут. Найти все средние характеристики СМО.

Решение. l =5, m =60мин/10мин = 6. Коэффициент загрузки y =5/6. Тогда среднее число автомобилей в системе
, средняя длина очереди
, среднее время ожидания начала обслуживания
часа = 50 мин, и, наконец, среднее время нахождения в системе
час.

3.4.3 Одноканальные СМО смешанного типа.

Предположим, что длина очереди составляет m требований. Тогда, для любого s £ m , вероятность нахождения СМО в состоянии Е 1+ s , вычисляется по формуле
, т.е. одна заявка обслуживается и еще s заявок – в очереди.

Вероятность простоя системы равна
,

а вероятность отказа системы -
.

Даны три одноканальные системы, для каждой l =5, m =6. Но первая система – с отказами, вторая – с чистым ожиданием, а третья – с ограниченной длиной очереди, m =2. Найти и сравнить вероятности простоя этих трех систем.

Решение. Для всех систем коэффициент загрузки y =5/6. Для системы с отказами
. Для системы с чистым ожиданием
. Для системы с ограниченной длиной очереди
. Вывод очевиден: чем больше заявок находится в очереди, тем меньше вероятность простоя системы.

3.5 Многоканальные СМО.

3.5.1 Многоканальные СМО с отказами.

Будем рассматривать системы (Р/Е/s):(-/s/¥) в предположении, что время обслуживания не зависит от входного потока и все линии работают независимо. Многоканальные системы, помимо коэффициента загрузки, можно также характеризовать коэффициентом
, где s – число каналов обслуживания. Исследуя многоканальные СМО, получим следующие формулы (формулы Эрлáнга ) для вероятности нахождения системы в состоянии Е k в случайный момент времени:

, k=0, 1, …

Функция стоимости.

Как и для одноканальных систем, увеличение коэффициента загрузки ведет к увеличению вероятности отказа системы. С другой стороны, увеличение количества линий обслуживания ведет к увеличению вероятности простоя системы или отдельных каналов. Таким образом, необходимо найти оптимальное количество каналов обслуживания данной СМО. Среднее число свободных линий обслуживания можно найти по формуле
. Введем С(s ) – функцию стоимости СМО, зависящую от с 1 – стоимости одного отказа (штрафа за невыполненную заявку) и от с 2 – стоимости простоя одной линии за единицу времени.

Для поиска оптимального варианта надо найти (и это можно сделать) минимальное значение функции стоимости: С(s ) = с 1* l * p s 2* , график которой представлен на рисунке 3.3:

Рисунок 3.3

Поиск минимального значения функции стоимости состоит в том, что мы находим ее значения сначала дляs =1, затем для s =2, потом для s =3, и т.д. до тех пор, пока на каком-то шаге значение функции С(s ) не станет больше предыдущего. Это и означает, что функция достигла своего минимума и начала расти. Ответом будет то число каналов обслуживания (значение s ), для которого функция стоимости минимальна.

ПРИМЕР.

Сколько линий обслуживания должна содержать СМО с отказами, если l =2треб/час, m =1треб/час, штраф за каждый отказ составляет 7 тыс.руб., стоимость простоя одной линии – 2 тыс.руб. в час?

Решение. y = 2/1=2. с 1 =7, с 2 =2.

Предположим, что СМО имеет два канала обслуживания, т.е. s =2. Тогда
. Следовательно, С(2) = с 1 *l* p 2 2 *(2- y* (1-р 2 )) = =7*2*0.4+2*(2-2*0.6)=7.2.

Предположим, что s =3. Тогда
, С(3) = с 1 *l* p 3 2 *
=5.79.

Предположим, что имеется четыре канала, т.е. s =4. Тогда
,
, С(4) = с 1 *l* p 4 2 *
=5.71.

Предположим, что СМО имеет пять каналов обслуживания, т.е. s =5. Тогда
, С(5) = 6.7 – больше предыдущего значения. Следовательно, оптимальное число каналов обслуживания – четыре.

3.5.2 Многоканальные СМО с очередью.

Будем рассматривать системы (Р/Е/s):(d/d+s/¥) в предположении, что время обслуживания не зависит от входного потока и все линии работают независимо. Будем говорить, что в системе установилсястационарный режим работы , если среднее число поступающих требований меньше среднего числа требований, обслуженных на всех линиях системы, т.е. l

P(w>0) – вероятность ожидания начала обслуживания,
.

Последняя характеристика позволяет решать задачу об определении оптимального числа каналов обслуживания с таким расчетом, чтобы вероятность ожидания начала обслуживания была меньше заданного числа. Для этого достаточно просчитать вероятность ожидания последовательно при s =1, s =2, s =3 и т.д.

ПРИМЕР.

СМО – станция скорой помощи небольшого микрорайона. l =3 вызова в час, а m = 4 вызова в час для одной бригады. Сколько бригад необходимо иметь на станции, чтобы вероятность ожидания выезда была меньше 0.01?

Решение. Коэффициент загрузки системы y =0.75. Предположим, что в наличие имеется две бригады. Найдем вероятность ожидания начала обслуживания при s =2.
,
.

Предположим наличие трех бригад, т.е. s =3. По формулам получим, что р 0 =8/17, Р(w >0)=0.04>0.01 .

Предположим, что на станции четыре бригады, т.е. s =4. Тогда получим, что р 0 =416/881, Р(w >0)=0.0077<0.01 . Следовательно, на станции должно быть четыре бригады.

3.6 Вопросы для самоконтроля

  1. Предмет и задачи теории массового обслуживания.
  2. СМО, их модели и обозначения.
  3. Входной поток требований. Интенсивность входного потока.
  4. Состояние системы. Матрица и граф переходов.
  5. Одноканальные СМО с отказами.
  6. Одноканальные СМО с очередью. Характеристики.
  7. Стационарный режим работы. Коэффициент загрузки системы.
  8. Многоканальные СМО с отказами.
  9. Оптимизация функции стоимости.
  10. Многоканальные СМО с очередью. Характеристики.

3.7 Упражнения для самостоятельной работы

  1. Закусочная на АЗС имеет один прилавок. Автомобили прибывают в соответствии с пуассоновским распределением, в среднем 2 автомобиля за 5 минут. Для выполнения заказа в среднем достаточно 1.5 минуты, хотя продолжительность обслуживания распределена по экспоненциальному закону. Найти: а) вероятность простоя прилавка; b) средние характеристики; c) вероятность того, что количество прибывших автомобилей будет не менее 10.
  2. Рентгеновский аппарат позволяет обследовать в среднем 7 человек в час. Интенсивность посетителей составляет 5 человек в час. Предполагая стационарный режим работы, определить средние характеристики.
  3. Время обслуживания в СМО подчиняется экспоненциальному закону,
    m = 7требований в час. Найти вероятность того, что а) время обслуживания находится в интервале от 3 до 30 минут; b) требование будет обслужено в течение одного часа. Воспользоваться таблицей значений функции е х .
  4. В речном порту один причал, интенсивность входного потока – 5 судов в день. Интенсивность погрузочно-разгрузочных работ – 6 судов в день. Имея в виду стационарный режим работы, определить все средние характеристики системы.
  5. l =3, m =2, штраф за каждый отказ равен 5, а стоимость простоя одной линии равна 2?
  6. Какое оптимальное число каналов обслуживания должна иметь СМО, если l =3, m =1, штраф за каждый отказ равен 7, а стоимость простоя одной линии равна 3?
  7. Какое оптимальное число каналов обслуживания должна иметь СМО, если l =4, m =2, штраф за каждый отказ равен 5, а стоимость простоя одной линии равна 1?
  8. Определить число взлетно-посадочных полос для самолетов с учетом требования, что вероятность ожидания должна быть меньше, чем 0.05. При этом интенсивность входного потока 27 самолетов в сутки, а интенсивность их обслуживания – 30 самолетов в сутки.
  9. Сколько равноценных независимых конвейерных линий должен иметь цех, чтобы обеспечить ритм работы, при котором вероятность ожидания обработки изделий должна быть меньше 0.03 (каждое изделие выпускается одной линией). Известно, что интенсивность поступления заказов 30 изделий в час, а интенсивность обработки изделия одной линией – 36 изделий в час.
  10. Непрерывная случайная величина Х распределена по показательному закону с параметром l=5. Найти функцию распределения, характеристики и вероятность попадания с.в. Х в интервал от 0.17 до 0.28.
  11. Среднее число вызовов, поступающих на АТС за одну минуту, равно 3. Считая поток пуассоновским, найти вероятность того, что за 2 минуты поступит: а) два вызова; б) меньше двух вызовов; в) не менее двух вызовов.
  12. В ящике 17 деталей, из которых 4 – бракованные. Сборщик наугад извлекает 5 деталей. Найти вероятность того, что а) все извлеченные детали – качественные; б) среди извлеченных деталей 3 бракованных.
  13. Сколько каналов должна иметь СМО с отказами, если l =2треб/час, m =1треб/час, штраф за каждый отказ составляет 8т.руб., стоимость простоя одной линии – 2т.руб. в час?

Марковские случайные процессы

Названы по имени выдающегося русского математика А.А.Маркова, впервые начавшего изучение вероятностной связи случайных величин и создавшего теорию, которую можно назвать "динамикой вероятностей". В настоящее время теория марковских процессов и ее приложения широко применяются в самых различных областях и, в том числе, в исследовании операций и теории принятия оптимальных решений.

Марковский процесс - дискретный или непрерывный случайный процесс X (t ), который можно полностью задать с помощью двух величин:

· вероятности P (x ,t ) того, что случайная величина x (t ) в момент времени t равна x , и

· вероятности P (x 2 , t 2 |x 1 ,t 1) того, что если x при t = t 1 равен x 1 , то при t = t 2 он равен x 2 .

Вторая из этих величин называется вероятностью перехода из состояния x 1 при t = t 1 в состояние x 2 при t = t 2 .

Цепями Маркова называют дискретные по времени и значению Марковские

процессы.

Пример 1

Предположим, что речь идет о последовательных бросаниях монеты при игре "в орлянку "; монета бросается в условные моменты времени t = 0, 1, ... и на каждом шаге игрок может выиграть ±1 с одинаковой вероятностью 1/2, таким образом в момент t его суммарный выигрыш есть случайная величина ξ(t) с возможными значениями j = 0, ±1, ... При условии, что ξ(t) = k, на следующем шаге выигрыш будет уже равен ξ(t+1) = k ± 1, принимая указанные знчения j = k ± 1 c одинаковой вероятностью 1/2. Условно можно сказать, что здесь с соответствующей вероятностью происходит переход из состояния ξ(t) = k в состояние ξ(t+1) = k ± 1.

19.5.1. Формулы и определения Марковских цепей

Обобщая этот пример, можно представить себе "систему" со счетным числом возможных "фазовых" состояний, которая с течением дискретного времени t = 0, 1, ... случайно переходит из состояния в состояние.

Пусть ξ(t) есть ее положение в момент t в результате цепочки случайных переходов ξ(0) - ξ(1) - ... - ξ(t) - ... ... (1)

Формально обозначим все возможные состояния целыми i = 0, ±1, ... Предположим, что при известном состоянии ξ(t) = k на следующем шаге система переходит в состояние ξ(t+1) = j с условной вероятностью

p kj = P(ξ(t+1) = j|ξ(t) = k) ... (2)

независимо от ее поведения в прошлом, точнее, независимо от цепочки переходов (1) до момента t:

P(ξ(t+1) = j|ξ(0) = i, ..., ξ(t) = k) = P(ξ(t+1) = j|ξ(t) = k) при всех t, k, j ... (3) - марковское свойство.

Такую вероятностную схему называют однородной цепью Маркова со счетным числом состояний - ее однородность состоит в том, что определенные в (2) переходные вероятности p kj , ∑ j p kj = 1, k = 0, ±1, ..., не зависят от времени, т.е.

P(ξ(t+1) = j|ξ(t) = k) = P ij - матрица вероятностей перехода за один шаг не зависит от n. Ясно, что P ij - квадратная матрица с неотрицатель-ными элементами и единичными суммами по строкам. Такая матрица (конечная или бесконечная) называется стохастической матрицей. Любая стохастическая матрица может служить матрицей переходных вероятностей.

Практический пример 1.

Предположим, что некая фирма осуществляет доставку оборудования по Москве: в северный округ (обозначим А), южный (В) и центральный (С). Фирма имеет группу курьеров, которая обслуживает эти районы. Понятно, что для осуществления следующей доставки курьер едет в тот район, который на данный момент ему ближе. Статистически было определено следующее:

1) после осуществления доставки в А следующая доставка в 30 случаях осуществляется в А, в 30 случаях - в В и в 40 случаях - в С;

2) после осуществления доставки в В следующая доставка в 40 случаях осуществляется в А, в 40 случаях - в В и в 20 случаях - в С;

3) после осуществления доставки в С следующая доставка в 50 случаях осуществляется в А, в 30 случаях - в В и в 20 случаях - в С.

Таким образом, район следующей доставки определяется только предыдущей доставкой.

Матрица вероятностей перехода будет выглядеть следующим образом:

Например, р 12 = 0.4 - это вероятность того, что после доставки в район В следующая доставка будет производиться в районе А. Допустим, что каждая доставка с последующим перемещением в следующий район занимает 15 минут. Тогда, в соответствии со статистическими данными, через 15 минут 30% из курьеров, находившихся в А, будут в А, 30% будут в В и 40% - в С. Так как в следующий момент времени каждый из курьеров обязательно будет в одном из округов, то сумма по столбцам равна 1. И поскольку мы имеем дело с вероятностями, каждый элемент матрицы 0<р ij <1. Наиболее важным обстоятельством, которое позволяет интерпретировать данную модель как цепь Маркова, является то, что местонахождение курьера в момент времени t+1 зависит только от местонахождения в момент времени t.

Теперь зададим простой вопрос: если курьер стартует из С, какова вероятность того, что осуществив две доставки, он будет в В, т.е. как можно достичь В в 2 шага? Итак, существует несколько путей з С в В за 2 шага:

1) сначала из С в С и потом из С в В;

2) С-->B и B-->B;

3) С-->A и A-->B.

Учитывая правило умножения независимых событий, получим, что искомая вероятность равна:

P = P(CA)*P(AB) + P(CB)*P(BB) + P(CC)*P(CB)

Подставляя числовые значения:

P = 0.5*0.3 + 0.3*0.4 + 0.2*0.3 = 0.33

Полученный результат говорит о том, что если курьер начал работу из С, то в 33 случаях из 100 он будет в В через две доставки. Ясно, что вычисления просты, но если Вам необходимо определить вероятность через 5 или 15 доставок - это может занять довольно много времени.

Рассмотрим более простой способ вычисления подобных вероятностей. Для того, чтобы получить вероятности перехода из различных состояний за 2 шага, возведем матрицу P в квадрат:

Тогда элемент (2, 3) - это вероятность перехода из С в В за 2 шага, которая была получена выше другим способом. Заметим, что элементы в матрице P 2 также находятся в пределах от 0 до 1, и сумма по столбцам равна 1.

Т.о. если Вам необходимо определить вероятности перехода из С в В за 3 шага:

1 способ. p(CA)*P(AB) + p(CB)*P(BB) + p(CC)*P(CB) = 0.37*0.3 + 0.33*0.4 + 0.3*0.3 = 0.333, где p(CA) - вероятность перехода из С в А за 2 шага (т.е. это элемент (1, 3) матрицы P 2).

2 способ. Вычислить матрицу P 3:

Матрица переходных вероятностей в 7 степени будет выглядеть следующим образом:

Легко заметить, что элементы каждой строки стремятся к некоторым числам. Это говорит о том, что после достаточно большого количества доставок уж не имеет значение в каком округе курьер начал работу. Т.о. в конце недели приблизительно 38,9% будут в А, 33,3% будут в В и 27,8% будут в С. Подобная сходимость гарантировано имеет место, если все элементы матрицы переходных вероятностей принадлежат интервалу (0, 1).

Теория массового обслуживания

Это раздел исследования операций , который рассматривает разнообразные процессы в экономике, а также в телефонной связи, здравоохранении и других областях, как процессы обслуживания, т. е. удовлетворения каких-то запросов, заказов (напр., обслуживание кораблей в порту - их разгрузка и погрузка, обслуживание токарей в инструментальной кладовой цеха - выдача им резцов, бслуживание клиентов в прачечной - стирка белья и т. д.).

При всем разнообразии эти процессы имеют общие черты: требования на обслуживание нерегулярно (случайно) поступают в канал обслуживания (место у причала, окно в раздаточной) и в зависимости от его занятости, продолжительности обслуживания и других факторов образуют очередьтребований .

Теория массового обслуживания изучает статистические закономерности поступления требований и на этой основе вырабатывает решения , т. е. такие характеристики, при которых затраты времени на ожидание в очереди, с одной стороны, и на простой каналов обслуживания - с другой, были бы наименьшими. Всю систему производства и потребления товаров можно трактовать как систему массового обслуживания, где встречаются люди (клиенты) и товары. Сумма потерь времени на ожидание в очередях и на простои каналов обслуживания (хранение товаров на складах) рассматривается как мера эффективности изучаемой экономической системы .

Методы анализа систем массового обслуживания

Методы и модели, применяемые в теории массового обслуживания, можно условно разделить на аналитические и имитационные.

Аналитические методы теории массового обслуживания позволяют получить характеристики системы как некоторые функции параметров ее функционирования. Благодаря этому появляется возможность проводить качественный анализ влияния отдельных факторов на эффективность работы СМО.

Имитационные методы основаны на моделировании процессов массового обслуживания на ЭВМ и применяются, если невозможно применение аналитических моделей.

В настоящее время теоретически наиболее разработаны и удоб­ны в практических приложениях методы решения задач массового обслуживания, в которых входящий поток требований является про­стейшим (пуассоновским).

Для простейшего потока частота поступлений требований в сис­тему подчиняется закону Пуассона, т.е. вероятность поступления за время t ровно к требований задается формулой:

Простейший поток обладает тремя основными свойствами:

1) ординарностью,

2) стационарностью и

3) отсутствием после­действия.

Ординарность потока означает практическую невозможность од­новременного поступления двух и более требований. Например, достаточно малой является вероятность того, что из группы стан­ков, обслуживаемых бригадой ремонтников, одновременно выйдут из строя несколько станков.

Стационарным называется поток, для которого математическое ожидание числа требований, поступающих в систему в единицу времени (обозначим А, - параметр распределения Пуассона), не меняется во времени. Таким образом, вероятность поступления в систему определенного количества требований в течение заданного промежутка времени At зависит от его величины и не зависит от начала его отсчета на оси времени.

Отсутствие последействия означает, что число требований, по­ступивших в систему до момента t, не определяет того, сколько требований поступит в систему за промежуток времени от t до t + Dt

Например, если на ткацком станке в данный момент времени произошел обрыв нити и он устранен ткачихой, то это не определя­ет, произойдет новый обрыв на данном станке в следующий момент или нет, тем более это не влияет на вероятность возникновения обрыва на других станках.

Важная характеристика СМО - время обслуживания требований в системе. Время обслуживания одного требования является, как правило, случайной величиной и, следовательно, может быть опи­сано законом распределения. Наибольшее распространение в тео­рии и особенно в практических приложениях получил экспоненци­альный закон распределения времени обслуживания. Функция распре­деления для этого закона имеет вид:

т.е. вероятность того, что время обслуживания не превзойдет неко­торой величины t, определяется формулой (5.2), где µ - параметр экспоненциального закона распределения времени обслуживания требований в системе, т.е. величина, обратная среднему времени обслуживания

Системы массового обслуживания классифицируются:

1. В зависимости от условий ожидания начала обслуживания:

· СМО с потерями (отказами)

· СМО с ожиданием

В СМО с отказами требования, поступающие в момент, когда все каналы обслуживания заняты, получают отказ и покидают сис­тему. Классическим примером системы с отказами является теле­фонная станция. Если вызываемый абонент занят, то требование на соединение с ним получает отказ и покидает систему.

В СМО с ожиданием требование, застав все обслуживающие ка­налы занятыми, становится в очередь и ожидает, пока освободится [ один из обслуживающих каналов.

СМО, допускающие очередь, но с ограниченным числом требований в ней, называются системами с ограниченной длиной очереди.

СМО, допускающие очередь, но с ограниченным сроком пре­бывания каждого требования в ней, называются системами с ограниченным временем ожидания.

2. По числу каналов обслуживания СМО делятся на:

Одноканальные;

Многоканальные.

3. По месту нахождения источника тре­бований СМО подразделяются на:

разомкнутые, когда источник требования находится вне сис­темы;

замкнутые, когда источник находится в самой системе.

19.7. Задачи анализа замкнутых и разомкнутых систем массового обслуживания

Замкнутые и разомкнутые системы,в зависимости от времени ожидания могут быть и системами массового обслуживания с ожиданием. Это наиболее распространенные СМО. Они изучаются с помощью аналитических моделей.

Системой массового обслуживания сожиданием называется система, в которой требования, поступившие в момент, когда все обслуживающие каналы заняты, ставятся в очередь и обслужива­ются по мере освобождения каналов.

Примером разомкнутой системы может служить ателье по ре­монту телевизоров. Здесь неисправные телевизоры - это источник требований на их обслуживание, они находятся вне самой системы, поэтому число требований можно считать неограниченным. К замкнутым СМО относится, например, станочный участок, в кото­ром станки являются источником неисправностей, а следовательно, источником требований на их обслуживание, например, бригадой наладчиков.

Общая постановка задачи состоит в следующем. Система имеет п обслуживающих каналов, каждый из которых может одновремен­но обслуживать только одно требование.

В систему поступает простейший (пуассоновский) поток требо­ваний с параметром А.. Если в момент поступления очередного тре­бования в системе на обслуживании уже находится не менее п тре­бований, т.е. все каналы заняты, то это требование становится в очередь и ждет начала обслуживания. Время обслуживания каждого требования - случайная вели­чина, которая подчиняется экспоненциальному закону распределе­ния с параметром µ .

СМО с ожиданием можно разбить на две большие группы: замкнутые и разомкнутые. К замкнутым относятся системы, в ко­торых поступающий поток требований возникает в самой системе и ограничен. Например, мастер, задачей которого является наладка станков в цехе, должен периодически их обслуживать. Каждый на­лаженный станок становится потенциальным источником требова­ний на наладку. В подобных системах общее число циркулирующих требований конечно и чаще всего постоянно.

Если питающий источник обладает бесконечным числом требо­ваний и находится вне системы, то системы называют разомкнуты­ми. Примерами разомкнутых систем могут служить магазины, кассы вокзалов, портов и др. Для этих систем поступающий поток требо­ваний можно считать неограниченным. Кроме того, довольно рас­пространены разомкнутые СМО с ожиданием и ограниченной дли­ной очереди, с ограниченным временем пребывания требования в очереди и др.

Отмеченные особенности функционирования СМО с ожидани­ем, обусловленные их видами, накладывают определенные условия на используемый математический аппарат. Расчет характеристик работы всех таких СМО может быть проведен на основе расчета вероятностей состояний СМО (так называемые формулы Эрланга).

Рассмотрим порядок расчета характеристик работы разомкнутых систем с ожиданием и ограниченной длиной очереди.

Такие СМО состоят из п обслуживающих каналов, каждый из которых может одновременно обслуживать только одно требование. В систему поступает простейший поток требований с параметром А., а время обслуживания требования является случайной величиной, которая подчиняется экспоненциальному закону распределения с параметром ц. Если в момент поступления очередного требования все п каналов заняты, а в очереди стоит не меньше т требований, то требование становится в очередь. Если же в очереди уже стоит т требований, то поступившее требование покидает СМО. Другими словами, требование получает отказ, если в системе находится п + т требований. Из уравнений, описывающих состояние таких систем, могут быть получены следующие формулы для расчета их основных характеристик.

1. Вероятность того, что все обслуживающие каналы свободны,

(5.14)

2. Вероятность того, что в системе находится к требований при условии, что общее число этих требований не превосходит числа обслуживающих каналов; другими словами, вероятность того, что занято к каналов,


3. Вероятность того, что в системе находится к требований, ко­гда число этих требований больше числа обслуживающих каналов,

(5.16)

4. Вероятность того, что все обслуживающие каналы заняты,

(5.17)

5. Вероятность отказа

(5.18)

6. Средняя длина очереди

7. Среднее число свободных от обслуживания каналов

Пример 2. Фирма занимается доставкой грузов по заказам и имеет четыре машины, которые работают круглосуточно. Поток заказов является простейшим, и в среднем за час поступает одна заявка. Время перевозки грузов подчиняется экспоненциальному закону распределения, и в среднем перевозка одного груза занимает один час. При количестве заказов на перевозки, равном 10, фирма прекращает прием заявок до тех пор, пока очередь не уменьшится.

Требуется определить характеристики работы фирмы.

Решение. Данная система относится к типу СМО с ожида­нием и ограниченной длиной очереди. Найдем параметры системы, приняв за единицу времени один час:

Вероятность того, что все машины свободны от перевозки гру­зов, находится по формуле (5.14):

Вероятность того, что в се машины заняты, определяется по формуле (5.17) и составляет

Тогда вероятность отказа в принятии заказа на перевозку, рассчитываемая по формуле (5.18) будет равна

, а средняя длина очереди в соответствии с формулой (5.19) составит

Тогда вероятность отказа в принятии заказа на перевозку, рас­считываемая по формуле (5.18), будет равна

а средняя длина очереди в соответствии с формулой (5.19) составит

Таким образом, заказчик практически никогда не получит отка­за в принятии заявки на перевозку, однако загрузка машин будет достаточно мала. Так например, лишь в двух случаях из ста будут заняты все четыре машины.

Перейдем к рассмотрению алгоритмов расчета характеристик функционирования замкнутых СМО с ожиданием. Поскольку сис­тема замкнутая, то к постановке задачи следует добавить условие: поток поступающих требований ограничен, т.е. в системе обслужи­вания одновременно не может находиться больше т требований (т - число обслуживаемых объектов). Такие СМО называются также системами с ожиданием и ограниченным потоком требований.

За критерий, характеризующий качество функционирования рассматриваемой системы, примем отношение средней длины оче­реди к наибольшему числу требований, находящихся одновременно в обслуживающей системе, или коэффициент простоя обслуживае­мых объектов. В качестве другого критерия возьмем отношение среднего числа незанятых обслуживающих каналов к их общему числу, или коэффициент простоя обслуживающих каналов.

Первый из критериев характеризует потери времени из-за ожи­дания начала обслуживания. Второй критерий показывает полноту загрузки обслуживающей системы и имеет важное значение в зада­чах организации труда.

Очевидно, что очередь может возникнуть только в том случае, когда число каналов меньше наибольшего числа требований, нахо­дящихся одновременно в обслуживающей системе (п < т).

Приведем последовательность расчетов характеристик замкну­тых СМО с ожиданием и необходимые формулы.

1. Параметр α=α/µ. - показатель загрузки системы, т.е. мате­матическое ожидание числа требований, поступающих в систему за время, равное средней длительности обслуживания

2. Вероятность того, что занято к обслуживающих каналов при условии, что число требований, находящихся в системе, не превос­ходит числа обслуживающих каналов системы,

Модели теории массового обслуживания

Теория массового обслуживания представляет собой область при­кладной математики, использующую методы теории случайных про­цессов и теории вероятностей для исследования различной природы сложных систем. Теория массового обслуживания непосредственно не связана с оптимизацией. Назначение ее состоит в том, чтобы на осно­ве результатов наблюдений за «входом» в систему предсказать ее воз­можности и организовать наилучшее обслуживание для конкретной ситуации и понять, как последнее отразится на стоимости системы в целом.

Модели теории массового обслуживания описывают процессы массового спроса на обслуживание с учетом случайного характера поступления требований и продолжитель­ности обслуживания.

Назначение моделей теории массового обслуживания состоит в том, чтобы на основе информации о входящем случайном потоке требова­ний предсказать возможности системы обслуживания, организовать наилучшее выполнение требований для конкретной ситуации и оце­нить, как это отразится на ее стоимости.

Система массового обслуживания (СМО) возникает тогда, когда происходит массовое появление заявок (требований) на обслуживание и их последующее удовлетворение.

Особенностью СМО является случайный характер исследуе­мых явлений. Типичный пример СМО - телефонная сеть (снятием трубки с рычага телефонного аппарата абонент дает заявку на обслуживание разговора по одной из линий телефонной сети).

Основными элементами СМО являются:

Входящий поток заявок (требований) на обслуживание;

Очередь заявок на обслуживание;

Приборы (каналы) обслуживания;

Выходящий поток обслуженных заявок (рисунок 8.5).

Такой элемент СМО как очередь может отсутствовать в не­которых системах, но в тоже время СМО может иметь и другие элементы, например, выходящий поток не обслуженных заявок.

Для систем, относящихся к системам массового обслуживания, существует определенный класс задач, решение которых позволяет от­ветить, например, на следующие вопросы:

Рисунок 8.5 - Обобщенная схема СМО

С какой ин­тенсивностью должно проходить обслуживание или должен выполнять­ся процесс при заданной интенсивности и других параметрах входящего потока требований, чтобы минимизировать очередь или задержку в подготовке документа или другого вида информации?

Каковы вероят­ность появления задержки или очереди и ее величина? Сколько време­ни требование находится в очереди и каким образом минимизировать его задержку?

Какова вероятность потери требования (клиента)?

Ка­кова должна быть оптимальная загрузка обслуживающих каналов? При каких параметрах системы достигаются минимальные потери прибы­ли?

К этому перечню можно добавить еще целый ряд задач.

Как системы массового обслуживания могут быть представ­лены следующие работы и процессы: посадка самолетов в аэро­порту, обслуживание автомобилей на автозаправочных станциях, разгрузка судов на причалах, обслуживание покупателей в ма­газинах, прием больных в поликлинике, обслуживание клиентов в ремонтной мастерской и др.

Часто входной поток заявок представляется в виде про­стейшего потока, обладающего свойством стационарности, от­сутствия последствия и ординарности.

Поток является стационарным, если вероятный режим не зависит от времени. Ординарность потока наступает, если ве­роятность появления двух и более заявок за промежуток вре­мени τ является бесконечно малой величиной по сравнению с τ. Поток обладает свойством отсутствия последствия, если поступление заявок не зависит от предистории процесса.

Для простейшего потока поступление заявок в СМО описы­вается законом распределения Пуассона

Р к (τ ) ,

где Р к (τ ) -вероятность поступления к заявок за время τ ;

λ - интенсивность входного потока.

Важное для исследования свойство, которым обладает пуассоновский поток, заключается в том, что процедура разделения и объединения дает снова пуассоновские потоки. Тогда, если входной по­ток формируется из N независимых источников, каждый из которых порождает пуассоновский поток интенсивностью λ i (i = 1, 2, ..., N), то его интенсивность будет определяться по формуле

λ = λ l + λ 2 +...+ λ N .

В случае разделения пуассоновского потока на N независимых по­токов получим, что интенсивность потока λ i будет равна r i λ ,где r i - доля i-го потока во входном потоке требований.

Очередью является множество заявок (требований), ожи­дающих обслуживание.

В зависимости от допустимости и характера формирования очереди системы массового обслуживания подразделяются:

1. СМО с отказами - формирование очереди не разрешено, поэтому заявка, пришедшая в момент, когда все каналы заняты, получает отказ и теряется. Пример: АТС (выполнение заказов к определенному сроку), система ПВО объекта (цель в зоне об­стрела пребывает мало времени).

2. СМО с неограниченным ожиданием - поступившая заяв­ка, застав все обслуживающие приборы занятыми, становится в очередь и дожидается обслуживания. Число мест для ожидания (длина очереди) не ограничено. Не ограничивается и время ожидания. Пример: предприятия бытового обслуживания, такие как мастерские по ремонту часов, обуви.

3. СМО смешанного типа. В этих системах имеется очередь,
на которую накладываются ограничения. Например: на макси­мальную длину очереди (I тип – с ограниченной ДО) или на время ожидания заявки в очереди (П тип – с ограниченным ВО). Примерами СМО I-го типа являются мастер­ские по ремонту радиоаппаратуры с ограниченными площадями для ее хранения. Торговые точки по продаже фруктов, овощей, которые могут храниться ограниченное время, являются смешан­ными СМО II -го типа.

Порядок поступления заявок на обслужива­ние называется дисциплиной обслуживания.

В СМО с очередью могут быть следующие варианты дисцип­лины обслуживания:

а) в порядке поступления заявок (первым пришел – первым обслужился) - магазины, предприятия бытового обслуживания;

б) в порядке обратном поступлению, т. е. последняя заявка обслуживается первой (последним пришел - первым обслужился) - выемка заготовок из бункера;

в) в соответствии с приоритетом (участники ВОВ в поликлинике);

г) в случайном порядке (в системе ПВО объекта при отра­жении воздушного налета противника).

Основным параметром процесса обслужи­вания считается время обслуживания заявки каналом (обслуживающим прибором j) – t j (j=1,2,…,m).



Величина t j в каждом конкретном случае определяется рядом факторов: интенсивностью поступления заявок, квалификацией ис­полнителя, технологией работ, окружающей средой и т.д. Законы рас­пределения случайной величины t j могут быть самыми различными, но наибольшее распространение в практических приложениях полу­чил экспоненциальный закон распределения. Функция распределения случайной величины t j имеет вид:

F(t) = l – e - μt ,

где m - положительный параметр, определяющий интенсивность обслужи­вания требований;

где Е (t) - математическое ожидание случайной величины обслуживания тре­бования t j .

Важнейшее свойство экспоненциального распределения заключа­ется в следующем. При наличии нескольких однотипных каналов об­служивания и равной вероятности их выбора при поступлении заявки распределение времени обслуживания всеми m каналами будет пока­зательной функцией вида:

Если СМО состоит из неоднородных каналов, то , если
же все каналы однородные, то .

По количеству обслуживающих приборов (каналов) СМО де­лятся на:

Одноканальные;

Многоканальные.

Структура СМО и характерис­тика ее элементов приведены на рисунке 8.6.

Исследование СМО заключается в нахождении показателей, харак­теризующих качество и условия работы обслуживающей системы и показателей, отражающих экономические последствия принятых ре­шений.

Важнейшим понятием в анализе СМО является понятие сос­тояния системы. Состояние есть некоторое описание системы, на основании которого можно предсказать ее будущее поведение.

Рисунок 8.6 – Структура и характеристика элементов СМО

При анализе СМО определяют усредненные показатели об­служивания. В зависимости от решаемой задачи ими могут быть:

средняя длина очереди,

среднее время ожидания в очереди,

средний процент обслуживаемых (или получивших отказ) заявок, среднее число занятых (или простаивающих) каналов,

среднее время пребывания в СМО и др.

В качестве критерия оптимизации применяют:

Максимум прибыли от эксплуатации СМО;

Минимум суммарных потерь, связанных с простоем кана­лов, простоем заявок в очереди и уходом необслуженных за­явок;

Обеспечение заданной пропускной способности.

Варьируемыми параметрами обычно являются: количество каналов, их производительность, длина и дисциплина очереди, приоритетность обслуживания.

Вопросы для самопроверки

1. Понятие о математических моделях и моделировании.

2. Что представляет собой экономико-статистическая модель и производственная функция?

3. Применение графических и графоаналитических моделей в управлении.

4. Использование корреляционного анализа для выявления связи между параметрами

5. Виды и методы построения регрессионных моделей.

6. Статистическое исследование причинно-следственных связей.

7. Классификация математических моделей по четырем аспектам детализации (по В.А. Кардашу).

8. Классификация моделей по применяемому математическому аппарату. Понятие о балансовых моделях.

9. Этапы моделирования. Проверка модели на адекватность.

10. Понятие о системах массового обслуживания (СМО). Составные части СМО.

11. СМО с отказами и с очередью. Разновидности очередей.

12. Одноканальные и многоканальные СМО. Дисциплины обслуживания

13. Моделирование СМО. Показатели, получаемые при экспериментах на модели СМО.

14. Критерии оптимизации систем массового обслуживания.

1. Предмет и задачи В производственной деятельности и повседневной жизни часто возникают ситуации, когда появляется необходимость в обслуживании требований или заявок поступающих в систему. Часто встречаются ситуации, в которых необходимо пребывать в ситуации ожидания. Примерами тому может служить очередь покупателей у касс большого магазина, группа пассажирских самолетов, ожидающих разрешения на взлет в аэропорте, ряд вышедших из строя станков и механизмов, поставленных в очередь для починки в ремонтном цехе предприятия и т.д. Иногда системы обслуживания обладают ограниченными возможностями для удовлетворения спроса, и это приводит к образованию очередей. Как правило, ни время возникновения потребностей в обслуживании, ни продолжительность обслуживания заранее не известны. Избежать ситуации ожидания чаще всего не удается, но можно сократить время ожидания до какого-то терпимого предела.

Предметом теории массового обслуживания являются системы массового обслуживания (СМО).Задачами теории массового обслуживания являются анализ и исследование явлений, возникающих в системах обслуживания.Одна из основных задач теории заключается в определении таких характеристик системы, которые обеспечивают заданное качество функционирования, например, минимум времени ожидания, минимум средней длины очереди.Цель изучения режима функционирования обслуживающей системы в условиях, когда фактор случайности является существенным,контролировать некоторыеколичественные показатели функционирования системы массового обслуживания. Такими показателями, в частности являются среднее время пребывания клиента в очереди или доля времени, в течение которой обслуживающая система простаивает. При этом в первом случае мы оцениваем систему с позиции «клиента», тогда как во втором случае мы оцениваем степень загруженности обслуживающей системы. Путем варьирования операционными характеристиками обслуживающей системы может быть достигнут разумныйкомпромисс между требованиями «клиентов» и мощностью обслуживающей системы.

В качестве показателей СМО могут применяться также такие величины как среднее число заявок в очереди, вероятность того, что число заявок в очереди превысит какое-то значение и т.д.

Система - совокупность элементов, связей между ними и цели функционирования. Любой системе массового обслуживания характерна структура, которая определяется составом элементов и функциональными связями.

Основные элементы системы следующие:

1. Входящий поток требований (интенсивность входящего потока );

2. Каналы обслуживания (число каналов n , среднее число занятыхk , производительность);

3. Очередь требований (среднее число заявок z , среднее время пребывания одной заявкиt );

4. Выходящий поток требований (интенсивность входящего потока ).

2. Классификация систем массового обслуживания По количеству каналов СМО подразделяют наодноканальные имногоканальные . По месту нахождения источников заявок системы массового обслуживания можно разделить на:

 закрытые – источник в системе и оказывает на нее влияние;

 открытые – вне системы и не оказывает влияния.

По фазам обслуживания СМО можно разделить на:

 однофазные – один этап обслуживания,

 многофазные – два и более этапов.

Системы массового обслуживания (СМО) по условиям ожидания делятся на два основных класса: СМО с отказами и СМО с ожиданием . В СМО с отказами заявка, поступающая в момент, когда все каналы заняты, получает отказ, покидает СМО и в дальнейшем процессе обслуживания не участвует (пример - звонок по телефону). В СМО с ожиданием заявка, пришедшая в момент, когда все каналы заняты, не уходит, а становится в очередь на обслуживание.

СМО с ожиданием подразделяются на разные виды в зависимости от того, как организована очередь: с ограниченной илинеограниченной длиной ожидания ,с ограниченным временем ожидания и т.д.

Для классификации СМО важное значение имеет дисциплина обслуживания, определяющая порядок выбора заявок из числа поступивших и порядок распределения их между свободными каналами.Дисциплина обслуживания – правила, по которым действуют СМО. По этому признаку обслуживание требования может быть организованно:

1. по принципу «первый пришел – первый обслужен»;

2. по принципу «первый пришел – последним обслужен» (например, отгрузка однородной продукции со склада).

3. случайно;

4. с приоритетом. При этом приоритет может быть абсолютным (более важная заявка вытесняет обычную) иотносительным (важная заявка получает лишь «лучшее» место в очереди).

При анализе случайных процессов с дискретным состояниями удобно пользоваться геометрической схемой – так называемымграфом состояний .

Пример . УстройствоS состоит из двух узлов,

каждый из которых в случайный момент времени может выйти из строя, после чего мгновенно начинается ремонт узла, продолжающийся заранее неизвестное случайное время. Возможные состояния системы: S 0 – оба узла исправны;S 1 – первый узел ремонтируется, второй исправен;S 2 – первый узел исправен, второй ремонтируется;S 3 – оба узла ремонтируются.

3. Входящий поток требований Общей особенностью всех задач, связанных с массовым обслуживанием, является случайный характер исследуемых явлений . Количество требований на обслуживание, временные интервалы между их поступлениями и длительность обслуживания случайны.Поэтому основным аппаратом описания систем обслуживания оказывается аппарат теории случайных процессов, в частности, марковских. Для исследования процессов, происходящих в этих системах, применяются методы имитационного моделирования.

Процесс работы СМО представляет собой случайный процесс с дискретными состояниями и непрерывным временем. Это означает, что состояние СМО меняется скачком в случайные моменты появления каких-либо событий (появление новой заявки, приоритета обслуживания, окончания обслуживания).

Под случайным (стохастическим, вероятностным) процессом понимается процесс изменения во времени состояния какой-либо системы в соответствии с вероятностным законом. Заявки на обслуживание в СМО обычно поступают не регулярно (например, поток вызовов на телефонной станции, поток отказов компьютеров, поток покупателей и т.д.), образуя так называемыйпоток заявок (или требований).

Поток характеризуетсяинтенсивностью λ – частотой появления событий или средним числом событий, поступающих в СМО в единицу времени.

Поток событий называетсярегулярным , если события следуют одно за другим через определенные равные промежутки времени (поток изделий на конвейере сборочного цеха).

Поток событий называетсястационарным , если его вероятностные характеристики не зависят от времени. В частности у стационарного потока λ(i )= λ (поток автомобилей на проспекте в часы пик).

Поток событий называетсяпотоком без последствий , если для любых два непересекающихся участков времени –τ 1 иτ 2 – число событий, попадающих на один из них, не зависит от числа событий, попадающих на другие(поток людей, входящих в метро или поток покупателей, отходящих от кассы).

Поток событийординарен , если события появляются в нем поодиночке, а не группами(поток поездов – ординарен, поток вагонов – нет).

Поток событий называетсяпростейшим , если он одновременно стационарен, ординарен и не имеет последствий.

Ординарный поток заявок без последствий описывается распределением (законом) Пуассона.

Простейший поток в теории массового обслуживания играет такую же роль, как и нормальный закон в теории вероятностей. Главная его особенность заключается в том, что при сложении нескольких независимых простейших потоков образуется суммарный поток, который также близок к простейшему.

Каждому событию соответствует момент t , в который это событие произошло. Т – интервал между двумя моментами времени. Поток событий – независимая последовательность моментов t .

Для простейшего потока с интенсивностью λ вероятность попадания на элементарный (малый) отрезок времени Δt хотя бы одного события потока равна.

Ординарный поток заявок без последствий описывается распределением (законом) Пуассона с параметром λτ :

, (1)

для которого математическое ожидание случайной величины равно ее дисперсии:
.

В частности, вероятность того, что за время τ не произойдет ни одного события (m =0), равна

. (2)

Пример. На автоматическую телефонную линию поступает простейший поток вызовов с интенсивностью λ =1,2 вызовов в минуту. Найти вероятность того, что за две минуты: а) не придет ни одного вызова; б) придет ровно один вызов; в) придет хотя бы один вызов.

Решение. а) Случайная величина Х – число вызовов за две минуты – распределена по закону Пуассона с параметром λτ =1,2·2=2,4. Вероятность того, что вызовов не будет (m =0), по формуле (2):

б) Вероятность одного вызова (m =1):

в) Вероятность хотя бы одного вызова:

4. Предельные вероятности состояний Если число состояний системы конечно и из каждого из них можно за конечное число шагов перейти в любое другое состояние, то предельные вероятности существуют.

Рассмотрим математическое описание Марковского процесса с дискретными состояниями и непрерывным временем на примере процесса, граф которого изображен на рис. 1. Будем полагать, что все переходы системы из состояния S i в S j происходят под воздействием простейших потоков событий с интенсивностями состояний λ ij (i , j =0,.1,2,3).

Так как переход системы из состояния S 0 в S 1 будет происходить под воздействием потока отказов первого узла, а обратный переход из состояния S 1 в S 0 – под воздействием потока и событий, связанных с окончанием ремонтов первого узла и т.д.

Граф состояний системы с проставленными у стрелок интенсивностями будем называтьразмеченным . Рассматриваемая система имеет четыре возможных состояния:S 0 ,S 1 ,S 2 ,S 3 . Назовем вероятностьюi -го состояния вероятностьp i (t ) того, что в моментt система будет находиться в состоянииS i . Очевидно, что для любого моментаt сумма вероятностей всех состояний равна единице:
.

Предельная вероятность состояния S i имеет – показывает среднее относительное время пребывания системы в этом состоянии(если предельная вероятность состояния S 0 , т.е. p 0 =0,5, то это означает, что в среднем половину времени система находится в состоянии S 0 ).

Для системыS с графом состояний, изображенном на рис. система линейных алгебраических уравнений, описывающих стационарный режим, имеет вид (также называется системойуравнений Колмогорова ):

(3)

Данная система может быть получена по размеченному графу состояний, руководствуясь правилом , согласнокоторому в левой части уравнений стоит предельная вероятность данного состояния p i , умноженная на суммарную интенсивность всех потоков, выходящих из i -го состояния, равная сумме произведений интенсивности всех потоков, входящих из i -е состояние на вероятности тех состояний, из которых эти потоки исходят.

Пример . Найти предельные вероятности для системы, граф состояний которого изображен на рис. выше. при λ 01 =1, λ 02 =2, λ 10 =2, λ 13 =2, λ 20 =3, λ 23 =1, λ 31 =3, λ 32 =2 .

Система алгебраических уравнений для этого случая согласно (3) имеет вид:

Решив линейную систему уравнений, получим p 0 = 0,4, p 1 = 0,2, p 2 = 0,27, p 3 = 0,13; т.е. в предельном стационарном режиме система S в среднем 40% времени будет находиться в состоянии S 0 (оба узла исправны), 13% в состоянии S 1 (первый узел ремонтируется, второй работает), 27% - в состоянии S 2 (второй узел ремонтируется, первый работает) и 13% в состоянии S 3 (оба узла ремонтируются).

Определим чистый доход от эксплуатации в стационарном режиме рассмотренной системы S в условиях, что в единицу времени исправная работа узла один и узла два приносит доход соответственно 10 и 6 денежных единиц, а их ремонт требует соответственно затрат 4 и 2 денежных единицы. Оценим экономическую эффективность имеющейся возможности уменьшения вдвое среднего времени ремонта каждого из двух узлов, если при этом придется вдвое увеличить затраты на ремонт каждого узла (в единицу времени).

Для решения этой задачи с учетом полученных значений p 0 , p 1 , p 2 , p 3 определим долю времени исправной работы первого узла, т.е. p 0 + p 2 = 0,4+0,27 = 0,67 и долю времени исправной работы второго узла p 0 + p 1 = 0,4+0,2 = 0,6. В то же время первый узел находится в ремонте в среднем долю времени равную p 1 + p 3 = 0,2+0,13 = 0,33, а второй узел p 2 + p 3 = 0,27+0,13 = 0,40. Поэтому средний чистый доход в единицу времени от эксплуатации системы равен Д =0,67·10+0,6·6–0,33·4–0,4·2=8,18 ден.ед. уменьшение вдвое среднего времени ремонта каждого узла будет означать увеличение вдвое интенсивностей потока «окончания ремонтов» каждого узла, т.е. теперь λ 10 =4, λ 20 =6, λ 31 =6, λ 32 =4 и система уравнений, описывающая стационарный режим системы S , будет иметь вид:

.

Решив систему получим p 0 = 0,6, p 1 = 0,15, p 2 = 0,2, p 3 = 0,05. Учитывая, что p 0 + p 2 = 0,6+0,2 = 0,8,

p 0 + p 1 = 0,6+0,15 = 0,75, p 1 + p 3 = 0,15+0,05 = 0,2, p 2 + p 3 = 0,2+0,05 = 0,25, а затраты на ремонт первого и второго узла составляют соответственно 8 и 4 ден.ед., вычислим чистый средний доход в единицу времени: Д1 =0,8·10+0,75·6–0,2·8–0,25·4=9,99 ден.ед.

Так как Д1 больше Д (примерно на 20%), то экономическая целесообразность ускорения ремонта узлов очевидна.

5. Процесс размножения и гибели Рассматриваемый в СМО процесс размножения и гибели характеризуется тем, что если все состояния системы пронумероватьS 1 ,S 2 ,,S n то из состоянияS k (k < n ) можно попасть либо в состояниеS k -1 , либо в состояниеS k +1 .

Для предельных вероятностей характерна следующая система уравнений:

(4)

к которой добавляется условие:

Из этой системы можно найти предельные вероятности. Получим:

, (6)

,
, …,
. (7)

Пример. Процесс гибели и размножения представлен графом. (рис).

Найти предельные вероятности состояний.

Решение. По формуле (6) найдем
,

по (7)
,
,

т.е. в установившемся стационарном режиме в среднем 70,6% времени система будет находиться в состоянии S 0 , 17,6% – в состоянии S 1 и 11,8% – в состоянии S 2 .

6. Системы с отказами В качестве показателей эффективности СМО с отказами будем рассматривать:

А – абсолютную пропускную способность СМО, т.е. среднее число заявок, обслуживаемых в единицу времени,

Q – относительную пропускную способность, т.е. среднюю долю пришедших заявок, обслуживаемых системой;

– вероятность отказа, т.е. того, что заявка покинет СМО необслуженной;

– среднее число занятых каналов (для многоканальной системы).

(Теория очередей)

1. Элементы теории массового обслуживания

Многие экономические организации и системы, получающие прибыль за счет обслуживания клиентов, можно достаточно точно описать с помощью совокупности математических методов и моделей, которые получили название теории массового обслуживания (ТМО). Рассмотрим основные аспекты ТМО.

1.1 Компоненты и классификация моделей массового обслуживания

Системы массового обслуживания (СМО)- это такие системы, в которые в случайные моменты времени поступают заявки на обслуживание, при этом поступившие заявки обслуживаются с помощью имеющихся в распоряжении системы каналов обслуживания.

С позиции моделирования процесса массового обслуживания ситуации, когда образуются очереди заявок (требований) на обслуживание, возникают следующим образом. Поступив в обслуживающую систему, требование присоединяется к очереди других (ранее поступивших) требований. Канал обслуживания выбирает требование из находящихся в очереди, с тем, чтобы приступить к его об служиванию. После завершения процедуры обслуживания очередного требования канал обслуживания приступает к обслуживанию следующего требования, если таковое имеется в блоке ожидания.

Цикл функционирования системы массового обслуживания подобного рода повторяется многократно в течение всего периода работы обслуживающей системы. При этом предполагается, что переход системы на обслуживание очередного требования после завершения обслуживания предыдущего требования происходит мгновенно, в случайные моменты времени.

Примерами систем массового обслуживания могут служить:

· магазины;

· ремонтные мастерские;

· почтовые отделения;

· посты технического обслуживания автомобилей, посты ремонта автомобилей;

· персональные компьютеры, обслуживающие поступающие заявки или требования на решение тех или иных задач;

· аудиторские фирмы;

· отделы налоговых инспекций, занимающиеся приемкой и проверкой текущей отчетности предприятий;

· телефонные станции и т.д.

Основными компонентами системы массового обслуживания любого вида являются:

· входной поток поступающих требований или заявок на обслуживание;

· дисциплина очереди;

· механизм обслуживания.

Входной поток требований. Для описания входного потока требуется задать вероятностный закон, определяющий последовательность моментов поступления требований на обслуживание и указать количество таких требований в каждом очередном поступлении. При этом, как правило, оперируют понятием «вероятностное распределение моментов поступления требований». Здесь могут поступать как единичные, так и групповые требования (требования поступают группами в систему). В последнем случае обычно речь идет о системе обслуживания с параллельно-групповым обслуживанием.


Дисциплина очереди - это важный компонент системы массово го обслуживания, он определяет принцип, в соответствии с которым поступающие на вход обслуживающей системы требования подключаются из очереди к процедуре обслуживания. Чаще всего используются дисциплины очереди, определяемые следующими правилами:

Первым пришел - первый обслуживаешься;

Пришел последним - обслуживаешься первым;

Случайный отбор заявок;

Отбор заявок по критерию приоритетности;

Ограничение времени ожидания момента наступления обслужи вания (имеет место очередь с ограниченным временем ожидания обслуживания, что ассоциируется с понятием «допустимая дли на очереди»).

Механизм обслуживания определяется характеристиками самой процедуры обслуживания и структурой обслуживающей системы. К характеристикам процедуры обслуживания относятся: продолжительность процедуры обслуживания и количество требований, удовлетворяемых в результате выполнения каждой такой процедуры. Для аналитического описания характеристик процедуры обслу живания оперируют понятием «вероятностное распределение вре мени обслуживания требований».

Следует отметить, что время обслуживания заявки зависит от характера самой заявки или требований клиента и от состояния и возможностей обслуживающей системы. В ряде случаев приходится также учитывать вероятность выхода обслуживающего прибора по истечении некоторого ограниченного интервала времени.

Структура обслуживающей системы определяется количеством и взаимным расположением каналов обслуживания (механизмов, приборов и т. п.). Прежде всего следует подчеркнуть, что система обслуживания может иметь не один канал обслуживания, а несколько; система такого рода способна обслуживать одновременно несколько требований. В этом случае все каналы обслуживания предлагают одни и те же услуги, и, следовательно, можно утверж дать, что имеет место параллельное обслуживание.

Система обслуживания может состоять из нескольких разно типных каналов обслуживания, через которые должно пройти каж дое обслуживаемое требование, т. е. в обслуживающей системе процедуры обслуживания требований реализуются последовательно. Механизм обслуживания определяет характеристики выходящего (обслуженного) потока требований.

Рассмотрев основные компоненты систем обслуживания, можно констатировать, что функциональные возможности любой системы массового обслуживания определяются следующими основными факторами:

· вероятностным распределением моментов поступлений заявок на обслуживание (единичных или групповых);

· вероятностным распределением времени продолжительности обслуживания;

· конфигурацией обслуживающей системы (параллельное, последовательное или параллельно-последовательное обслуживание);

· количеством и производительностью обслуживающих каналов;

· дисциплиной очереди;

· мощностью источника требований.

В качестве основных критериев эффективности функционирования систем массового обслуживания в зависимости от характера решаемой задачи могут выступать:

· вероятность немедленного обслуживания поступившей заявки;

· вероятность отказа в обслуживании поступившей заявки;

· относительная и абсолютная пропускная способность системы;

· средний процент заявок, получивших отказ в обслуживании;

· среднее время ожидания в очереди;

· средняя длина очереди;

· средний доход от функционирования системы в единицу времени и т.п.

Предметом теории массового обслуживания является установление зависимости между факторами, определяющими функциональные возможности системы массового обслуживания, и эффективностью ее функционирования. В большинстве случаев все параметры, описывающие системы массового обслуживания, являются случайными величинами или функциями, поэтому эти системы относятся к стохастическим системам.

Независимо от характера процесса, протекающего в системе мас сового обслуживания, различают два основных вида СМО:

Системы с отказами, в которых заявка, поступившая в систему в момент, когда все каналы заняты, получает отказ и сразу же покидает очередь;

Системы с ожиданием (очередью), в которых заявка, поступившая в момент, когда все каналы обслуживания заняты, становится в очередь и ждет, пока не освободится один из каналов.

Системы массового обслуживания с ожиданием делятся на системы с ограниченным ожиданием и системы с неограниченным ожиданием.

В системах с ограниченным ожиданием может ограничиваться:

Длина очереди;

Время пребывания в очереди.

В системах с неограниченным ожиданием заявка, стоящая в очереди, ждет обслуживание неограниченно долго, т.е. пока не подойдет очередь.

Все системы массового обслуживания различают по числу каналов обслуживания:

Одноканальные системы;

Многоканальные системы.

Приведенная классификация СМО является условной. На практике чаще всего системы массового обслуживания выступают в качестве смешанных систем. Например, заявки ожидают начала обслуживания до определенного момента, после чего система начинает работать как система с отказами.

Определим характеристики систем массового обслуживания.

1.2. Одноканальная СМО с отказами

Простейшей одноканальной моделью с вероятностными входным потоком и процедурой обслуживания является модель, характеризуемая показательным распределением как длительностей интервалов между поступлениями требований, так и длительностей обслуживания. При этом плотность распределения длительностей интервалов между поступлениями требований имеет вид где λ - интенсивность поступления заявок в систему (среднее число заявок, поступающих в систему за единицу времени).

Плотность распределения длительностей обслуживания:

где – интенсивность обслуживания, tоб – среднее время обслуживания одного клиента.

Пусть система работает с отказами. Можно определить абсолютную и относительную пропускную способность системы. Относительная пропускная способность равна доли обслуженных заявок относительно всех поступающих и вычисляется по формуле: . Эта величина равна вероятности Р0 того, что канал обслуживания свободен.

Абсолютная пропускная способность (А) - среднее число заявок, которое может обслужить система массового обслуживания в единицу времени: Вероятность отказа в обслуживании заявки будет равна вероятности состояния «канал обслуживания занят»:

Данная величина Ротк может быть интерпретирована как средняя доля необслуженных заявок среди поданных.

Пример. Пусть одноканальная СМО с отказами представляет собой один пост ежедневного обслуживания для мойки автомобилей. Заявка - автомобиль, прибывший в момент, когда пост занят, - получает отказ в обслуживании. Интенсивность потока автомобилей λ 1,0 (автомобиль в час). Средняя продолжительность обслуживания - tоб=1,8 часа.

Требуется определить в установившемся режиме предельные значения:

a) относительной пропускной способности q;

b) абсолютной пропускной способности А;

c) вероятности отказа Ротк;

Сравнить фактическую пропускную способность СМО с номинальной, которая была бы, если бы каждый автомобиль обслуживался точно 1,8 часа и автомобили следовали один за другим без перерыва.

Определим интенсивность потока обслуживания: Вычислим относительную пропускную способность: Величина q означает, что в установившемся режиме система будет обслуживать примерно 35% прибывающих на пост автомобилей.

Абсолютную пропускную способность определим по формуле: А=λ×q=1×0,356=0,356.

Это означает, что система способна осуществить в среднем 0,356 обслуживания автомобилей в час.

Вероятность отказа:

Ротк=1-q=1-0,356=0,644.

Это означает, что около 65% прибывших автомобилей на пост ЕО получат отказ в обслуживании.

Определим номинальную пропускную способность системы:

Аном= (автомобилей в час). Оказывается, что Аном в раза больше, чем фактическая пропускная способность, вычисленная с учетом случайного характера потока заявок и времени обслуживания.

1.3 . Одноканальная СМО с ожиданием и ограниченной очередью

Рассмотрим теперь одноканальную СМО с ожиданием.

Система массового обслуживания имеет один канал. Входящий поток заявок на обслуживание поток имеет интенсивность λ. Интенсивность потока обслуживания равна μ (т. е. в среднем непрерывно занятый канал будет выдавать μ обслуженных заявок). Длительность обслуживания - случайная величина, подчиненная показательному закону распределения. Заявка, поступившая в момент, когда канал занят, становится в очередь и ожидает обслуживания.

Рассмотрим систему с ограниченной очередью. Предположим, что независимо оттого, сколько требований поступает на вход обслуживающей системы, данная система (очередь + обслуживаемые клиенты) не может вместить более N-требований (заявок), из которых одна обслуживается, а (N-1) ожидают, Клиенты, не попавшие в ожидание, вынуждены обслуживаться в другом месте и такие заявки теряются. Наконец, источник, порождающий заявки на обслуживание, имеет неограниченную (бесконечно большую) емкость.

Обозначим Рn - вероятность того, что в системе находится n заявок. Эта величина вычисляется по формуле:

Здесь - приведенная интенсивность потока. Тогда вероятность того, что канал обслуживания свободен и в системе нет ни одного клиента, равна: .

С учетом этого можно обозначить

Определим характеристики одноканальной СМО с ожиданием и ограниченной длиной очереди, равной (N-1):

· вероятность отказа в обслуживании заявки: Pотк=РN=

· относительная пропускная способность системы:

· абсолютная пропускная способность:

среднее число находящихся в системе заявок:

среднее время пребывания заявки в системе:

средняя продолжительность пребывания клиента (заявки) в очереди:

среднее число заявок (клиентов) в очереди (длина очереди):

Рассмотрим пример одноканальной СМО с ожиданием.

Пример. Специализированный пост диагностики представляет собой одноканальную СМО. Число стоянок для автомобилей, ожидающих проведения диагностики, ограниченно и равно 3, то есть (N- 1)=3. Если все стоянки заняты, т. е. в очереди уже находится три автомобиля, то очередной автомобиль, прибывший на диагностику, в очередь на обслуживание не становится. Поток автомобилей, прибывающих на диагностику имеет интенсивность λ=0,85 (автомобиля в час). Время диагностики автомобиля распределено по показательному закону и в среднем равно =1,05 час.

Требуется определить вероятностные характеристики поста диагностики, работающего в стационарном режиме.

Интенсивность потока обслуживаний автомобилей:

Приведенная интенсивность потока автомобилей определяется как отношение интенсивностей λ и μ, т.е.

Вычислим вероятности нахождения п заявок в системе:

P1=r∙P0=0,893∙0,248=0,221;

P2=r2∙P0=0,8932∙0,248=0,198;

P3=r3∙P0=0,8933∙0,248=0,177;

P4=r4∙P0=0,8934∙0,248=0,158.

Вероятность отказа в обслуживании автомобиля:

Pотк=Р4=r4∙P0≈0,158.

Относительная пропускная способность поста диагностики:

q=1–Pотк=1-0,158=0,842.

Абсолютная пропускная способность поста диагностики

А=λ∙q=0,85∙0,842=0,716 (автомобиля в час).

Среднее число автомобилей, находящихся на обслуживании и в очереди (т.е. в системе массового обслуживания):

Среднее время пребывания автомобиля в системе:

Средняя продолжительность пребывания заявки в очереди на обслуживание:

Wq=Ws-1/μ=2,473-1/0,952=1,423 часа.

Среднее число заявок в очереди (длина очереди):

Lq=λ∙(1-PN)∙Wq=0,85∙(1-0,158)∙1,423=1,02.

Работу рассмотренного поста диагностики можно считать удовлетворительной, так как пост диагностики не обнаруживает автомобили в среднем в 15,8% случаев (Ротк=0,158).

1.4. Одноканальная СМО с ожиданием и неограниченной очередью

Перейдем теперь к рассмотрению одноканальной СМО с ожиданием без ограничения на вместимость блока ожидания (т.е. Ν → ∞). Остальные условия функционирования СМО остаются без изменений.

Устойчивое решение в такой системе существует только тогда, когда λ<μ, то есть заявки должны обслуживаться с большей скоростью, чем поступают, в противном случае очередь может разрастись до бесконечности.

Вероятность того, что в системе находится п заявок, вычисляется по формуле

Pn=(1-r)rn, n=0,1,2,…,

где r = λ/μ <1.

Характеристики одноканальной СМО с ожиданием, без ограничения на длину очереди, следующие:

среднее число находящихся в системе клиентов (заявок) на обслуживание:

средняя продолжительность пребывания клиента в системе:

среднее число клиентов в очереди на обслуживание:

средняя продолжительность пребывания клиента в очереди:

Пример. Вспомнив о ситуации, рассмотренной в предыдущем примере, где речь идет о функционировании поста диагностики. Пусть рассматриваемый пост диагностики располагает неограниченным количеством площадок для стоянки прибывающих на обслуживание автомобилей, т.е. длина очереди не ограничена.

Требуется определить финальные значения следующих вероятностных характеристик:

вероятности состояний системы (поста диагностики);

среднее число автомобилей, находящихся в системе (на обслуживании и в очереди);

среднюю продолжительность пребывания автомобиля в системе

(на обслуживании и в очереди);

среднее число автомобилей в очереди на обслуживании;

среднюю продолжительность пребывания автомобиля в очереди.

Решение. Параметр потока обслуживания и приведенная интенсивность потока автомобилей ρ определены в предыдущем примере:

μ=0,952; ρ=0,893.

Вычислим предельные вероятности системы по формулам

P0=1-r=1-0,893=0,107;

P1=(1-r)·r=(1-0,893)·0,893=0,096;

P2=(1-r)·r2=(1-0,893)·0,8932=0,085;

P3=(1-r)·r3=(1-0,893)·0,8933=0,076;

P4=(1-r)·r4=(1-0,893)·0,8934=0,068;

P5=(1-r)·r5=(1-0,893)·0,8935=0,061 и т.д.

Следует отметить, что Р0 определяет долю времени, в течение которого пост диагностики вынужденно бездействует (простаивает). В нашем примере она составляет 10, 7%, так как Р0=0,107.

Среднее число автомобилей, находящихся в системе (на обслуживании и в очереди):

ед.

Средняя продолжительность пребывания клиента в системе:

Среднее число автомобилей в очереди на обслуживание:

Средняя продолжительность пребывания автомобиля в очереди:

Относительная пропускаемая способность системы равна единицы, так как все поступившие заявки рано или поздно будут обслужены:

Абсолютная пропускная способность:

A=λ∙q=0,85∙1=0,85.

Следует отметить, что предприятие, осуществляющее диагностику автомобилей, прежде всего интересует количество клиентов, которое посетит пост диагностики при снятие ограничения на длину очереди.

Допустим, в первоначальном варианте количество мест для стоянки прибывших автомобилей как в предыдущем примере было равно трем. Частота m возникновения ситуаций, когда прибывающий на пост диагностике автомобиль не имеет возможности присоединить к очереди:

В нашем примере при N=3+1=4 и r=0,893,

m=λ∙P0∙ r4=0,85∙0,248∙0,8934=0,134 автомобиля в час.

При 12-часовом режиме работы поста диагностики это эквивалентно тому, что пост диагностики в среднем за смену (день) будет терять 12∙0,134=1,6 автомобиля.

Снятие ограничения на длину очереди позволяет увеличить количество обслуживающих клиентов в нашем примере в среднем на 1,6 автомобиля за смену (12 ч. работы) пост диагностики. Ясно, что решение относительно расширения площади для стоянки автомобиля, прибывающих на пост диагностики, должно основываться на оценке экономического ущерба, который обусловлен потерей клиентов при наличие всего трех мест для стоянки этих автомобилей.

1.5. Многоканальная СМО с отказами

В подавляющем большинстве случаев на практике система массового обслуживания является многоканальными, то есть параллельно могут обслуживаться несколько заявок, и, следовательно, модели с обслуживающими каналами (где число каналов обслуживания n>1) представляют несомненный интерес.

Процесс массового обслуживания, описываемый данной моделью, характеризуется интенсивностью входного потока λ, при этом параллельно может обслуживаться не более n клиентов (заявок). Средняя продолжительность обслуживания одной заявки равняется 1/μ. Режим функционирования того или иного обслуживающего канала не влияет на режим функционирования других обслуживающих каналов системы, при чем длительность процедуры обслуживания каждым из каналов является случайной величиной, починенной экспоненциальному закону распределения. Конечная цель использования параллельно включенных обслуживающих каналов заключается в повышение (по сравнению с одноканальной системой) скорости обслуживания требований за счет обслуживания одновременно n клиентов.

Стационарное решение системы имеет вид:

,где ,

Формулы для вычисления вероятностей называются формулами Эрланга.

Определим вероятностные характеристики функционирования многоканальной СМО с отказами в стационарном режиме:

вероятность отказа:

ак как заявка получает отказ, если приходит в момент, когда все каналов заняты. Величина Ротк характеризует полноту обслуживания входящего потока;

вероятность того, что заявка будет принята к обслуживанию (она же – относительная пропускная способность системы) дополняет Ротк до единицы:

абсолютная пропускная способность

среднее число каналов, занятых обслуживанием () следующее:

Величина характеризует степень загрузки СМО.

Пример. Пусть n-канальная СМО представляет собой вычислительный центр (ВЦ) с тремя (n=3) взаимозаменяемыми ПЭВМ для решения поступающих задач. Поток задач, поступающих на ВЦ, имеет интенсивность λ=1 задача в час. Средняя продолжительность обслуживания tоб=1,8 час.

Требуется вычислить значения:

Вероятности числа занятых каналов ВЦ;

Вероятности отказа в обслуживании заявки;

Относительной пропускной способности ВЦ;

Абсолютной пропускной способности ВЦ;

Среднего числа занятых ПЭВМ на ВЦ.

Определите, сколько дополнительно надо приобрести ПЭВМ, чтобы увеличить пропускную способность ВЦ в 2 раза.

Определим параметр μ потока обслуживаний:

Предельные вероятности состояний найдем по формулам Эрланга:

Вероятность отказа в обслуживании заявки

Относительная пропускная способность ВЦ

Абсолютная пропускная способность ВЦ:

Среднее число занятых каналов – ПЭВМ

Таким образом, при установившемся режиме работы СМО в среднем будет занято 1,5 компьютера из трех – остальные полтора будут простаивать. Работу рассмотренного ВЦ вряд ли можно считать удовлетворительной, так как центр не обслуживает заявки в среднем в 18% случаев (Р3= 0,180). Очевидно, что пропускную способность ВЦ при данных λ и μ можно увеличить только за счет увеличения числа ПЭВМ.

Определим, сколько нужно использовать ПЭВМ, чтобы сократить число не обслуженных заявок, поступающих на ВЦ, в 10 раз, т.е. чтобы вероятность отказа в решении задач не превосходила 0,0180. Для этого используем формулу вероятности отказа:

Составим следующую таблицу:

n
P0 0,357 0,226 0,186 0,172 0,167
Pотк 0,673 0,367 0,18 0,075 0,026

Анализируя данные таблицы, следует отметить, что расширение числа каналов ВЦ при данных значениях λ и μ до 6 единиц ПЭВМ позволит обеспечить удовлетворение заявок на решение задач на 99,22%, так как при n = 6 вероятность отказа в обслуживании (Ротк) составляет 0,0078.

6.6. Многоканальная СМО с ожиданием

Рассмотрим многоканальную систему массового обслуживания с ожиданием. Процесс массового обслуживания при этом характеризуется следующим: входной и выходной потоки имеют интенсивности λ и μ соответственно, параллельно обслуживаться могут не более С клиентов, то есть система имеет С каналов обслуживания. Средняя продолжительность обслуживания одного клиента равна .

Вероятности того, что в системе находятся п заявок (С обслуживаются, остальные ожидают в очереди) равна: ,где

Решение будет действительным, если выполняется следующее условие:

Остальные вероятностные характеристики функционирования в стационарном режиме многоканальной СМО с ожиданием и неограниченной очередью определяется по следующим формулам:

среднее число клиентов в очереди на обслуживание

;

среднее число находящихся в системе клиентов (заявок на обслуживание и в очереди)

средняя продолжительность пребывания клиента (заявки на обслуживание) в очереди

средняя продолжительность пребывания клиента в системе

Рассмотрим примеры многоканальной системы массового обслуживания с ожиданием.

Пример. Механическая мастерская завода с тремя постами (каналами) выполняет ремонт малой механизации. Поток неисправных механизмов, прибывающих в мастерскую, - пуассоновский и имеет интенсивность λ=2,5 механизма в сутки, среднее время ремонта одного механизма распределено по показательному закону и равно tоб=0,5 сут. Предположим, что другой мастерской на заводе нет, и, значит, очередь механизмов перед мастерской может расти практически неограниченно.

Требуется вычислить следующие предельные значения вероятностных характеристик системы:

Вероятность состояний системы;

Среднее число заявок в очереди на обслуживание;

Среднее число находящихся в системе заявок;

Среднюю продолжительность пребывания заявки в очереди;

Среднюю продолжительность пребывания заявки в системе.

Определим параметр потока обслуживаний

Приведенная интенсивность потока заявок

ρ=λ/μ=2,5/2,0=1,25,

при этом λ/μ ∙с=2,5/2∙3=0,41<1.

Поскольку λ/μ∙с<1, то очередь не растет безгранично и в системе наступает предельный стационарный режим работы.

Вычислим вероятности состояний системы:


Вероятность отсутствия очереди у мастерской

Ротк≈Р0+Р1+Р2+Р3≈0,279+0,394+0,218+0,091=0,937.

Среднее число заявок в очереди на обслуживание Среднее число находящихся в системе заявок

Ls=Lq+ =0,111+1,25=1,361.

Средняя продолжительность пребывания механизма в очереди на обслуживание суток

Средняя продолжительность пребывания механизма в мастерской (в системе)

суток.



Поделиться