Тепловой расчет котлов с кипящим слоем. по дисциплине «Энергосбережение в теплоэнергетике и

Статус рассмотрения проекта Координационным Советом: Не рассматривался . Объекты внедрения: Промышленность , Котельные, РТС, КТС, ТЭЦ . Эффект от внедрения:
- для объекта экономия капиталовложений на сооружение станций до 10%, экономия топлива, увеличение КПД котлоагрегатов;
- для муниципального образования снижение потребления топлива, улучшение качества и надежности теплоисточников, уменьшение тарифа для потребителей. .

Стационарный котел с кипящим слоем - стационарный котел для сжигания топлива в псевдоожиженном слое инертного материала, золы или смесей с размещением в этом слое части поверхностей нагрева.

Кипящий слой - псевдоожиженный слой, состояние слоя зернистого сыпучего материала, при котором под влиянием проходящего через него потока газа или жидкости (сжижающих агентов) частицы твёрдого материала интенсивно перемещаются одна относительно другой. В этом состоянии слой напоминает кипящую жидкость, приобретая некоторые её свойства, и его поведение подчиняется законам гидростатики. В К. с. достигается тесный контакт между зернистым материалом и сжижающим агентом, что делает эффективным применение К. с. в аппаратах химической промышленности, где необходимо взаимодействие твёрдой и текучей фаз (диффузионные, каталитические процессы и др.).

Таблица по данным ОАО "НПО ЦКТИ"

Количество

Тепловая

мощность, МВт

Год ввода в эксплуатацию

пос. Пюсси, Эстония, предприятие AS "Repo"

древ. отходы/ сланец

пос. Юри, Эстония, предприятие AS "ELVESO"

новый водогрейный котел

фрез. торф/

древ. отходы

пос. Киетавишкес, Литва, предприятие АВ "DOMINGA HARDWOOD" (совместно с АО "Казлу Рудос Металас")

древ.отходы

г. Мариямполе, Литва, "Мариямполес РК" (совместно с АО "Казлу Рудос Металас")

(оснащение нового котла топкой НТКС)

древ. отходы

пос.Максатиха Тверской обл., Максатихинский ДОК

(реконструкция существующего котла)

древ. отходы

(оснащение нового котла топкой НТКС)

древ. отходы

г.Плунге, Литва, предприятие AB "PLUNGES BIOENERGIJA" (совместно с АО "Казлу Рудос Металас")

(оснащение нового котла топкой НТКС)

древ. отходы

г. Вилейка, Белоруссия,

Мини-ТЭЦ на базе РК №3 (совместно с АО "Аксис Индастриз")

Новый паровой котел

Д=22 т/ч, р=24 бар, t=350ºC

древ. отходы

в данный момент - проведение ПНР

пос.В.Синячиха Свердловской обл., фанерный комбинат ЗАО "Фанком"

Новый паровой котел

Еп-20-2,4-350 ДФ

древ. отходы

в данный момент - стадия изготовления оборудования

Основными, присущими только кипящему слою особенностями сжигания топлива является:

Интенсивное перемешивание частиц топлива газовыми пузырями, позволяющими избежать появления в слое существенных температурных перекосов, и как, следствие, шлакования;

Интенсификация теплопередачи от кипящего слоя к теплопередающим поверхностям (частица твердого материала, охлаждаясь у поверхности трубы, омываемой рабочим телом, из-за различия плотностей отдает на несколько порядков теплоты больше, чем такая же по объему частица газа, охлаждающаяся до той же температуры; коэффициент теплоотдачи к погруженным в кипящий слой трубам составляет в современных топках ~250 Вт/м2К);

Интенсификация горения твердого топлива (объясняется увеличением удельной поверхности окисления и постоянным «обновлением» его поверхности, благодаря интенсивной пульсации, вращению, соударениям, дроблению и истиранию в мельчайшую пыль).

В топках с кипящим слоем (рис.1, 2) сжигается угольная мелочь бурых и каменных углей с размерами кусков от 2 до 12 мм.

Температура слоя, во избежание шлакования, регулируется вводом пара в количестве 0,3-0,6 кг/кг. Возможна замена пара водой, распыленной при помощи пульверизаторов (расход воды 0,2-0,3 кг/кг).

Недостатком топок с кипящим слоем являются:

Вынос углерода до 20-30% всего углерода топлива (поэтому эти топки рекомендуют применять при возможности дожигания уноса 0-1 мм, в рабочем пространстве котла);

Зашлаковывание межсоплового пространства и самих сопл воздухораспределительных колосниковых решеток при недостаточном динамическом напоре воздуха;

Абразивный износ теплопередающих поверхностей, особенно высокий у погружных в кипящий слой.

Рис. 1. Полугазовая топка с кипящим слоем.

1 - бункер для топлива; 2 - шнековый питатель; 3 - колосниковая решетка; 4 - дутьевая коробка для подачи первичного воздуха; 5 - подача вторичного воздуха; 6 - затвор бункера; 7 - дутьевой вентилятор.

Рис. 2. Топка с кипящим слоем и с погруженным теплообменником.

1 - воздухораспределительная решетка; 2 - теплообменник; 3 - шлаковый питатель; 4 - горелка растопочная; 5 - устройство для накопления и удаления золы; 6 - винтовой конвейер.


Для того чтобы добавить описание энергосберегающей технологии в Каталог, заполните опросник и вышлите его на c пометкой «в Каталог» .

Кафедра Промышленной теплоэнергетики

РАСЧЕТНО-ГРАФИЧЕСКАЯ РАБОТА №2

по дисциплине «Энергосбережение в теплоэнергетике и

теплотехнологии»

на тему: Расчет комбинированной газо-паротурбинной установки (ГПТУ), содержащий топку с кипящим слоем под давлением

Проверил: ______________

Выполнил: ____________

Алматы 2008


1. ЗАДАНИЕ К РГР

2. ОПИСАНИЕ УСТРОЙСТВА РАБОТЫ КОМБИНИРОВАННОЙ ГАЗОПАРОТУРБИННОЙ УСТАНОВКИ, РАБОТАЮЩЕЙ НА ТВЕРДОМ ТОПЛИВЕ, СОДЕРЖАЩЕЙ ТОПКУ С КИПЯЩИМ СЛОЕМ ПОД ДАВЛЕНИЕМ

3. ИСХОДНЫЕ ДАННЫЕ

4. РЕШЕНИЕ

5. ВЫВОДЫ ПО РАБОТЕ

6. СПИСОК ЛИТЕРАТУРЫ


Описание устройства работы комбинированной газопаротурбинной установки, работающей на твердом топливе, содержащей топку с кипящим слоем под давлением.

(Сибикин Ю.Д., Сибикин М.Ю. «Технология энергосбережения» М. 2006г. стр. 170-172, Котлер В.Р. «Специальные топки энергетических котлов» М. 1990г. стр. 95-98)

Принципиальная схема установки показана на рис.

1. Камера с кипящим слоем под давлением

2. пароперегреватель

3. парообразователь с экономайзером

4. паровая турбина

5. конденсатор

6. бак для конденсата

7. циклоны

8. газовая турбина ГТУ

9. осевой компрессор ГТУ

10. воздухоочиститель

12. доломит

13. воздух

14. электрогенератор

15. , 16. насосы

17.сепаратор

18.дополнительная камера сгорания

Представленная на рисунке схема позволяет осуществить бинарный цикл, когда генерируемый в котле пар используется в паровой турбине, а продукты сгорания, имеющие высокое давление, используются в газовой турбине, что позволяет существенно повысить термический КПД установки, позволяет уменьшить габариты топочных устройств и вредные выбросы в атмосферу, появляется возможность сжигания низкосортных углей.

Колы с кипящим слоем под давлением по габаритам, по сравнению с котлами обычного типа, получаются на 60% меньше, поэтому при перевооружении устаревших ТЭС можно увеличить мощность энергоблока без использования дополнительной территории, повысить экономичность энергоблока, обеспечить соблюдение экологических требований. Установка может быть выполнена в модульном исполнении полностью в заводских условиях. Модули к месту установки можно транспортировать железнодорожным и воздушным транспортом, что позволяет свести до минимума объем монтажных работ на месте сооружения ТЭС, сократить срок строительства на 25%, сократить капитальные затраты на 10%.

Установка работает следующим образом:

Воздух компрессором 9 ГТУ под давлением 1,2-1,6 МПа подается сначала в корпус 1 топки котла, а затем в камеру с кипящим слоем. Уголь и доломит смешиваются и пневматической системой подается в кипящий слой в который погружены трубы пароперегревателя 2 котла. Горячие газы, образовавшиеся в камере с кипящим слоем, отчищаются в циклонах 7 и подаются в газовую турбину 8 установленную на одном валу с компрессором 9. Часть механической энергии. вырабатываемой газовой турбиной 8. расходуется на сжатие воздуха в компрессоре 9, а часть идет на привод электрогенератора 14 для получения электроэнергии. Обработавшие газы после газовой турбины 8 поступают в регенератор 3 и затем, через выхлопное устройство в атмосферу. В регенераторе 3 установлен экономайзер, куда из бака конденсатной воды 6 насосом 15 подается конденсат под давлением. Здесь конденсат, за счет утилизации тепла выхлопных газов, нагревается и поступает в пароперегреватель 2 установленный в кипящем слое камеры 1. Перегретый пар, расширяясь в паровой турбине 4, производит механическую работу для привода электрогенератора 14. Отработавший пар, в турбине 4 поступает в конденсатор 5, где он конденсируется обдавая тепло воде используемой для бытовых и технических нужд. Полученный конденсат насосом 16 подается в бак конденсата. Зола из кипящего слоя и из циклонов пневмотранспортом подается в бункер. Доломит подмешивается в молярном отношении Ca/S=1,9-2. (При температуре около 850°С оксиды реагирующей с кальцием доломита превращаясь в сульфат кальция (гипс), который удаляется вместе с золой). Средняя скорость воздуха для ожижения слоя составляет 0,9-1 м/с, а избыток воздуха α=1,1-1,3. Эффективность горения 97-99%. Температура в кипящем слое должна быть не выше 900°С, поэтому температура газов, поступающих в газовую турбину 8, не более 850°С. Для повышения температуры газов можно часть угля подвергать пиролизу, а полученный газ сжигать для повышения температуры в дополнительной камере сгорания 18. В результате этого можно повысить мощность турбины. Кипящий слой под давлением разжигается с помощью мазутных форсунок, затем переводится на уголь. Кипящий слой высотой 3,5-4 м. ведет себя стабильно. При полной нагрузке все трубы котла погружены в кипящий слой. Если высота слоя уменьшается, например, после удаления золы, некоторые трубы оказываются над слоем и нагрузка котла уменьшается, т.к. уменьшается количество тепла передаваемого трубам, а также уменьшается температура газа. Это приводит к снижению мощности паровой и газовой турбин. Таким образом, регулирование можно осуществлять изменением массы кипящего слоя.

В таблице 1 приведены расчетные параметры блоков мощностью 200 и 800 МВт, которые осваиваются в Испании (ТЭС Эскатфон).

В Испании в качестве топлива используются лигниты, содержащие 4-8% серы, 25-45% золы и 20% влаги. Установленный на ТЭС Эскатрон котел вырабатывает 288т/ч пара с параметрами 9,5 МПа, 510°С. Расход топлива Gт=65 т/ч, известняка Gизв.=25т/ч. Установка позволяет снизить выбросы SO2 на 90%, высота слоя 3,5м., давление в топке 1,2 МПа.

Расчет комбинированной газапаротурбинной установки, работающей на твердом топливе, содержащей топку с кипящим слоем под давлением.


ИСХОДНЫЕ ДАННЫЕ

1. Суммарная степень повышения давления воздуха в компрессоре ГТУ, Пке =12,8

2. Расход воздуха через воздушный тракт компрессора ГТУ и топку котла Gв =115 кг/с.

3. Расход газов, идущих из камеры с кипящим слоем под давлением принимаем равным Gг≈Gв=115 кг/с

4. Коэффициент избытка воздуха, поступающего в камеру с кипящим слоем, принимаем равным α=1.2

5. Температура кипящего слоя Ткс=1173°К (900°С)

6. температура газов, выходящих из камеры с кипящим слоем, Т4’= 1123°К (850°С)

7. Температура газа, поступающего в газовую турбину ГТУ, принимаем равной Т*4=1270°К (997°С). Газ с температурой Т4’= 1123°К подогреваем в специальной камере до Т*4=1270°К, при сжигании газа, полученного в результате пиролиза части твердого топлива.

8. Температура воздуха на входе в компрессор Т*1=288°К (15°С).

9. Давление воздуха окружающей среды Рн=0.1013 МПа. С учетом потерь в воздухоочистителе входного устройства ГТУ, давление на входе в компрессор Р1*= РН*0,9=0.1013*0.9=0.09117 МПа

10. КПД компрессора и турбины ГТУ принимаем равным ηк=0.85 ηт=0.91

11.Уголь, сжигаемый в топке – Экибастузский

12.Давление воды и пара в паровом тракте, Рк =9 МПа

13.Температура перегрева пара, t0=550 0С

14.Температура отработавшего в турбине пара t2=80 0C


РЕШЕНИЕ

1. Термодинамический расчет ГТУ.

1.1 Удельная работа, затрачиваемая на адиабатическое сжатие 1 кг воздуха в компрессоре

(378,1°С).

Воздух после компрессора под давлением Р3=1,17 МПа, температурой Т3=651,1°К, с расходом Gв =115 кг/с поступает в камеру с кипящим слоем. Туда же подается топливо Gт и доломит Gизв.

°К.

Ср.г. при Т4*=1270°К, и α=1,1 из монограммы Ср.г.=1,26

МПа

Рст=0,11 МПа

При Т5*=980 °К и α=1,1; Срг=1,21;

°К (509°С)

кВт = 27,577 МВт

За счет газотурбинного цикла получена электрическая мощность

Nэ=Nст=27,577 МВт

Выходные газы после силовой газотурбины с параметрами Gг=115 кг/с, Рст=0,11 МПа, Тст=782°К (509°С) уходят в котел утилизатор.

2. Расчет паротурбинной части установки.

В котле утилизаторе устанавливаем только экономайзер. На рис. 2 приведен график распределения температур газов и воды по высоте котла утилизатора. На рис.3 показана схема котла утилизатора конденсат из бака 6 насосом высокого давления 15 подается в экономайзер 2 котла утилизатора под давлением Рк=

9 МПа. Температура воды на входе в экономайзер принята равной t3=80°C. В экономайзере вода нагревается до температуры Ts ≤ 250 °C. Из экономайзера вода поступает в испаритель, а затем в пароперегреватель установленный в кипящем слое камеры сгорания твердого топлива.

В испарители вода нагревается до температуры 300°С при которой она преобразовывается в сухой насыщенный пар с теплосодержанием h1=2961,5 кДж/кг. Теплота парообразования составляет величину:

2.1 Zn=h1-hs= 2961,5 –1085,7= 1876 кДж/кг

Сухой насыщенный пар поступает в пароперегреватель, где пар перегревается до температуры t0=550°C и его теплосодержание становится равным h0=3512 кДж/кг.

2.2 Температура кипящего слоя не превышает 900°С (1173°К), т.к. парообразователь с пароперегревателем, находящиеся в кипящем слое, отбирают тепло.

На рисунке 4 показано распределение температур воды, пара и газа в парообразователе и пароперегревателе.

Перегретый пар срабатывает в паровой турбине до атмосферного давления Pвых=0,11 МПа и температуры 100°С. Теплосодержание пара на выходе из турбины h’вых=2675,6 кДж/кг.

Отработавший пар конденсируется в бойлере до температуры t3=80°C. C теплосодержанием h3=335 кДж/кг. Теплоперепад отработавшего пара и конденсата hбоил.= h’вых - h3 = 2675,6-335=2341 кДж/кг. Это тепло перейдет в воду круга циркуляции воды системы отопления и горячего водоснабжения.

Важнейшим параметром комбинированной ГПТУ является паровое отношение Тп. Тп=Gп/Gг. Паровое отношение может быть определено из уравнений теплового баланса для экономайзера, испарителя или пароперегревателя. В кипящем слое установлены испаритель и пароперегреватель. Уравнение теплового баланса для парообразователя и пароперегревателя запишется в виде:

2.3 Ср((h0-h1)+zn)=GгCрг(Т4-T’4)

Здесь Т4 из монограмм при Т3=651,1°К и gт=0,056

В этом случае паровое соотношение будет

2.4 =

В котле утилизаторе установлен только экономайзер. Уравнение теплового баланса экономайзера, согласно рис. 2 запишется в виде

2.5 Gв(hs-h3)=GгCрг(Tтс-T5)

2.6 =

2.7 Выбираем Тп=0,65. В этом случае вода в экономайзере нагреется до температуры ts<250°C?, т.к. Тэкп=0,55<0,65

Из уравнения теплового баланса экономайзера при Тп=0,65 следует, что теплосодержание воды на выходе из экономайзера будет

=кДж/кг

Из таблиц следует, что вода в экономайзере нагреется до температуры ts=222°C. Дальнейший нагрев воды, парообразование и перегрев пара обеспечит кипящий слой.

2.8 Количество пара, которое можно получить Gп=Gп*Тп=115*0,65=74,75кг/с. ≈ 269,1 т/ч.

2.9 Для сжигания в топке с кипящим слоем под давлением используется экибастузский уголь. При этом принимаем: Wр=6,5 Aспр=43,5 Cр=38,2 Sрп=0,4 Hр=3 Nр=0,8 Oр=7,3 Qрн=15,8 МДж/кг Vг=24 K=1,35 –коэф. размолотости.

(Под ред. Григорьева, Зорина. Книга 2., стр. 362)

2.10 Из уравнения Менделеева найден теоретический расход сухого воздуха.

U0в=3,9712 м3/кг при ρв=1,293 кг/м3, L0= U0в ρв=5,135 кг возд./кг топл.

2.11 Коэффициент избытка воздуха, поступающего в камеру с кипящим слоем принимаем равным α=1,2

2.12 Удельный расход топлива qт на 1 кг воздуха составляет величину

qт=1/ α L0 =0,1623 кг топл./кг возд.

2.12* Удельный расход топлива q*т приведенный к жидкому или газообразному на 1 кг воздуха составляет величину

q*т=1/ α L*0 =0,1623 кг топл./кг возд.

2.13 Расход топлива при qт=0,1623 кг топл./кг возд. При Gв =115 кг/с составляет величину Gт=Gв*qт=115*0,1623=18,66 кг/с ≈ 67,2 т/час угля.

2.14 Количество тепла подведенного с топливом в единицу времени. QрнGт=15800*18,66=294,8*103 кВт = 294,8 МВт.

2.15 Потери тепла с уходящими газами. QII=CргGг(Твых5-Тн)=1,07*115*(423-288) = 16,612 МВт.

2.16 В дополнительной камере сгорания при сгорании топлива выделяется следующее количество тепла Qкс=Gгcрг(Т-Т4)=115*1,255*(1270-1123)= 21,22 МДж/кг

В дополнительной камере сгорания сжигается газообразное топливо, состоящее в основном из СО, полученного в результате пиролиза угля, например экибастузского. При коэффициенте избытка воздуха α=0,5-0,8 под давлением 0,15-0,3 МПа. Теплотворная способность такого топлива Qрн=5,5 МДж/кг Из 1 т. угля получается 3500 м3 топливного газа. В дополнительной камере сгорания нужно сжигать газообразного топлива в количестве Gкст=Qкс/Qрн гп=21,22/5,5=3,86 м3/с Gкстг= Gкстρг=3,86 *1,167=4,5 кг/с

Чтобы получать такое количество газа, нужно подвергать пиролизу Gугля=Gкст/3500=9241/3500=2,64 т/час.

Из расчета реакции горения, получено требуемое количество воздуха для сгорания 1 кг топлива. L0=4,9436 кг возд./кг топл. В газах, на входе в дополнительную камеру сгорания, с расходом Gв =115 кг/с содержится G*в=α* Gг=0,2*115 = 23 кг/с

В камере сгорания может сгореть Gкст= G*в/Lкс0=23/4,9436=4,65 кг топл./с, а должно сгорать Gкстг=4,5 кг/с, следовательно количество кислорода, содержащегося в газах, идущих из камеры с кипящим слоем под давление, достаточно для сгорания топлива в дополнительной камере сгорания.

2.17 Мощность установки, с учетом внутренних потерь, составляет величину

N*уст=QрнGт+Qкс-QII=294,8 +21,22 -16,612 =299,41 МВт

2.18 Термический КПД цикла Ренкина, если пренебречь работой насоса, и с учетом нагрева воды в экономайзере за счет тепла выхлопных газов до температуры 204,5 °С.

=

2.19 Мощность паровой турбины можно определить из выражения = МВт

2.20 Мощность паровой турбины можно также определить используя T-S диаграмму действительного цикла Ренкина для паровой силовой установки, работающей на перегретом паре, рис. 5, при Р0=9 МПа и Т0=823°К.

Параметры воды и пара в точках построенной на Т-S диаграммы взяты из таблицы 3. и сведены в нижеприведенную таблицу,

Точки T-S диаграммы
3
S 494,8221,6 953
S*
1
0 823 550 3512 6,82
2

Диаграмма T-S на рис. 5 построена в масштабе μт=4 °К/мм μs=0,05 кДж/кг.К.мм. Площадь полезной работы на T-S диаграмме 3S3*1023

Полезная работа, совершенная 1 кг пара в необратимом процессе в паровой турбине, составляет величину. Lт= FΣ μт μs= 5635*4*0.05 = 1127 кДж/кг.

От паровой турбины можно получить мощность, идущую на привод электрогенератора. Nпт= LтGпηпт = 1127*74,75*0,93=78,3 МВт

Мощность паровой турбины, полученная по двум разным методикам близка.

2.21 Суммарная мощность брутто, идущая на выработку электрической энергии, составляет величину. Nэ=NΣбрутто=Nст+Nпт= 27577 + 78300=105877 кВт

2.22 КПД установки брутто.

=

2.23 При конденсации отработавшего пара в бойлере получаем горячую воду для бытовых нужд. Удельная работа отработавшего пара при его конденсации в бойлере составит величину

2.24 Тепловая мощность системы отопления и горячей воды составит величину Nбойл=Gпhбойл = 1989,5*74,75=148716 кВт = 149 МВт

2.25 С учетом тепловой мощности, полученной дополнительно в результате конденсации пара КПД установки составляет величину

=

2.26 Внутренние потери в топке котла, в газотурбинном тракте и паротурбинном тракте составляют величину

Niпотерь= Nуст- NΣбрутто- Nбойл=299,41 -105,877-148,716=44,82 МВт, что составляет 14,9% от тепла полученного от сжигания топлива в топке с кипящим слоем и в дополнительной камере сгорания. Остальные 5,3% уходят в атмосферу с выхлопными газами.


ВЫВОД

Проделав и рассчитав данную расчетно-графическую работу можно сделать вывод, что в нашем случае мощность паровой турбины, полученная по двум разным методикам, это по формуле и используя T-S диаграмму действительного цикла Ренкина для паровой силовой установки, работающей на перегретом паре близки. Так как использование и определение площади на T-S диаграмме занимает время и усложняет расчет, для инженера приемлем и удобен первый способ нахождения мощности паровой турбины.

Внутренние потери в топке котла, в газотурбинном тракте и паротурбинном тракте составили величину 44,82 МВт, что составляет примерно 14,9% от тепла полученного от сжигания топлива в топке с кипящим слоем и в дополнительной камере сгорания.


СПИСОК ЛИТЕРАТУРЫ

1. Сибикин Ю.Д., Сибикин М.Ю. «Технология энергосбережения» М. 2006г. стр. 170-172, Котлер В.Р. «Специальные топки энергетических котлов» М. 1990г. стр. 95-98

2. В.Р. Котлер – Специальные топки энергетических котлов; 1990 г. 104 с.

3. Модоян и др. Эффективное сжигание низкосортных углей в энергетических котлах М.:1993 г. 200 с.

4. А.П. Воинов - Паровые котлы на отходящих газах; 1983 г.

5. Ключников А.Д. – Энергетика, теплотехнологий и вопросы энергосбережение

6. Борисова Н.Г. Энергосбережение в теплоэнергетике и теплотехнике, уч. пособие, Алматы, 2006 г.

Сжигание топлив в кипящем слое

Современное развитие энергетики и обострение экологической ситуации в мире потребовали поисков и разработки более прогрессивных и экологически чистых технологий сжигания твердых топлив.

Одним из перспективных направлений, обеспечивающих экологическую чистоту использования твердых низкосортных топлив в энергоустановках будущего, следует считать их сжигание в котлах с топками кипящего слоя различных модификаций: классической, циркулирующей, аэрофонтанирующей с применением аэрофонтанных аппаратов, поскольку при этом в значительной степени снижаются выбросы SO 2 и NO x уже на стадии сжигания .

1.1. Сжигание твердых топлив в топках котлов с классическим кипящим слоем

Рис. 1.1. Схемы установок с кипящим слоем: а – классический кипящий слой: б – циркулирующий кипящий слой; в – кипящий слой под давлением; 1 – основной воздух; 2 – подача топлива; 3 – вторичный воздух; 4 – вывод золы; 5 – возврат уноса; 6 – продукты сгорания; 7 – циклон; 8 – поверхность нагрева; 9 – турбина и компрессор

На рис.1.1. приведена схема топки с классическим пузырьковым кипящим слоем. В пузырьковом кипящем слое при атмосферном давлении уголь (или другое твердое топливо) сжигается в слое твердых частиц (обычно известняк), который псевдоожижается воздухом, подающимся для горения под слой. Разогрев слоя осуществляется горячим воздухом или газами с помощью специальной газовой горелки. Котлы с кипящим слоем спроектированы так, чтобы температура слоя находилась в интервале 815–870 o С. Возможность работы при низких температурах приводит к нескольким преимуществам. Благодаря низкой температуре для связывания SO 2 можно использовать в качестве сорбента недорогие материалы, такие как известняк и доломит. Когда в слой добавляется известняк или доломит, в результате реакции между CaO и SO 2 образуется CaSO 4 . В зависимости от содержания серы в топливе и количества сорбента выбросы SO 2 могут быть сокращены на 90 % и более. Термические оксиды азота образуются при температурах свыше 1300 o С. При снижении температуры скорость реакции образования NO x сильно уменьшается. При температурах 815–870 o С количество NO x , образовавшегося в кипящем слое, значительно меньше, чем в традиционных котельных установках, работающих при более высоких температурах.

Технология сжигания в кипящем слое (КС) имеет целый ряд преимуществ по сравнению с пылеугольным сжиганием твердых топлив.

К ним следует отнести:

– простота конструкции;

– возможность сжигания низкокачественных углей;

– безопасность в экспуатации;

– отсутствие мельниц тонкого помола;

– связывание SO 2 и SO 3 ;

– подавление NO x (до 200 мг/м 3).

Вследствие интенсивного перемешивания происходит выравнивание температуры во всем кипящем слое, поэтому слой можно считать изотермическим. Поверхности нагрева, опущенные в кипящий слой, имеют очень высокий коэффициент теплоотдачи. Этому способствует разрушение граничного слоя на теплообменной поверхности, а также прямое соприкосновение частиц с теплоотводящей поверхностью.

К недостаткам этой технологии сжигания следует отнести абразивный износ поверхностей нагрева, расположенных в слое; высокие значения механического недожога, ограничение мощности котельных агрегатов, оборудованных топками с кипящим слоем до 250 т/ч. Для более мощных котлов требуются решетки больших габаритов, что создает трудности по обеспечению равномерной скорости дутья.

Идеальным топливом для котлов с кипящим слоем служат сланцы, имеющие высокую реакционную способность, высокую зольность, которая определяет большую массу материала, в связи с чем стабилизируется температура сжигания, происходит быстрая сушка топлива и хорошее выгорание.

При использовании низкозольных канско-ачинских углей требуется большая добавка инертного материала. Сжигание углей с высоким содержанием солей щелочных металлов очень выгодно использовать в топках с кипящим слоем, когда практически не происходит испарения солей. Отсюда появляется возможность вовлечения так называемых «соленых» углей в энергетику.

Примером тому служит промышленный опыт внедрения кипящего слоя для сжигания шлакующих «соленых» углей в США.

В 1986 г. фирма «Бабкок-Вилькокс» переоборудовала котел с механической топкой на ТЭС Монтана-Дакота в установку с пузырьковым кипящим слоем. Этот котел был первоначально спроектирован на производительность 81,9 кг/с (295 т/ч) пара при давлении 9 МПа и температуре 510 o С для сжигания бурого угля месторождения Белах.

Однако высокое содержание соединений натрия в летучей золе приводило к сильному шлакованию топки и загрязнению пароперегревателя. До реконструкции с устройством кипящего слоя мощность была ограничена 50 МВт при расчетной 72 МВт. Для того чтобы избежать шлакования и загрязнения и поверхностей нагрева и обеспечить работу на полную мощность, был использован кипящий слой. Новая установка с кипящим слоем сечением 12,2 х 7,9 м была вмонтирована в старый котел с минимальными изменениями работающих под давлением поверхностей экранов. Воздухораспределительная решетка и окружающие ее стенки охлаждались водой. Пароперегреватель и испаритель размещались в слое для обеспечения необходимой паропроизводительности и перегрева пара и ограничения температуры слоя на уровне 815 o С. Скорость газов в слое составляла 3,7 м/с, а глубина слоя в рабочем состоянии – 1,37 м. Для включения и запуска установки подвод воздуха осуществлялся через восемь секций. Поскольку бурый уголь месторождения Белах – высокореакционное топливо, возврат летучей золы не предусматривался. С учетом низкого содержания серы и высокого содержания щелочных компонентов в топливе в качестве материала слоя был использован песок. Котел был пущен в эксплуатацию в мае 1987 г. Сейчас этот блок несет нагрузку 80 МВт при отсутствии шлакования и загрязнения поверхностей. Измеренные концентрации NO x составляли 0,14 г/МДж.

Работы по созданию мощных отечественных котлов с ЦКС начаты с 1987 г. и выполнены большим коллективом организаций: ВТИ, НПО ЦКТИ, СКБ ВТИ, ПО «Сибэнергомаш», КазНИИэнергетики, УПИ, МЭИ. Сжигание топлива в ЦКС благодаря низкой температуре (850 – 900 o С) обеспечивает снижение выхода оксидов азота, а при добавлении известняка происходит подавление оксидов серы.

Расход известняка составляет 3 – 6 кг на 1 т натурального топлива или на котел паропроизводительностью 500 т/час – 0,2 – 0,4 т/час.

Количество известняка может быть уменьшено для топлив с повышенным содержанием щелочноземельных соединений, например для углей Канско-Ачинского бассейна, минеральная часть которых содержит до 40 % и более соединений кальция и магния.

Воздух подается двумя вентиляторами. Вентилятор первичного дутья подает воздух через решетку в топку и в псевдогидрозатворы. Вентилятор вторичного воздуха подает воздух в топку на трех уровнях.

Котлы с ЦКС выполнены по одной схеме: топочная камера с размещением в ее верхней части поверхностей нагрева пароперегревателя, циклонов и вынесенного конвективного газохода, в котором размещены экономайзер и воздухоподогреватель.

После циклонов зола через золовой затвор возвращается в нижнюю часть топочной камеры. Твердые частицы несгоревшего топлива выносятся из топки и возвращаются через циклоны снова в слой. Горячая зола после циклона направляется во внешние охладители золы.

Первичный золоуловитель представляет собой сепаратор ударного типа, состоящий из расположенных в шахматном порядке U-образных элементов (швеллерковый сепаратор), подвешенных к крыше котла, которые образуют лабиринт на пути газа и твердых частиц (рис. 1.2). Два первых ряда золоуловителя расположены в топке перед входом в горизонтальный газоход. Уловленная в них зола возвращается в топку вдоль задней стенки. Твердые частицы, собранные другими рядами сепаратора (в горизонтальном газоходе), отправляются в бункер и возвращаются в нижнюю часть топки через четыре L-клапана

Рис.1.2. Швеллерковый сепаратор: 1 – газ и твердые частицы; 2 – твердые частицы, возвращаемые в топку; 3 – твердые частицы, возвращаемые в бункер хранения

Последние служат для управления содержанием материала в топке путем регулирования перепуска из бункера в топку. Организация двухступенчатой первичной сепарации с внутритопочным швеллерковым сепаратором уменьшает значение необходимой внешней циркуляции частиц.

Этот вид топок используется для котлов тепловой мощностью от 20 до 500 МВт. В рамках федеральной программы «Экологически чистая энергетика» разработан и реализуется проект сооружения опытно-промышленного котла с ЦКС типа Е-220-9,8-540 АФН ОАО «Белэнергомаш» для сжигания АШ на Несветай ГРЭС. Котел рассчитан на эффективное сжигание низкореакционного АШ с Q нр =4100 – 500 ккал/кг с зольностью 40 % и содержанием серы до 2 %, без подсветки мазутом во всем эксплуатационном диапазоне нагрузок, при минимальных выбросах загрязняющих веществ в атмосферу (снижение выбросов серы на 90 %, a NO x – не более 300 мг/м 3).


Принципиальное преимущество котла заключается в возможности его размещения в габаритах существующей котельной ячейки без использования дорогостоящих систем азото - сероочистки.

Рис. 1.3. ГРЭС с котлами с ЦКС на АШ ухудшенного качества:

1 – комплекс по переработке золы; 2 – угольное и известняковое хозяйство; 3 – котел с ЦКС; 4 – паровая турбина; 5 – золоуловитель; 6 – генератор; 7 – дымосос; 8 – дымовая труба

Котел является прототипом для технического перевооружения многочисленных электростанций России, сжигающих низкосортные твердые топлива с малой реакционной способностью, высоким содержанием золы, влаги, серы. Очень важно, что в таком котле возможно сжигание различных топлив по виду и качеству, без существенных изменений эксплуатационных и со значительным улучшением экологических показателей.

В котле применена технология ЦКС с компактными сепараторами ударно-инерционного типа (рис. 1.2) которая успешно использована на ряде котлов фирмы «Бабкок-Вилькокс» (США).

Аналогичные котлы разработаны и для других ТЭС: ЕП-250-16,8-545 БКФН для подмосковного угля и кузнецкого угля марки «Т»; Е-170-9,8-540-ДФН для торфа (рис.1.3).

Эффективное сжигание твердого мелкозернистого топлива (0-20 мм) может быть достигнуто при использовании принципа кипящего (псевдоожиженного) слоя, применение которого при газификации топлива, в черной и цветной металлургии, химической и нефтеперерабатывающей, строительной и других отраслях промышленности позволило резко интенсифицировать ряд технологических процессов.

Кипящий слой характеризуется скоростью первичного воздуха, превышающей предел устойчивости плотного слоя, но далеко не достигающей скорости витания средних частиц. При этих условиях все частицы в слое интенсивно перемешиваются, двигаясь колебательно вверх и вниз, причем в целом слой имеет относительно четкую верхнюю границу. Для кипящего слоя твердого топлива характерны повышенная его концентрация в объеме камеры горения, а также повышенная относительная скорость в слое w0tп, что создает благоприятные условия для скоростного горения топлива. В отличие от плотного (неподвижного) слоя, аэродинамическое сопротивление которого с увеличением интенсивности дутья возрастает по степенному закону, в кипящем слое сопротивление от этого фактора не зависит (рис. 6.10, а).

При малой скорости дутья слой остается неподвижным и работает как фильтрующий. При достижении критической скорости дутья сила давления газового потока в слое становится равной силе тяжести частиц. Слой начинает расширяться, и при дальнейшем увеличении скорости воздуха частицы приходят в движение. Объем слоя увеличивается в 1,2-1,8 раза в зависимости от интенсивности дутья, формы и размеров частиц. Сопротивление кипящего слоя с изменением интенсивности дутья не изменяется, потому что при этом увеличивается расстояние между частицами, т. е. увеличивается проходное сечение для газа. При чрезмерном увеличении скорости дутья весь слой переходит во взвешенное состояние и может быть вынесен из рабочей камеры.

Для кипящего слоя подобно жидкости характерен линейный закон падения давления по его высоте (рис. 6.10, б). Давление (сопротивление) в кипящем слое пропорционально его высоте и плотности «кипящего» материала. В отличие от аэровзвеси, где относительная скорость частиц и газа приближается к нулю, для кипящего слоя в отдельные
периоды (при падении частиц) она доходит до нескольких метров в секунду.

Впервые использование принципа кипящего слоя в топочном устройстве было начато в 1944 г. работами Московского энергетического института применительно к малореакционным мелкозернистым топливам (АШ, коксовая мелочь), а в последующем и к бурым углям. Характерной отличительной особенностью топок МЭИ является двухступенчатая схема организации процесса горения. В качестве первой ступени используются топки с кипящим слоем, где проводится интенсивная и глубокая тепловая подготовка топлива: прогрев, подсушка и выделение высокотемпературных горючих газов. Второй ступенью топки с кипящим слоем является камера дожигания горючего газа, выдаваемого кипящим слоем, и содержащихся в нем частиц термически подготовленного уноса.

При работе таких топок на АШ в слой подают около трети воздуха, необходимого для полного сгорания топлива. Газообразование в кипящем слое (рис. 6.11) происходит подобно газообразованию в плотном слое, однако кислородная и восстановительная зоны имеют увеличенные толщины. Температуру кипящего слоя поддерживают на уровне, исключающем плавление золы, во избежание шлакования слоя. Это может быть достигнуто установкой в слое охлаждающих поверхностей, рециркуляцией дымовых газов и др.
В нормально работающем кипящем слое оплавленного шлака не получается.

Относительно высокая и достаточно равномерная температура по высоте слоя (при работе на АШ около 1000 °С), благоприятные гидродинамические условия, определяемые повышенной относительной скоростью газа, и наличие достаточно развитой поверхности окисления мелкозернистого топлива обеспечивают высокую производительность кипящего слоя как первой ступени полугазовой топки с кипящим слоем. В рассматриваемых условиях выходящий из слоя горючий газ имеет температуру около 1000°С и теплоту сгорания 1,7- 2,5 МДж/м 3 . Видимая плотность теплового потока на дутьевую решетку составляет q n =4,7/7МВт/м 2 .

Вторую ступень топки с кипящим слоем для дожигания газа и выноса можно выполнить по различным вариантам. На рис. 6.12 показана компоновка однокамерной топки с кипящим слоем с водогрейным котлом; вторая ступень топки с кипящим слоем располагается непосредственно над слоем. Такая топка в производственных условиях работала на коксовой мелочи и подмосковном угле. Крупность топлива 0-20 мм. Тепловая мощность водогрейного отопительного котла около 5 МВт. При работе на коксовой мелочи (Ар = 17,33 %; Wp= 19,85 %) около 30 % всего количества воздуха, необходимого для горения, поступает под решетку, имеющую живое сечение 3-4 %. Остальной воздух подается в топочную камеру над кипящим слоем через два ряда фурм. Необходимое охлаждение кипящего слоя топлива для осуществления бесшлаковочного режима (1000°С) достигается расположенными в кипящем слое водоохлаждаемыми поверхностями, включенными в систему циркуляции котла.

Коэффициент теплоотдачи от кипящего слоя к охлаждающей поверхности составляет около 250-400 Вт/(м 2 *К). Был предусмотрен также впрыск воды непосредственно в кипящий слой для возможности регулирования его температуры в случае необходимости. При работе на подмосковном угле марки БМ (А р =19,8 %; W p = 33,84 %) в слой подавалось около 50-60 % всего воздуха, температура слоя поддерживалась на уровне 900 °С. Поддержание желательной зольности слоя, исключающей его погасание и обеспечивающей небольшие потери от механического недожога с выгребом, осуществляется непрерывной или периодической «продувкой» слоя через выгребное устройство. Высота слоя в состоянии кипения поддерживается на уровне 600-800 мм. Необходимое давление воздуха под решеткой составляет 3400-3900 Па. При работе на коксовой мелочи расход топлива составляет около 0,3 кг/с, а при работе на подмосковном угле 0,5 кг/с. При этом видимая плотность теплового потока дутьевой решетки составляла q H - 4,8 МВт/м 2 при объемной плотности тепловыделения на всю топочную камеру г у = 0,17 МВт/м.

На рис. 6.13 показаны некоторые другие варианты второй ступени топки с кипящим слоем. На схеме а - вариант однокамерной топки с кипящим слоем, где для интенсификации сжигания выноса вторичный воздух подается тангенциально; на схеме б сочленение первой и второй ступеней Двухкамерной гонки осуществляется при помощи специальной турбулентной горелки; на схеме в в качестве второй ступени топки с кипящим слоем используется циклонная камера с жидким шлакоудалением. В 50-х годах в СССР были построены и находились в эксплуатации три топки с кипящим слоем, показавшие возможность эффективного сжигания различных мелкозернистых топлив.

Особый интерес к организации сжигания топлив в кипящем слое вызван рядом обстоятельств. Для сжигания могут использоваться различные топлива, включая низкосортные, крупностью 0-20 мм. При этом значительно сокращаются расходы электроэнергии на топливоприготовление. Расположение поверхностей нагрева в кипящем слое, где коэффициент теплоотдачи составляет 200-300 Вт/(м 2 *К), обеспечивает существенное снижение металлоемкости установки. Работа с относительно низкотемпературным слоем (800- 1000°С) приводит к значительному уменьшению загрязнения атмосферы соединениями серы, так как большая ее часть остается в слое и удаляется вместе с золой. Для повышения степени улавливания серы в кипящий слой может добавляться известь или доломит. Благодаря низкой температуре отходящие из кипящего слоя газы практически не содержат оксидов азота. Снижается также возгонка щелочных соединений золы топлива, что приводит к уменьшению загрязнения поверхностей нагрева.

Принципиальная схема котла с топкой кипящего слоя с размещением части поверхностей нагрева в слое показана на рис.6.14. Предусмотрен возврат в топку уловленного выноса из кипящего слоя, содержащего обычно значительное количество невыгоревшего углерода. Возможна также схема с дожиганием выноса в специальном устройстве. В настоящее время за рубежом и в СССР в эксплуатации находятся различные топки с кипящим слоем, в том числе для котлов большой паропроизводительности, а также работающие под давлением (до 1 МПа), что приводит к дальнейшей интенсификации процесса сжигания твердого топлива и улучшению технико-экономических показателей.

Наряду со сжиганием твердого топлива в кипящем слое может быть организовано высокоэффективное сжигание газового и жидкого топлив. Для этого над дутьевой решеткой создается кипящий слой из инертного материала (песок, кирпичная крошка и т. п.), в котором сжигается газ или жидкое топливо. В таком кипящем слое также могут быть установлены поверхности нагрева котла, что интенсифицирует теплопередачу.

Широкое распространение в промышленности находят также технологические топки с кипящим слоем, в частности Для обжига различных серосодержащих материалов (колчедана, медных и цинковых концентратов и др.). Для подДержания температуры слоя на уровне, исключающем его шлакование, используют охлаждаемые элементы, располагаемые в кипящем слое и отнимающие избыточную теплоту. В этих элементах обычно вырабатывается пар. Более подробно о таких энерготехнологических установках см. гл. 18.



Поделиться