Тепловые сети. Яковлев, Н

Тепловые сети городов

Тепловая сеть - это сложное инженерно-строительное сооружение, служащее для транспорта тепла с помощью теплоносителя (воды или пара) от источника (ТЭЦ или котельной) к тепловым потребителям.

От коллекторов прямой сетевой воды ТЭЦ с помощью магистральных теплопроводов горячая вода подается в городской массив. Магистральные теплопроводы имеют ответвления, к которым присоединяется внутриквартальная разводка к центральным тепловым пунктам (ЦТП). В ЦТП находится теплообменное оборудование с регуляторами, обеспечивающее снабжение квартир и помещений горячей водой.

Тепловые магистрали соседних ТЭЦ и котельных для повышения надежности теплоснабжения соединяют перемычками с запорной арматурой, которые позволяют обеспечить теплоснабжение при авариях и ревизиях отдельных участков тепловых сетей и источников теплоснабжения. Таким образом, тепловая сеть города - это сложнейший комплекс теплопроводов, источников тепла и его потребителей.

Теплопроводы могут быть подземными и надземными.

Надземные теплопроводы обычно прокладывают по территориям промышленных предприятий и промышленных зон, не подлежащих застройке, при пересечении большого числа железнодорожных путей, т.е. везде, где либо не вполне эстетический вид теплопроводов не играет большой роли, либо затрудняется доступ к ревизии и ремонту теплопроводов. Надземные теплопроводы долговечнее и лучше приспособлены к ремонтам.

В жилых районах из эстетических соображений используется подземная прокладка теплопроводов, которая бывает бесканальной и канальной.

При бесканальной прокладке участки теплопровода укладывают на специальные опоры непосредственно на дне вырытых грунтовых каналов, сваривают между собой стыки, защищают их от воздействия агрессивной среды и засыпают грунтом. Бесканальная прокладка - самая дешевая, однако теплопроводы испытывают внешнюю нагрузку от грунта (заглубление теплопровода должно быть 0,7 м), более подвержены воздействию агрессивной среды (грунта) и менее ремонтопригодны.

При канальной прокладке теплопроводы помещаются в каналы из сборных железобетонных элементов, изготовленных на заводе. При такой прокладке теплопровод разгружается от гидростатического действия грунта, находится в более комфортных условиях, более доступен для ремонта.

Рисунок 5.2.1. Городской коллектор для теплопроводов из объемных элементов

По возможности доступа к теплопроводам каналы делятся на проходные, полупроходные и непроходные. В проходных каналах (рис. 5.2.2) кроме трубопроводов подающей и обратной сетевой воды, размещают водопроводные трубы питьевой воды, силовые кабели и т.д. Это наиболее дорогие каналы, но и более надежные, так как позволяют организовать постоянный легкий доступ для ревизий и ремонта, без нарушения дорожных покрытий и мостовых. Такие каналы оборудуются освещением и естественной вентиляцией.

Рисунок 5.2.2. Непроходной канал: 1 – стеновой блок, 2 – блок перекрытия, 3 – бетонная подготовка

Непроходные каналы (рис. 5.2.2) позволяют разместить в себе только подающий и обратный теплопроводы, для доступа к которым необходимо срывать слой грунта и снимать верхнюю часть канала. В непроходных каналах и бесканально прокладывается большая часть теплопроводов.

Полупроходные каналы (рис. 5.2.3) сооружают в тех случаях, когда к теплопроводам необходим постоянный, но редкий доступ. Полупроходные каналы имеют высоту не менее 1400 мм, что позволяет человеку передвигаться в нем в полусогнутом состоянии, выполняя осмотр и мелкий ремонт тепловой изоляции.

Рисунок 5.2.3. Железобетонный полупроходной канал

Наибольшую опасность для теплопроводов представляет коррозия внешней поверхности, происходящая вследствие воздействия кислорода, поступающего из грунта или атмосферы вместе с влагой; дополнительным катализатором являются диоксид углерода, сульфаты и хлориды, всегда имеющиеся в достаточном количестве в окружающей среде. Для уменьшения коррозии теплопроводы покрывают многослойной изоляцией, обеспечивающей низкое водопоглощение, малую воздухопроводность и хорошую теплоизоляцию.

Тепловые сети - это системы, используемые для передачи тепла от горячей воды или пара с помощью трубопроводов от источника энергии до потребителя, после чего теплоноситель вновь поступает к устройству регенерации. Такой цикл позволяет правильно распределять тепло по всем точкам потребления с контролем постоянного давления в сети.

Рис. Наружные инженерные сети. Тепловые сети.

При проектировании тепловой сети определяется источник подачи тепла. При этом учитываются такие факторы:

  • площадь отапливаемого помещения или нескольких зданий;
  • число этажей и высота домов;
  • удаленность потребителя от теплового источника.

После выбора источника тепла проектирование тепловых сетей требует определения типа систем, которые бывают:

  • магистральные;
  • централизованные;
  • децентрализованные;
  • распределительные.

Тепловая сеть включает в себя:

  • источник подачи тепла (нагревание воды с помощью газа, электричества или угля);
  • магистраль;
  • узел подсчета тепла;
  • точку потребления.

По способу применения тепловые сети делятся на:

  • магистральные;
  • распределительные;
  • квартальные.При проектировании наружных тепловых сетей применяется надземная и подземная технологии монтажа труб. Чтобы исключить большие теплопотери, чаще выбирается подземная прокладка коммуникаций.Подземный монтаж бывает двух видов.
    • Канальный . В данном случае трубопровод монтируется в коллектор. В этом устройстве могут быть расположены и другие инженерные коммуникации.
    • Бесканальный . При такой технологии прокладки трубопровод помещается прямо в грунт. При выборе бесканального способа монтажа проводящие коммуникации изолируются с помощью специальных утепляющих материалов, что также повышает коррозионную стойкость металла труб. Также выделяют тепловые системы в городских тоннелях.

    Надземная технология монтажа тепловых коммуникаций осуществляется посредством стальных и чугунных труб. Они размещаются на бетонных опорах, занимая разную высоту от земли. Этот способ используется при невозможности монтажа труб в грунт, но помимо удобства прокладки данная технология имеет серьезный недостаток: значительные потери тепла при сильных холодах.

    При проектировании тепловых сетей в Москве нужно учитывать несколько значимых факторов: плотность городской застройки, уже проложенные и работающие инженерные сети, создаваемые коммуникации. Данные работы производятся в нашей компании только профессионалами со строгим соблюдением существующих норм и правил.

    ООО «ИнжГеоПроект+» имеет значительный опыт в проектировании водяных тепловых сетей и систем с другими видами теплоносителей. Мы готовы выполнить план тепловых вводов, разводящих и магистральных сетей, тепловых пунктов, а также подготовить необходимую исполнительную документацию. Наши разработки проходят все этапы требуемого согласования в городских инстанциях. Также в рамках проектирования и прокладки тепловых сетей мы можем оформить всю исходную техническую документацию для начала монтажа, а в дальнейшем сдать объект в эксплуатацию.

    При необходимости вы можете абсолютно бесплатно проконсультироваться у нашего опытного специалиста по всем вопросам предварительных работ и их стоимости.

    Документы, требуемые для проектирования тепловых систем:

    • техусловия на теплоснабжение;
    • топографический план в масштабе 1:500 (геоподоснова).

Политика нашего предприятия в последние годы была направлена в основном на замену изношенных тепловых сетей с целью повышения надежности теплоснабжения города. На сегодня диаметры эксплуатируемых трубопроводов тепловых сетей находятся в диапазоне от 100 до 500 мм.

Большая часть тепловых сетей в минераловатной изоляции проложена в канале. Но эксплуатационные условия для трубопроводов канальной прокладки в нашем городе не являются удовлетворительными, особенно в его центральной части. Связано это с несколькими основными причинами: грунтовые воды расположены очень близко и они достаточно коррозионно-активные; в городе много низменных и подболоченных участков; через город проходит электрифицированная железная дорога. К сожалению, в г. Железнодорожный есть места, где практически отсутствует ливневая канализация и, по сути, каналы наших тепловых сетей часто выступают элементами этой канализации. В одной из частей города - на высоком берегу р. Пехорка - грунты песчаные и условия для канальной прокладки хорошие - каналы тепловых сетей сухие. Но, к сожалению, это очень малая часть г. Железнодорожный и соответственно доля "нормальных" тепловых сетей канальной прокладки также мала.

В последние годы с целью повышения надежности теплоснабжения города, в первую очередь в центральной его части, Предприятие отказывается от применения канальной прокладки трубопроводов тепловых сетей и переходит в основном на бесканальную прокладку труб в ППУ изоляции, на трубы из сшитого полиэтилена типа "Изопрофлекс" и на трубы типа "Касафлекс" (производство фирмы "Группа Полимертепло", г. Москва).

На сегодняшний день проложено около 30 км труб в ППУ изоляции в двухтрубном исчислении. Технологию бесканальной прокладки труб в ППУ изоляции мы начали применять более 15 лет назад. Предизолированные трубы и элементы к ним в ППУ изоляции ООО "Тепловые сети г. Железнодорожный" закупает у предприятия, которое расположено в г. Железнодорожный, что позволяет нам в очень сжатые сроки проводить перекладку тепловых сетей за счет быстрого выполнения заказов фирмой-производителем. Иногда при замене участков трубопроводов, доставшихся нам от различных ведомств, Предприятие не обладает даже технической документацией на них. Поэтому мы получаем реальную картину уже непосредственно после вскрытия участка тепловых сетей, проложенных в канале. И опять же, наличие местного поставщика труб в ППУ изоляции помогает нам быстро проводить эту замену (например, при изоляции геометрически сложных конструкций), т.к. поставка предизолированных труб и их элементов в ППУ изоляции занимает минимум времени.

Трубы в ППМ изоляции не применяем, и не потому, что по качеству изготовления и техническим характеристикам они как-то отличаются от труб в ППУ изоляции, а потому, что нам удобнее работать с производителем труб в ППУ изоляции, который находится в непосредственной близости от нашего предприятия.

За время эксплуатации труб в ППУ изоляции никаких аварийных ситуаций на них не возникало. Были некоторые механические повреждения ППУ изоляции, вызванные пожарами на вводе в дома, повреждения при раскопках, но естественным образом трубопроводы в ППУ изоляции из строя никогда не выходили. Это связано не только с качеством самих труб, но и с культурой их прокладки. Чтобы добиться необходимого качества прокладки труб в ППУ изоляции, нам очень долго и кропотливо пришлось работать со своими подрядными строительными организациями, т.к. требования к прокладке этих труб намного жестче, чем для канальной прокладки труб в минераловатной изоляции. Только при выполнении всех требований, изложенных в соответствующей нормативно-технической документации, по качественной прокладке предизолированных труб в ППУ изоляции, мы можем гарантировать их длительный срок службы.

Трубы типа "Касафлекс" применяем уже около 4 лет. Труба данного типа представляет из себя гибкую трубу с рабочей температурой до 130 ОС. Внутренняя труба является гофрированной, изготавливается из нержавеющей стали. В качестве тепловой изоляции используется ППУ в полиэтиленовой гидроизолирующей оболочке. Как правило, трубы типа "Касафлекс" оснащаются системой оперативного дистанционного контроля. Эти трубы работают у нас на температурных графиках 115/70 и 130/70 ОС. Единственная проблема - это их дороговизна; других вопросов, связанных с монтажом и эксплуатацией труб типа "Касафлекс", у нас не возникало. Использование труб этого типа особенно актуально на сложных участках тепловых сетей (со сложной геометрией прокладки).

Наличие системы ОДК на трубопроводах в ППУ изоляции является неотъемлемой составляющей данной технологии. Последние 2 года мы активно ведем работу по сведению показаний со всех локальных участков трубопроводов тепловых сетей в ППУ изоляции, оборудованных системой ОДК, в диспетчерскую.

Проблема низкого "срока жизни" трубопроводов ГВС, как и у многих теплоснабжающих организаций, является одной из основных на Предприятии. До появления на рынке труб из сшитого полиэтилена, мы прокладывали несколько участков тепловых сетей из нержавеющих труб в ППУ изоляции. Единственная проблема, которая возникла с этими трубами на одном из участков протяженностью 150-200 м, была вызвана дефектом монтажа, т.к. при сварке применили не те электроды и стыки через какое-то время "потекли". Около 10 лет назад нами было проложено несколько участков эмалированных труб на ГВС, никаких проблем за время их эксплуатации не возникало. Общая протяженность труб из нержавеющей стали и с эмалированным покрытием на сегодняшний день составляет около 2 км в двухтрубном исчислении.

Трубы из сшитого полиэтилена типа "Изопрофлекс" применяем 7 лет. В эксплуатации проблем с ними также не возникало, правда, был один курьезный случай - на вводе в дом в подвале "бомжи" подожгли трубу, в результате чего ввод сгорел. Сейчас для предотвращения возможных повторов таких ситуаций вводы "закрываем".

Единственный недостаток (хотя, надеемся, что временный) технологии производства труб из сшитого полиэтилена заключается в том, что максимальный диаметр этих труб составляет только 160 мм. Так, например, у нас есть участок трубопровода ГВС диаметром 219 мм и протяженностью порядка 200 м, поскольку сшитый полиэтилен в этом случае нельзя использовать (по указанной выше причине), нами в этом году принято решение о закупке и прокладке стеклопластиковых труб соответствующего диаметра.

На всех тепловых сетях на протяжении многих лет Предприятие проводит гидравлические и температурные испытания. Активно используем установки электрохимической защиты трубопроводов от блуждающих токов, в связи с наличием большого числа железнодорожных путей в черте города. Для обнаружения течей применяем акустические течеискатели и тепловизоры.

В конце 2007 г. на одном из заседаний Министерства ЖКХ Московской области было принято решение об апробации на теплоснабжающих предприятиях Московской области двух методов диагностики тепловых сетей: метода акустической диагностики (ООО НПК "Курс-ОТ", г. Москва) и метода магнитной томографии (НТЦ "Транскор-К", г. Москва).

Метод акустической диагностики мы используем уже около 6 лет и точность его результатов на тепловых сетях, обследованных нами, составляет 70-75%. До настоящего времени результаты этой работы использовались для получения заключения о необходимости перекладки трубопроводов на участке. Сейчас, основываясь на том, что при диагностике выявляются наиболее аварийноопасные места, принято решение в летний период осуществить шурфовки и соответствующие локальные ремонтные работы в местах, имеющих дефекты критического уровня. Что позволит на участках трубопроводов, которые мы не имеем возможности переложить в этом году, сократить число аварий и продлить их рабочий ресурс.

Метод магнитной томографии для нас является новым и неизученным. К сожалению, этот метод диагностики показал свою полную неэффективность на одном из наших участков трубопровода (диаметром - 250 мм, протяженностью около 1 км). После диагностирования участка было проведено его вскрытие, которое показало результаты, абсолютно не совпадающие с результатами диагностики, т.е. все было с точностью до наоборот.

Последние годы объемы замены тепловых сетей в г. Железнодорожный значительно выросли. В первую очередь благодаря реализации Программы по благоустройству г. Железнодорожный, проводимой Администрацией города в последние 3-4 года. Администрация города приняла абсолютно правильное решение: перед тем, как благоустраивать территорию, необходимо заменить все коммуникации, находящиеся под землей. В 2009 г. эта программа приостановлена, но, мы надеемся, что в ближайшем будущем она будет продолжена.

Тепловые сети

Тепловая сеть– это совокупность трубопроводов и устройств, обеспе-

чивающих по­средством теплоносителя (горячей воды или пара) транспортировку теплоты от источника теплоснабжения к потребителям.

Конструкционно тепловая сеть включает трубопроводы с теплоизоляцией и компенсаторами, устройства для укладки и закрепления трубопроводов, а так же запорную или регулирующую арматуру.

Выбор теплоносителя определяется анализом его положительных и отрицательных свойств. Основные преимущества водяной системы теплоснабжения: высокая аккумулирующая способность воды; возможность транспортировки на большие расстояния; по сравнению с паром меньшие потери тепла при транспортировке; возможность регулирования тепловой нагрузки путем изменения температуры или гидравлического режима. Основной недостаток водяных систем – это большой расход энергии на перемещение теплоносителя в системе. Кроме того, использование воды в качестве теплоносителя, возникает необходимость в специальной ее подготовке. При подготовке в ней нормируются показатели карбонатной жесткости, содержание кислорода, содержание железа и pH. Водяные тепловые сети обычно применяются для удовлетворения отопительно – вентиляционной нагрузки, нагрузки горячего водоснабжения и технологической нагрузки малого потенциала (температура ниже 100 0 С).

Преимущества пара как теплоносителя следующие: малые потери энергии при движении в каналах; интенсивная теплоотдача при конденсации в тепловых приборах; в высокопотенциальных технологических нагрузках пар можно использовать с высокими температурой и давлением. Недостаток: эксплуатация паровых систем теплоснабжения требует соблюдения особых мер безопасности.

Схема тепловой сети определяется следующими факторами: размеще­нием источника теплоснабжения по отношению к району теплового потреб­ления, характером тепловой нагрузки потребителей, видом теплоносителя и принципом его использования.

Тепловые сети подразделяются на:

Магистральные,прокладываемые по главным направлениям объектов теплопотребления;

Распределительные,которые расположены между магистральными тепловыми сетями и узлами ответвления;

Ответвления тепловых сетей к отдельным потребителям (зданиям).

Схемы тепловых сетей применяют, как правило, лучевые, рис. 5.1. От ТЭЦ или котельной 4 по лучевым магистралям 1 теплоноситель поступает к потребителю теплоты 2. С целью резервного обеспечения теплотой потре
бителей лучевые магистрали соединяются перемычками 3.

Радиус действия водяных сетей теплоснабжения достигает

12 км.
При небольших протяженностях магистралей, что характерно для сельских тепловых сетей, применяют радиальную схему с постоянным уменьшением диаметра труб по мере удаления от источника теплоснабжения.

Укладка тепловых сетей может быть надземной (воздушной) и подземной.

Надземная укладка труб (на

отдельно стоящих мачтах или эстакадах, на бетонных блоках и применяется на территориях предприятий, при сооружении тепловых сетей вне черты города при пересечении оврагов и т.д.

В сельских населенных пунктах наземная прокладка может быть на низких опорах и опорах средней высоты. Этот способ при- меним при температуре тепло-

носителя не более 115 0 С. Подземная прокладка наиболее распространена. Различают канальную и бесканальную прокладку. На рис. 5.2 изображена канальная прокладка. При канальной прокладке, изоляционная конст­рукция трубопроводов разгружена от внешних нагрузок засыпки. При беска­нальной прокладке (см. рис. 5.3) трубопроводы 2 укладывают на опоры 3 (гравийные

или песчаные подушки, деревян- ные бруски и другое).

Засыпка 1, в качестве которой используют: гравий, крупнозернистый песок, фрезерный торф, керамзит и т.п., служит защитой от внешних повреждений и одновременно снижает теплопотери. При канальной прокладке температура теплоносителя может достигать 180 °С. Для тепловых сетей, чаще всего используют стальные трубы диаметром от 25 до 400 мм. С целью предотвращения разрушения металлических труб вследствие температурной деформации по длине всего трубопровода через определенные расстояния устанавливаются к о м п е н с а т о р ы.


Различные конструктивные выполнения компенсаторов приведены на рис. 5.4.

Рис. 5.4. Компенсаторы:

а – П-образный; б – лирообразный; в – сальниковый; г – линзовый

Компенсаторы вида а (П-образный) и б (лирообразный) называют радиальными. В них изменение длины трубы компенсируется деформацией материала в изгибах. В сальниковых компенсаторах в возможно скольжение трубы в трубе. Втаких компенсаторах возникает потребность в надежной конструкции уплотнения. Компенсатор г – линзового типа выбирает изменение длины за счет пружинящего действия линз. Большие перспективы у с и л ь ф о н н ы х компенсаторов. Сильфон – тонкостенная гофрированная оболочка, позволяющая воспринимать различные перемещения в осевом, поперечном и угловом направлениях, снижать уровень вибраций и компенсировать несоосность.

Трубы укладываются на специальные опора двух типов: свободные и неподвижные. Свободные опоры обеспечивают перемещение труб при температурных деформациях. Неподвижные опоры фиксируют положение труб на определенных участках. Расстояние между неподвижными опорами зависит от диаметра трубы, так, например, при D = 100 мм L= 65 м; при D = 200 мм L = 95 м. Между неподвижных опор под трубы с компенсаторами устанавливают 2…3 подвижных опоры.

В настоящее время вместо металлических труб, требующих серьезной защиты от коррозии, начали широко внедряться пластиковые трубы. Промышленность многих стран выпускает большой ассортимент труб из поли-мерных материалов (полипропилена, полиолефена); труб металлопластиковых; труб, изготовленных намоткой нити из графита, базальта, стекла.

На магистральных и распределительных тепловых сетях укладывают трубы с теплоизоляцией, нанесенной индустриальным способом. Для теплоизоляции пластиковых труб предпочтительнее использовать полимеризующиеся материалы: пенополиуретан, пенополистерол и др. Для металлических труб используют битумоперлитовую или фенольнопоропластовую изоляцию.

5.2. Тепловые пункты

Тепловой пункт – это комплекс устройств, расположенных в обособленном помещении, состоящих из теплообменных аппаратов и элементов теплотехнического оборудования.

Тепловые пункты обеспечивают присоединения теплопотребляющих объектов к тепловой сети. Основной задачей ТП является:

– трансформация тепловой энергии;



– распределение теплоносителя по системам теплопотребления;

– контроль и регулирование параметров теплоносителя;

– учета расходов теплоносителей и теплоты;

– отключение систем теплопотребления;

– защита систем теплопотребления от аварийного повышения параметров теплоносителя.

Тепловые пункты подразделяются по наличию тепловых сетей после них на: центральные тепловые пункты (ЦТП) и индивидуальные тепловые пункты (ИТП). К ЦТП присоединяются два и более объекта теплопотребления. ИТП подсоединяет тепловую сеть к одному объекту или его части. По размещению тепловые пункты могут быть отдельно стоящие, пристроенные к зданиям и сооружениям и встроенные в здания и сооружения.

На рис. 5.5 приведена типичная схема систем ИТП, обеспечивающего отопление и горячее водоснабжение отдельного объекта.

Из тепловой сети к запорным кранам теплового пункта подведены две трубы: п о д а ю щ а я (поступает высокотемпературный теплоноситель) и

о б р а т н а я (отводится охлажденный теплоноситель). Параметры теплоносителя в подающем трубопроводе: для воды (давление до 2,5 МПа, температура – не выше 200 0 С), для пара (р t 0 C). Внутри теплового пункта установлены как минимум два теплообменных аппарата рекуперативного типа (кожухотрубные или пластинчатые). Один обеспечивает трансформацию теплоты в систему отопления объекта, другой – в систему горячего водоснабжения. Как в ту, так и в другую системы перед теплообменниками вмонтированы приборы контроля и регулирования параметров и подачи теплоносителя, что позволяет вести автоматический учет потребляемой теплоты. Для системы отопления вода в теплообменнике нагревается максимум до 95 0 С и циркуляционным насосом прокачивается через нагревательные приборы. Циркуляционные насосы (один рабочий, другой резервный) устанавливаются на обратном трубопроводе. Для горячего водоснаб-


жения вода, прокачиваемая через теплообменник циркуляционным насосом, нагревается до 60 0 С и подается потребителю. Расход воды компенсируется в теплообменник из системы холодного водоснабжения. Для учета теплоты, затраченной на нагрев воды, и ее расхода устанавливаются соответствующие датчики и регистрирующие приборы.



Поделиться