Термальная печать. Струйная печать

Струйные принтеры сегодня одни из наиболее популярных среди потребителей. Причем в большинстве случаев такой принтер покупается в качестве периферии к домашнему компьютеру. На то есть свои резоны, и в первую очередь низкая цена и возможность печати цветных документов. Между тем, как утверждают продавцы ряда салонов компьютерной техники, большинство пользователей имеет более чем смутное представление о принципах струйной печати. Если с работой матричных или лазерных принтеров их владельцам все более-менее ясно, то про струйные принтеры они, как правило, только и могут сказать, что картинка там формируется путем разбрызгивания по бумаге мелких капель чернил.

Для начала, наверное, стоит объяснить, что представляет собой такой показатель, как dpi, который, оказывается, более важен, чем, к примеру, скорость печати. DPI (dot per inch, то есть точек дюйм) - это так называемое число капель на дюйм, функция от частоты, с которой выбрасываются капли, и скорости, с которой печатающая головка принтера перемещается по горизонтальной оси. Управляемое сопло в определенные моменты дискретно выбрасывает капли чернил и таким образом проводит линию. Главная трудность для производителя принтеров состоит в сочетании качества (максимум выбросов капель на строку) и скорости (минимум выбросов капель на строку для достижения более высокой скорости). Скорость выброса капель составляет от 10 до 20 тыс. в секунду. Изменяя эту частоту или скорость перемещения каретки печатающей головки, можно достичь оптимальной плотности горизонтального размещения капель, а значит, и качества печати.

Разрешение - это параметр, определяемый размером чернильных капель. При нанесении более мелких капель четкость изображения будет выше, если сравнивать с равной по площади поверхностью, заполненной меньшим количеством более крупных капель. Понятно, что в таком случае более высокое качество потребует меньшей скорости печати, и наоборот.

Струйные принтеры различаются по способу печати.

Достаточно широко распространены три основных способа печати.

Термоструйная печать

Разработка термической технологии струйной печати началась еще в 1984 году. Первопроходцами тогда стали компании HP и Canon. Но дело шло медленно, и придти к необходимым результатам долгое время не удавалось. Только в 90-х годах удалось наконец добиться приемлемого уровня качества, скорости работы и стоимости. Позже к HP и Canon с целью дальнейшей работы над термическими принтерами присоединилась компания Lexmark, что и привело к созданию сегодняшних принтеров с высоким разрешением.

Как видно из названия, в основе термического (правильнее сказать, электротермического) формирования струи лежит увеличение температуры жидких чернил под действием электрического тока. Это повышение температуры обеспечивается нагревательным элементом, который находится в эжекционной камере. При нагревании некоторая часть чернил испаряется, в камере быстро нарастает избыточное давление, и из эжекционной камеры через прецизионное сопло выбрасывается маленькая капелька чернил. В течение одной секунды этот процесс многократно повторяется. Самое главное для успеха данной технологии. это максимально точно подобрать конфигурацию эжекционной камеры, а также диаметр и точность сопла. На поведение чернил при нагревании и выбросе их из сопла наряду с характеристиками самих чернил (их вязкостью, поверхностным натяжением, способностью к испарению и др.) оказывают влияние также характеристики канала, ведущего к соплу, и точки выхода в сопло. Большое значение для обеспечения правильного выброса чернил из сопла имеют также характер изменения чернильного мениска в сопле после эжекции и повторное заполнение эжекционной камеры. Рассмотрим поподробнее этапы формирования и выброса капли. Формирование термической чернильной струи начинается в печатающей головке картриджа. Электрический импульс порождает на нагревательных элементах тепловой поток, эквивалентный более чем двум млрд ватт на квадратный метр. Это примерно в 10 раз больше, чем поток на поверхности Солнца. Однако, поскольку длительность теплового импульса составляет всего 2 миллионных доли секунды, то, хотя температура в это время увеличивается со скоростью 300 млн градусов в секунду, поверхность нагревательного элемента успевает за это время нагреться лишь примерно до 600°C. Поскольку нагревание идет чрезвычайно быстро, в реальности температура, при которой чернила уже не могут существовать в виде жидкости, достигается лишь в слое толщиной менее одной миллионной доли миллиметра. При такой температуре (примерно 330°C) тонкий слой чернил начинает испаряться, и происходит выталкивание пузырька из сопла. Пузырек пара образуется при очень высокой температуре, и поэтому давление пара в нем составляет порядка 125 атмосфер, т.е. в четыре раза больше давления, создаваемого в современных бензиновых двигателях внутреннего сгорания. Такой пузырек, обладающий громадной энергией, действует как поршень, выбрасывающий чернила из сопла на страницу со скоростью 500 дюймов в секунду. Образующаяся при этом капля весит всего 18 миллиардных долей грамма. По командам, поступающим от драйвера принтера, несколько сотен сопел могут активизироваться одновременно в любых сочетаниях. Резервуары, из которых чернила подаются в печатающую головку, можно условно разделить на два конструктивных типа. Во-первых, широко используется моноблочная система, объединяющая встроенный чернильный резервуар и эжекционный блок. Она обладает тем преимуществом, что при каждой смене чернильного резервуара заменяется и печатающая головка, что способствует поддержанию высокого качества печати. Кроме того, она проще по конструкции, и в ней легче выполняются замены. Во второй, конструктивно более сложной системе печатающая головка отделена от резервуара для чернил, и здесь заменяется только этот резервуар при его опорожнении. Пена в резервуаре для чернил играет роль губки, впитывающей жидкие чернила, так что чернила непрерывно подаются к печатающей головке, и при этом нет ни нежелательной утечки из картриджа под действием силы тяжести, ни истечения чернил из самой печатающей головки. На основании моноблочного картриджа находятся электрические контакты и печатающая головка. ключевой элемент всего процесса струйной печати; чернила подаются к печатающей головке через совокупность каналов, идущих от резервуара. Изготовление печатающей головки. это сложный процесс, осуществляемый на микроскопическом уровне, где точность измерений определяется микронами. Основные материалы, используемые для изготовления эжекционной камеры, канала для подачи чернил, электронной управляющей схемы и нагревательных элементов, подобны материалам, используемым в полупроводниковой промышленности, где тончайшие проводящие металлические и изолирующие слои проходят прецизионную лазерную обработку. Такая технология требует больших инвестиций и в разработку, и в производство, и это одна из главных причин того, что в данной сфере решаются действовать очень немногие компании. Печатающая головка представляет собой совокупность множества микро комплектов, состоящих из эжекционных камер и связанных с ними сопел, расположенных в шахматном порядке с целью увеличения вертикальной плотности сопел. При таком расположении сопел их число на расстоянии примерно 1,27 см может достигать 208, как это имеет место, например, в черных картриджах моделей Lexmark Z, так что удается достичь разрешения в 1,44 млн точек. Качество печати определяется многими факторами, но главные из них. это размер точки, вертикальная плотность точек и частота выброса капель через сопло; именно эти показатели являются основными критериями для дальнейшей работы над печатающими головками, будь то головки термического или пьезоэлектрического типа. Термические головки имеют некоторые преимущества по сравнению с электромеханическими, поскольку ключевая технология их изготовления подобна той, которая применяется при изготовлении микропроцессорных чипов и других изделий полупроводниковой электроники. Стремительный прогресс в этих областях идет на пользу термической технологии, и можно ожидать, что в ближайшие годы будут достигнуты еще более высокие разрешения и более высокая скорость печати. Термическая струйная печать имеет несколько преимуществ по сравнению с конкурирующей с ней пьезотехнологией. Например, простота конструкции и тесная аналогия с производством полупроводников: это означает, что предельная себестоимость в производстве здесь будет ниже, чем для конкурирующей технологии. Конфигурация эжекционных камер позволяет располагать сопла ближе друг к другу, что дает возможность достигать более высокого разрешения.

Пьезоэлектрическая технология

Пьезоэлектрическая система, созданная на базе электромеханического устройства и доведенная до коммерческой готовности компанией Epson, впервые была использована в струйных принтерах Epson не так давно. в 1993 году. В основе пьезотехнологии лежит свойство некоторых кристаллов, называемых пьезокристаллами (примером могут служить кристаллы кварца в распространенных кварцевых наручных часах), деформироваться под действием электрического тока; таким образом, этот термин определяет электромеханическое явление. Это физическое свойство позволяет использовать некоторые материалы для создания миниатюрного "чернильного насоса", в котором смена положительного напряжения на отрицательное будет вызывать сжатие небольшого объема чернил и энергичный выброс его через открытое сопло. Как и при формировании чернильной струи за счет термических эффектов, размер капли здесь определяется физическими характеристиками эжекционной камеры и давлением, создаваемым в этой камере за счет деформации пьезокристалла. Изменение размера капли осуществляется путем изменения величины тока, протекающего через эжекционный механизм. Как и в термопринтерах, частота выброса под действием пьезоэффекта зависит от потенциальной частоты электрических импульсов, которая, в свою очередь, определяется временем возвращения камеры в "спокойное" состояние, когда она заполнена чернилами и готова к следующему рабочему циклу. Пьезотехнология отличается высокой надежностью, что очень важно, потому что печатающая головка по чисто экономическим причинам не может быть частью сменного картриджа с чернилами, как в термических системах, а обязательно должна быть жестко соединена с принтером. Как у термических, так и у пьезоэлектрических систем качество работы определяется многими факторами. Возможность изменения размера точки дает пьезотехнологии определенные преимущества. С другой стороны, пьезотехнология сталкивается с некоторыми чисто физическими ограничениями. Например, большие размеры электромеханической эжекционной камеры означают, что плотность размещения сопел по вертикали должна быть меньше, чем у термических аналогов. Это не только ограничивает перспективы дальнейшей разработки, но означает также, что для получения более высокого разрешения и однородности при высококачественной печати требуется несколько проходов печатающей головки по одной и той же странице.

Стационарная печатающая головка в определенной мере экономически выгодна, потому что ее не приходится менять. Однако это преимущество частично обесценивается тем, что существует опасность проникновения воздуха в систему при смене картриджа. При этом сопла закупориваются, качество печати ухудшается, и для восстановления нормальной работоспособности системы требуется провести несколько циклов очистки. Еще одно существующее пока ограничение для пьезосистем касается использования чернил на основе красителей: при использовании цветных (пигментных) чернил, которые имеют более высокое качество, но при этом обладают и более высокой плотностью, также возникает опасность закупорки сопел. Пьезоэлектрическая печатающая головка, сконструированная на основе ранее существовавшей технологии, отличается более низкими расходами на разработку, но зато она заметно дороже в изготовлении. В настоящее время такие преимущества пьезоэлектрических головок, как высокая надежность и возможность изменения размеров капли, весьма существенны и позволяют изготовлять продукцию очень высокого качества. Однако, поскольку цены на термические струйные принтеры непрерывно снижаются, и они все больше захватывают рынок принтеров начального уровня, то для пьезосистем остается рынок продукции среднего и высшего класса.

Пузырьково-струйная печать

Принцип пузырьково-струйной печати Canon Bubble-Jet, изобретённый в конце 70-х, до гениального прост. В каждой дюзе, тончайшем канале, в котором формируются капельки чернил, расположен микроскопический нагреватель. Электрические импульсы, подаваемые на него, заставляют чернила вскипать с образованием воздушных пузырьков, и эти пузырьки с каждым импульсом выталкивают равные объёмы чернил из дюзы. Нагрев прекращается, пузырёк исчезает, в дюзу втягивается новая порция чернил, и она готова к новому циклу!

Однако, понадобилось около 8 лет, чтобы первый пузырьково-струйный принтер стал доступен пользователям. В 1981 году перспективная технология Canon Bubble-Jet впервые была представлена на выставке Canon Grand Fair и сразу приковала к себе внимание специалистов. Но лишь в 1985-ом появилась первая коммерческая модель монохромного принтера Canon BJ-80, а первый полноцветный BJ-принтер BJC-440 (формата A2, с разрешением 400 точек на дюйм) появился в 1988 году.

Струйные принтеры или многофункциональные устройства связаны, прежде всего, с печатью документов дома или в небольшом офисе. В более крупных компаниях, как правило, используется технология лазерной печати. Эта ситуация, однако, начинает меняться.

На рынке работает несколько производителей струйных принтеров и многофункциональных устройств. Тем не менее, в последние годы по количеству введенных инноваций в технологии струйной печати стали являются, конечно, две компании: Hewlett-Packard (HP) и Epson.

Первая разработала, в частности, технологию струйной печати PageWide с неподвижной печатающей головкой. В свою очередь, компания Epson представила недавно технологию RIPS (Replaceable Ink Pack System), работающую с головками PrecisionCore.

Благодаря этим технологиям компаниям удалось разработать доступные в настоящее время на рынке принтеры , которые с успехом могут не только конкурировать с лазерными принтерами в корпоративных системах, но и оставить их далеко позади.

Печать по всей ширине

Технология PageWide в своей первой версии, которая появилась на рынке в 2006 году в цветном МФУ HP CM8060 заключается в том, что передвигающуюся туда и обратно над листом набор классических струйных головок заменили на неподвижную головку - так же, как и в лазерных принтерах LED.

Благодаря этому значительно ускоряется печать, при сохранении качества - лист просто движется с постоянной скоростью под головкой и прокрашивается сразу по всей своей ширине, с необходимым уровнем качества.

Более того, устранение мобильности головок не только повышает скорость и точность печати, но также надежность устройства и снижает стоимость его эксплуатации.

В 2013 году появилась второе поколение технологии PageWide. Она, в настоящее время, применяется, в частности, в доступных на рынке офисно-корпоративных принтерах HP OfficeJet серии X.

Печатающие головки, используемые в этих устройствах, позволяют в одной планке головки использовать четыре цвета чернил. Длина планки составляет 218 мм, а на каждый цвет приходится по 10 560 сопел - в том числе на планке (головки) находится в 42 240 сопел, а плотность сопел 1200 сопел на дюйм. Принтеры используют термическую технологию печати.

В этом году компания HP выпустила на рынок третье поколение печатающих головок PageWide . На данный момент 129-миллиметровые планки картриджей применяются только в высокопроизводительных принтерах для широкоформатной печати HP PageWide XL. В этом случае для печати в один цвет используется 6336 сопел, а одна планка может печатать сразу в четырех цветах - общее количество сопел, приходящихся на планку - 25 344.

В следующем году планируется введение головок с большим разрешением - 2400 сопел на дюйм, где на планку шириной 108 мм в свободное пространство между печатающими блоками сопел будут добавлены блоки сопел с вдвое меньшей каплей, по отношению к прежнему объему в 6 пикалитров.

Однопроходная печать

Скорость печати 70 страниц в минуту в цвете в технологии HP PageWide достигается путем печати в один проход, но чтобы такая быстрая печать была надежной, разработчики из компании HP ввели несколько дополнительных технологий в систему печати .

Чтобы точно нанести каплю чернил, каждая форсунка должна работать именно тогда, когда это требуется, путем сокращения расстояния между дорожками в узких пределах допусков, скорости, направления, массы и объема капли.

Для проверки правильности работы всех сопел в принтерах HP OfficeJet серии X используется технология Backscatter Drop Detection (BDD). Это оптическая система обнаружения капель в полете, использующая ряд фотодетекторов. Технология BDD может протестировать работу нескольких тысяч сопел в течение секунды.

Если окажется, что форсунки не работают должным образом, печатающая головка очищается. Если это не поможет, а форсунки не работают должным образом, то используются пассивные и активные методы компенсации, чтобы заменить неисправные форсунки функционирующими соплами. Благодаря этому можно избежать дефектов печати, таких как белые пропуски.

Пассивный метод заключается в том, что в случае выхода из строя одной из форсунок, расположенные рядом соседние сопла могут в какой-то мере закрасить пространство, обслуживаемое поврежденной форсункой. Эффект смещения фактически печатной точки здесь не больше, чем 1/1200 часть дюйма от номинальной позиции.

При активном методе создается карта поврежденных сопел и записывается информация, что данные форсунки засорились и не работали в предыдущих циклах. На основе нескольких измерений BDD готовится также таблица ссылок, какие форсунки (слева или справа) могут с большей точностью заменить сопла, вызывающие проблемы - таким образом уменьшается ошибка смещения печатной точки от его номинальной позиции.

Благодаря этому возможно также управление приемными соплами так, чтобы свести к минимуму ситуации, в которых заполнители форсунки должны делать две капли одна за другой, прежде чем пройдет под ними лист бумаги.

Кроме того, в активном методе возможна замена черного цвета подачей красок CMY, и, таким образом, маскируются недостатки печати в результате повреждения даже несколько соседних дюз.

Пьезоэлектрические печатающие головки

Компания Epson уже много лет делает ставку не столько на термические головки, сколько на пьезоэлектрическую технологию печати Thin Film Piezo (TFP). Система дебютировал в 2007 году. Последняя версия печатающей головки носит название PrecisionCore.

Наиболее важной их особенностью является то, что они могут изменять структуру и размер капель в процессе работы. Благодаря этому удалось повысить производительность и качество печати, а также получить широкий спектр цветов, даже для необычных чернил и различных видов бумаги.

Головки PrecisionCore совместимы с флуоресцентными красками и УФ-красками, водными чернила, растворителями и смолами. Капля чернил может меняться в размерах от 1,5 до 32,5 пиколитров, а частота запусков капель чернил доходит до 50 кгц.

Технология PrecisionCore полностью масштабируемая - отдельные головки, так же как и в случае устройств от компании HP, вы можете комбинировать в рейки любой длины, и благодаря этому масштабировать ширину печати.

В настоящее время доступны два типа, как это называет Epson, макетов печати, совместимых с технологией PrecisionCore: TFP print чип и MicroTFP print чип. В первом случае на чипе длиной 25,4 мм (один дюйм), находится 720 сопел (два ряда по 360), во втором на чипе печати длиной 33,8 мм 800 сопел (два ряда по 400).

Применение технологии PrecisionCore позволяет проектировать машины до масштабов промышленных принтеров. Для примера, в принтере Epson SurePress L-6034VW используется планка, состоящая из 66 систем MicroTFP, содержащих 52 800 сопел. Этот принтер позволяет печать на рулонной бумаге со скоростью 15 метров в минуту с разрешением 600 x 600 dpi.

Изменение размера капель возможно благодаря точной регулировке напряжения пьезоэлектрических элементов насадки. Благодаря этому, каждая из форсунок может изменять объем капель «на лету», что означает, что каждая новая выпущенная капля может иметь совершенно другой объем. Форсунки PrecisionCore в состоянии «реконфигурировать» с частотой 1/10 000 секунды.

В случае цветной печати (особенно для фотографии и печати рекламы), точная настройка капель позволяет значительно расширить итоговое пространство, яркость и получить превосходные переходы полутонов.

Время печати на RIPS

В 2012 году компания Epson представила систему ITS (Ink Tank System), конкурирующую с предлагаемыми сторонними производителями систем непрерывной подачи чернил.

Системы этого типа постоянно пополняют принтер, подавая чернила непосредственно к печатающей головке из резервуары с чернилами большой емкостью, который крепится на внешней стороне корпуса. Благодаря этому нет необходимости менять картриджи с чернилами.

Существенным преимуществом системы непрерывной подачи чернил является то, что принтер в принципе не требует дополнительных работ по техническому обслуживанию и позволяет на одном внешнем контейнере печатать значительно большее количество страниц, чем при питании чернилами из внутреннего картриджа.

Рыночный успех принтеров с системой ITS привел к тому, что инженеры Epson подумали об использовании этой технологии в «базовых» устройствах, предназначенных для больших рабочих групп и корпоративных пользователей.

Так родилась технология RIPS. Она позволяет напечатать до 75 тысяч страниц формата А4 на одном комплекте чернил. Она нашла применение в серии устройств Epson WorkForce Pro RIPS.

Гелевые краски для струйных принтеров

Кроме технологий, разработанных компаниями HP и Epson, также стоит обратить внимание на струйные решения компании Ricoh. Эта компания сделала ставку на другие чернила, а именно на гелевые краски.

Технология под названием GELJET дебютировала в 2005 году и представляет собой сочетание технологий струйной печати и электросублимационной печати. В настоящее время в таких устройствах, как монохромный принтер Ricoh Aficio SG 3110DN или многофункциональном устройстве Ricoh Aficio SG 3100SNw используется четвертое поколение технологии GELJET.

В технологии GELJET используется липкий, быстро сохнущий гель пигмент под названием Liquid Gel, который практически мгновенно высыхает и не проникает сквозь бумагу. Благодаря этому удалось получить высококачественные цветные отпечатки, которые могут быть реализованы даже на обычной ксерографической бумаге.

Интересна в гелевых принтерах Ricoh система транспорта бумаги. Используется электростатическая транспортная лента, на всей поверхности которой прижимается лист бумаги. Благодаря этому удалось избежать возможности складки открытки во время печати, а также ускорен процесс перемещения бумаги под печатающей головкой.

Гелевые принтеры Ricoh предназначены для средних рабочих групп. Печатают со скоростью до 29 страниц в минуту, а их нормальная ежемесячная нагрузка - 10 тысяч страниц. Заслуживает внимания также новая модель гелевого МФУ SG 3120BSFNw. Она оснащена аккумулятором, позволяющим напечатать до 500 страниц.

Чернила быстрее от лазера

Как видите, технология струйной печати в принтерах и многофункциональных устройствах, применяемых в крупных компаниях и корпорациях, начинает играть важную роль.

В гонку за крупными корпоративными клиента включилась также компания Brother. Она представила недавно самый быстрый черно-белый струйный принтер в мире (модель HL-S7000DN), которая печатает со скоростью 100 страниц в минуту, а значит, со значительно большей, чем в состоянии печатать типичные корпоративные лазерные устройства (от 20 до 45 страниц в минуту).

Рекомендуемое количество отпечатков в месяц для модели HL-S7000DN составляет 20 тысяч страниц. Картриджи с чернилами позволяют напечатать до 30 тыс. страниц. В принтере применена, как в принтерах HP PageWide, планка длиной 21,5 см, оборудованная 5198 соплами.

Конечно, струйные принтеры не заменят везде и во всех действиях лазерных принтеров в корпоративных системах. Однако, во многих случаях представляют собой интересную альтернативу по отношению к лазерным технологиям.

Стремительно развиваясь, струйная печать осваивает новые сегменты и сферы применения. В борьбе за перспективы на рынке решающее значение приобретают исследования и разработки в сфере печатающих головок, чернил и специализированных составов. Большим плюсом при выборе струйного устройства печати станут базовые знания о производителях и технологиях печатающих головок.

Любая струйная головка работает по принципу контролируемого электроникой распыления капель жидкости на нужную поверхность. Два основных класса — головки с непрерывной подачей и пьезоэлектрической импульсной (капля по требованию, DOD), каждый делится на подклассы.

В непрерывной струйной печати капли распыляются без остановки, попадая либо на материал либо в ёмкость для рециркуляции и повторного использования. В оборудовании DOD выброс капель зависит от определённых условий, а формируются они при помощи импульса в камере подачи чернил. Разновидности струйных DOD-принтеров определяются особенностями генерации импульса. Три основных категории технологий, присутствующих на рынке: термальные, пьезо и с непрерывной подачей (электростатические).

Термальная струйная печать

Первым технологию термальной струйной печати предложил в 1977 г. инженер-конструктор Canon Ичиро Эндо. С момента выпуска первых настольных принтеров этого типа термальные печатающие головки прошли долгий путь эволюции.

Независимо от конструкционных особенностей, термальные печатающие головки объединяет концепция: малый размер капли при высокой скорости и плотности сопел.

В компактной камере с чернилами капли формируются за счёт быстрого нагрева резистивного элемента. Стремительно нагреваясь до нескольких сотен градусов, он заставляет испаряться молекулы чернил. В кипящей жидкости формируется пузырь (импульс давления), который вытесняет из камеры чернила. В результате на другом конце сопла появляется капля. После выталкивания вакуум в камере заполняют свежие чернила из резервуара, и процесс повторяется.

Недостаток технологии — ограниченный диапазон совместимых жидкостей: чернила для термальных струйных принтеров необходимо разрабатывать с расчётом на испарение и стойкость к высоким локальным температурам. Кроме того, на термальные печатающие головки негативно влияет процесс так называемой кавитации: на поверхности нагревательного элемента постоянно формируются и лопаются пузыри, от чего она изнашивается. Впрочем, современные материалы обеспечивают термальным струйным головкам достаточно длительный срок службы.

Чтобы уменьшить размер капли и увеличить скорость печати, нужны высокоточные технологии, позволяющие увеличить количество сопел на ширину поверхности. Печатающие головки Canon FINE предлагают впечатляющий объём в 2560 сопел на цвет (15 360 сопел на печатающую головку). Сопла различаются по диаметру, поскольку термальная технология не в состоянии обеспечить формирование капель разного размера. В каждой головке особым образом скомбинированы сопла на 1, 2 и 5 пл.

Hewlett Packard добилась впечатляющей плотности сопел в печатающей головке Edgeline. Конструкция с шириной печати 10,8 см состоит из пяти кремниевых чипов, расположенных в шахматном порядке.

Физическое разрешение достигает 1200 dpi при рабочей частоте 48 кГц. Двойной ряд сопел (по 10 560 на матрицу) позволяет Edgeline наносить два цвета. При печати в один цвет второй ряд остаётся в качестве резервного. В каждой головке, рассчитанной на работу с водными либо латексными чернилами, 5 матриц — в общей сложности 52 800 сопел.

Edgeline устанавливают в латексные принтеры и рулонные ЦПМ от HP. В комплектацию T300 с шириной печати 77 см входят по 70 печатающих головок для каждой стороны запечатываемого полотна. Таким образом, в режиме двухсторонней печати функционирует 7 392 000 сопел, и машина с высокой точностью ежесекундно наносит на запечатываемый материал 148 млрд капель. Все термальные печатающие головки относятся к расходным материалам, срок службы зависит от объёма проходящих через них чернил.

Термальные печатающие головки для настольных струйных принтеров выпускают также Kodak и Lexmark. Часть укомплектованных ими моделей уже снята с производства.

На рынке широкоформатной печати в сегменте струйных принтеров с водными чернилами идёт битва между Canon и HP, единственным пока поставщиком латексных принтеров с термальными печатающими головками. И никто кроме HP пока не предложил термальной печатающей головки в однопроходной конфигурации.

Струйные термальные технологии весьма уверенно чувствуют себя в своей нише, но большая часть рулонных и планшетных принтеров большого и сверхбольшого форматов сейчас представлена моделями с пьезоструйными печатающими головками.

Пьезотехнологии: капля по требованию

Пьезоэлектрические печатающие головки объединяет принцип распыления капель. Благодаря широкому выбору модификаций для разных материалов и сфер применения, они пользуются большой популярностью у производителей струйных принтеров.

Принцип технологии «капля по требованию» основан на изменении формы определённых кристаллов при подаче напряжения. В результате камера деформируется, генерируя импульс. На рынке представлены пьезоэлектрические струйные головки больше чем от десятка производителей.

У струйных технологий масса вариантов применения, полиграфия — лишь один из них. Струйные печатающие головки используют для маркировки и кодирования, нанесения почтовых индексов и адресов, обработки документации, печати и маркировки текстиля, гравирования, фотогальваники, осаждения материалов и высокоточного диспергирования жидкостей.

Струйные печатающие головки можно классифицировать по:

  • совместимости с жидкостями (составы водные, масляные, сольвентные, УФ, кислотные);
  • рабочей температуре;
  • количеству сопел;
  • физическому разрешению;
  • ширине печати;
  • материалу конструкции;
  • фиксированной либо переменной капле;
  • наименьшему размеру капли;
  • экологичности.

Главное различие струйных печатающих головок — в фиксированном либо переменном размере капли. Принтеры с фиксированной каплей называют бинарными. Важно понимать отличия технологий и принципы их работы.

Бинарные печатающие головки выдают капли стандартного объёма. Вариантов море — от 1 пл до 200 пл и более (пиколитр — одна триллионная часть литра). Основное преимущество технологии в том, что большие капли быстрее покрывают запечатываемый материал. Ещё одна особенность печатающих головок с фиксированным размером капли — пониженное разрешение. Поэтому они лучше подходят для крупноформатной печатной продукции, печати по текстилю и других сегментов, где разрешение не имеет первоочередного значения.

Самую маленькую каплю обеспечивают широкоформатные принтеры серии Durst Rho P10: печатающие головки Quadro Array с размером 10 пл предлагают разрешение до 1000 dpi. Струйные головки с размером капли 1 пл рассчитаны не на графику, а на осаждение жидкостей и печатную электронику.

Печатающие головки с фиксированной каплей выгодно отличаются частотой распыления, измеряемой в килогерцах (1000 циклов в секунду). Базирующиеся на этой технологии струйные принтеры бывают 4- и 6-красочной конфигураций. При работе с большими объёмами не стоит забывать, что скорость печати в 4 цвета выше, чем в 6 цветов, а если за один цвет отвечает несколько печатающих головок, принтер вообще будет «летать».

Сейчас идут активные дебаты на тему того, какая из технологий лучше и почему — с фиксированным или с переменным размером капли. Но учитывать в первую очередь нужно практические аспекты: выпускаемая продукция, стоимость принтера, экономически оправданная скорость.

Печатающие головки с переменным размером капли способны на ходу регулировать разрешение печати. Для увеличения капли система объединяет несколько капель базового размера.

Возьмём для примера принтер с базовой каплей в 6 пл. Чтобы получить каплю 12 пл, в камеру с чернилами система отсылает сразу два пульса: капли встречаются в воздухе и сливаются в одну. Доступные для конкретной печатающей головки размеры капли называют «уровнями».

8-уровневая головка формирует капли семи размеров. Пьезоэлектрическая головка с поддержкой 16?ти уровней даст 15 размеров капель. При базовом размере капли в 6 пл доступные варианты получаются простым умножением базовой капли: 6, 12, 18, 24, 30, 36, 42 пл.

Если проанализировать частоту распыления, окажется, что формирование переменных капель занимает больше времени, что вполне логично. Для 16-уровневой пьезоструйной головки скорость распыления базовой капли составит около 28 кГц. Если для неё же активировать 8 вариантов капель, скорость распыления упадёт до 6,2 кГц. Если задействованы все 16 вариантов, скорость составляет всего 2,8 кГц. Как видим, при переходе от базового уровня к максимально возможным 16-ти уровням количество формируемых капель меньше на порядок. Печатающие головки с переменным размером капли неизменно печатают медленее, чем аналогичные с фиксированной каплей. Зато повышают разрешение мелкого текста и качество печати в целом.

Чтобы увеличить производительность струйных головок с переменной каплей, создатели принтеров увеличивают количество каналов на цвет. Чернильный канал представляет собой ряд сопел, отведённых под конкретный цвет чернил, — типовой вариант для сканирующих и печатающих в один прогон систем.

Под сканирующей печатью здесь подразумевается метод струйной печати, при котором каретка с печатающей головкой перемещается взад и вперёд по поверхности запечатываемого материала, а он подаётся в старт-стопном режиме. В некоторых планшетных принтерах изображение формируется иначе: материал совершает возвратно-поступательные движения под группой печатающих головок, перекрывающих всю ширину печати.

Непрерывная струйная печать — высокие скорости

Непрерывная струйная технология представляет собой бесконтактный вариант высокоскоростной печати, который используется для нанесения переменной информации на движущийся материал. Изначально рассчитанные на добавление дат, текстов и штриховых кодов модули теперь предлагают многокрасочную печать на рулонных материалах. Сложно поверить, но первым эту идею запатентовал в 1867 г. лорд Кельвин.

Принцип технологии следующий: насос подаёт жидкие чернила из резервуара на множество мельчайших сопел, формируя непрерывной поток капель на очень высокой скорости. Скорость формирования и распыления капель контролирует вибрирующий пьезоэлектрический кристалл. Скорость его вибрации называют частотой, которая в данном случае варьируется от 50 до 175 кГц. Каждое сопло выдаёт от 50 000 до 175 000 капель в секунду. Они пролетают через электростатическое поле и уже заряженными попадают в отклоняющее поле, которое направляет их на материал либо в сборочный резервуар для повторного использования. Основной объём капель идёт на переработку, и лишь небольшая часть формирует изображение на отпечатке. Одно из главных преимуществ струйных печатающих головок данного типа — высокая скорость работы.


Kodak Stream — пример технологии непрерывной струйной гибридной печати. Периодические импульсы в нагревательных модулях возле каждого сопла печатающей головки формируют мельчайшие чернильные капли. Регулируя размер и форму импульса, система меняет размер точки и скорость распыления капель. Технология Stream генерирует капли на частоте 400 кГц, не уступая по скорости традиционным рулонным офсетным машинам. Более того, в Kodak уверены, что частоту импульсов реально повысить.

Ближайший конкурент ЦПМ Prosper — струйная рулонная ЦПМ от HP. Теоретическая максимальная частота для неё заявлена на уровне 100 кГц. А для пьезоэлектрических струйных принтеров стандартная частота составляет 25-40 кГц.

В основу технологии Stream легли микроэлектромеханические системы MEMS (они же использовались в печатающих головках HP Edgeline). Современная производственная технология MEMS по принципам напоминает методики изготовления интегральных микросхем, которые задействуют для создания сверхминиатюрных струйных структур на кремнии. Пластина с соплами представляет собой механические элементы, скомбинированные с электроникой на общей кремниевой основе.

Выбирай любую

Печатающие головки — лишь один из компонентов сложных печатных систем. Чтобы выбрать технологии, оптимальные для конкретной компании, обязательно принимайте во внимание технологические отличия. Учитывая широчайший выбор предложений на современном рынке, важно вооружиться как можно большим объёмом информации.


Об авторе: Джефф Бёртон ([email protected]), аналитик SGIA по цифровой печати и консультант по вопросам цифрового печатного производства, управления цветом и ассортимента продукции, цифровому оборудованию и производителям. За более чем 20 лет в отрасли работал менеджером по производству, консультантом ассоциации, тренером. Автор множества технических статей и докладчик на отраслевых мероприятиях.

* Журнал SGIA Journal. Март-апрель 2013. Публикуется с разрешения ассоциации SGIA. (с) 2013.

На ту же тему:


Вконтакте

Одноклассники

Технология термоструйной печати основана на свойстве чернил увеличиваться в объёме при нагревании. Разогретые чернила, увеличиваясь в объёме, выталкивают в сопла печатающей головки принтера микроскопические чернильные капли, которые формируют изображение на бумаге. В общем виде технология термоструйной печати представлена ниже.

Технология термоструйной печати

Термоструйная печать – это наиболее популярная технология струйной печати, которая используется при производстве 75 % струйных принтеров.

Удельный вес принтеров, использующих термоструйную технологию печати

Наибольший вклад в развитие технологии термоструйной печати внесли корпорации Canon и HP , которые в 70-х годах ХХ века независимо друг от друга разработали две технологии печати: Bubble Jet (Canon) и Thermal Inkjet (HP).

Технологии термоструйной печати

Технология термоструйной печати Bubble Jet была представлена на суд общественности в 1981 году на выставке «Grand Fair». В 1985 году с использованием инновационной технологии был выпущен легендарный монохромный принтер Canon BJ-80, в 1985 году – первый цветной принтер Canon BJC-440.

Схематичное изображение технологии струйной печати Bubble Jet

Суть технологии струйной печати Bubble Jet заключается в следующем. В каждое сопло печатающей головки встраивается терморезистор (нагреватель) для мгновенного разогрева чернил, которые при температуре свыше 500°С, испаряясь, образуют пузырь, выталкивающий каплю чернил наружу. Затем терморезистор отключается, чернила охлаждаются и пузырь исчезает, а зона пониженного давления затягивает новую порцию чернил.

Интересно, что чернила разогреваются до температуры 500°С всего лишь за 3 микросекунды, а капли вылетают из сопла со скоростью 60 км/ч. Ежесекундно в каждом сопле печатающей головки цикл нагревания и охлаждения чернил повторяется 18 тысяч раз.

Вторая технология струйной печати - Thermal Inkjet – начала разрабатываться компанией HP в 1984 году, но первый принтер ThinkJet, основанный на данной технологии печати, был внедрён в массовое производство значительно позднее.

Схематическое изображение технологии струйной печати Thermal Inkjet

Технология Thermal Inkjet основана на том же принципе печати, что и технология Bubble Jet, с той лишь разницей, что в принтерах, использующих технологию Bubble Jet, терморезисторы расположены в микроскопических соплах печатающей головки, а в принтерах, использующих технологию Thermal Inkjet, они находятся непосредственно за соплом.

Таким образом, технологии Bubble Jet и Thermal Inkjet различаются лишь в деталях.

Основными преимуществами термоструйной печати перед пьезоструйной являются отсутствие движущихся механизмов и стабильность работы. Наряду с этим термоструйная печать имеет один существенный недостаток: она не позволяет контролировать размер и форму чернильных капель. Кроме того, когда чернильные капли вылетают из сопла печатающей головки, вместе с ними вырываются капли-спутники (сателлиты), образующиеся при закипании чернил. Появление таких «спутников» может быть спровоцировано нестабильной вибрацией чернильной массы во время её выброса из сопла. Именно капли-спутники являются причиной образования нежелательного контура («чернильного тумана») вокруг отпечатка и смешения цветов в графических файлах.


Основой любого процесса струйной печати является процесс создания капель красителя и переноса этих капель на бумагу или любой другой носитель, пригодный для струйной печати. Управление потоком капель позволяет добиться различной плотности и тональности изображения.
На сегодняшний день существует два различных подхода к созданию управляемого потока капель. Первый метод, основанный на создании непрерывного потока капель, так и называется - метод непрерывной струйной печати . Второй метод создания потока капель предусматривает возможность непосредственного управления процессом создания капли в нужный момент времени. Системы, использующие этот метод управления потоком капель, получили название системы импульсной струйной печати .


Непрерывная струйная печать



Краситель, находящийся под давлением, поступает в сопло и разделяется на капли путем создания быстрых колебаний давления, получаемые с помощью какого-либо электромеханического средства. Колебания давления вызывают соответствующую модуляцию диаметра и скорости выходящий из сопла струи красителя, которая разделяется на отдельные капли под воздействием сил поверхностного натяжения.
Этот метод позволяет достигать очень большой скорости создания капель: до 150 тыс. штук в секунду для коммерческих систем и до миллиона штук для специальных систем. Для управления потокам капель используется электростатическая система отклонения. Вылетающие из сопла капли проходят через заряженный электрод, напряжение на котором меняется в соответствии с управляющим сигналом. Поток капель попадает за тем в пространство между двумя отклоняющимися электродами, имеющими постоянную разность потенциалов. В зависимости от полученного ранее заряда отдельные капли изменяют свою траекторию по-разному. Этот эффект позволяет управлять положением печатаемой точки, так и ее наличием или отсутствием на бумаге. В последнем случае капля отклоняется настолько, что попадает в специальный улавливатель.
Подобные системы позволяют печатать точки диаметром от 20 микрон до одного миллиметра. Типичной является точка размером 100 микрон, что соответствует объему капли в 500 пиколитров. Основное применение такие системы нашли на рынке промышленной печати, в системах маркировки товаров, массовой печати этикеток, медицине и пр.

Импульсная струйная печать



Этот принцип создания потока капель предусматривает возможность непосредственного управления процессом создания капли в определенное время. В отличие от систем непрерывного действия, здесь отсутствует постоянное давление в объеме чернил, а при необходимости создания капли генерируется импульсы давления. Управляемые системы принципиально менее сложны в изготовлении, однако для их работы требуется устройство создания импульсов давления примерно втрое более мощно, чем для систем непрерывного действия. Производительность управляемых систем составляет до 20 тыс. капель в секунду для одного сопла, а диаметр капель - от 20 до 100 микрон, что соответствует объему от 5 до 500 пиколитров. В зависимости от способа создания импульса давления в объеме с чернилами различают пьезоэлектрическую и термическую струйную печать.
Для реализации пьезоэлектрического метода в каждое сопло установлен пьезоэлемент, связанный с чернильным каналом диафрагмой. Под воздействием электрического поля происходит деформация пьезоэлемента, благодаря которому сжимается и разжимается диафрагма, выдавливая каплю чернил через сопло. Подобный метод генерации капли используется в струйных принтерах Epson.
Положительным свойством таких технологий струйной печати является то, что пьезоэффект хорошо управляем электрическим полем, что дает возможность достаточно точно варьировать объемов получаемых капель, а значит и в достаточной степени влияет на размер получаемых пятен на бумаге. Тем не менее, практическое использование модуляции объема капель затруднено тем, что изменяется не только объём, но и скорость движения капли, что при движущейся головке вызывает ошибки позиционирования точки.
С другой стороны, производство печатающих головок для пьезоэлектрической технологии оказывается слишком дорогим в пересчете на одну головку, поэтому в принтерах Epson печатающая головка является частью принтера и по стоимости может составлять до 70% от общей стоимости всего принтера. Выход из строя такой головки требует серьезного сервисного обслуживания.




Для реализации термоструйного метода каждое из сопел оборудовано одним или несколькими нагревательными элементами, которые при пропускании через них тока за несколько микросекунд нагреваются до температуры около 600С. Возникающие при резком нагревании газовый пузырь выталкивает через выходное отверстие сопла порцию чернил, формирующих каплю. При прекращении действия тока нагревательный элемент остывает, пузырь разрушается, а на его место поступает очередная порция чернил из входного канала.
Процесс создания капель в термических печатающих головках после подачи импульса на резистор почти неуправляем и имеет пороговую зависимость объема испаряемого вещества от приложенной мощности, поэтому здесь динамическое управление объемом капели в отличие от пьзоэлектрической технологии весьма затруднительно.
Тем не менее, термические печатающие головки обладают самым высоким соотношением производительности и стоимости производства единицы продукции, поэтому термоструйная печатающая головка обычно является частью картриджа и при замене картриджа на новый автоматически происходи и смена печатающей головки. Однако, применение термических печатающих головок требует разработки специальных чернил, которые могут достаточно легко испаряться без возгорания и не подвержены разрушению при термическом ударе.

Печатающая головка Lexmark



Печатающая головка черного картриджа обычного разрешения 600 dpi для ранних моделей (Lexmark СJP 1020, 1000, 1100, 2030, 3000, 2050) имели 56 дюз, расположенных в два зигзагообразных ряда. Печатающая головка для цветных картриджей этих моделей имели 48 дюз разделенных на три группы по 16 дюз для каждого цвета (Cyan, Magenta, Yellow). Принтер Lexmark CJ 2070 использовал иную печатающую головку, которая содержала 104 монохромных дюзы и 96 цветных.
Для производства печатающих головок струйных принтеров Lexmark, начиная с 7000 серии используется печатающие головки, изготавливаемые с применением лазерной технологии прошивки дюз (Excimer, Excimer 2). Первые модели печатающих головок содержали 208 монохромных дюз и 192 цветных.
Для модели Z51 и старшей модели семейства Zx2 и Zx3 была разработана своя печатающая головка с 400 дюзами. В модели Z51 использовалась лишь половина дюз, а остальные работали в режиме горячего резерва, когда как в следующих моделях были одновременно задействованы все дюзы.
Младшие и средние модели семейства Zx2 используют картриджи, являющиеся модификацией стандартных картриджей высокого разрешения, а младшие и средние модели семейства Zx3, новые модели картриджей Bonsai.
Не оставляйте дюзы печатающей головки открытыми в течение продолжительного времени. Если дюзы оставить открытыми - чернила в них засыхают и засоряют каналы, что приводит к дефектам при печати. Картридж следует оставлять в принтере или в специальном боксе гараже »). Нежелательно также дотрагиваться до дюз и контактов руками, так как сальные выделения от кожи могут испортить поверхность.

Характеристики печатающей головки



Период формирования мениска:
Это период времени, необходимый для повторного заполнения камеры чернилами. Он определяет рабочую частоту печатающей головки (от 0 до 1200 Hz).





Скорость капли:
Низкая скорость приводит непрерывному расположению точки.
Высокая скорость приводит к появлению брызг и разводов.




Масса капли определяется:
Размером нагревающего элемента.
Диаметром сопла.
Обратным давлением.





Замечено, что в обычных струйных принтерах капля чернил, попадая на бумагу принимает форму маленького треугольника, поэтому линии при ближайшем рассмотрении выглядят зазубренными. Это связано с тем, что в полете капля деформируется, а при соприкосновении с бумагой - расплывается. Особенно это заметно в низком режиме при экономной печати. Lexmark предлагает принтеры с новой, прогрессивной технологией печати, при которой форма сопел и скорость движения головки сбалансированы так, что капля чернил дают пятна, как равномерные штрихи. Это позволяет сделать линии гладкими, а качество печати почти неотличимы от лазерной печати. Кроме того, такая форма пятна позволяет избежать белесых полос на отпечатке.


Что такое чернила?



Каждый производитель струйных принтеров разрабатывает и совершенствует свой состав чернил, который наиболее адаптирован к выпускаемой технике. У Lexmark основными компонентами чернил для струйных принтеров является:
-Деионизированная вода (85-95% общего объема)
-Пигмент или краситель
-Растворитель (для пигментов)
-Увлажнитель (Humectant)
-Поверхностно-активное вещество (Surfactant)
-Биоцид
-Буфер (стабилизация pH)

Пигмент или краситель . Чернила на основе пигментов (только черные) изготовлены из твердых частиц, находящихся в жидкости. При попадании таких чернил на бумагу жидкость испаряется и частично впитывается, а порошок прилипает к поверхности, не растекаясь по ней. Поэтому чернила на основе пигментов водостойкие, обладают слабым проникновением в волокна бумаги, но они чувствительны к свету.
Чернила на основе красителей - это, как правило, цветные чернила. Краситель растворим в воде и впитывается вместе с ней в толщу бумаги при высыхании. Такие чернила высыхают быстрее пигментных, светоустойчивы, но зато дают в среднем пятен неправильной формы больше, чем последние.
Увлажнитель. Концентрация увлажнителя влияет на вязкость чернил. Этот параметр должен быть оптимален для данного состава чернил и печатающей головки, совместно с которой они будут использоваться. Действительно, с одной стороны, чем больше вязкость, тем хуже чернила растекаются по поверхности бумаги, давая меньший размер точки и тем более четким будет изображение. С другой стороны, слишком большая вязкость приводит к затянутому времени формирования мениска, что ухудшает скорость печати. Обычно, вязкость чернил является ключевым параметром при определении геометрических каналов в печатающей головке.
Поверхностное натяжение влияет на смачиваемость чернилами всех поверхностей, с которыми они соприкасаются, начиная от резервуаров в картридже и кончая поверхностью бумаги. Слишком низкое статистическое поверхностное натяжение приводит к более быстрому высыханию чернил на поверхности бумаги, но при этом средний объем капли при выдавливании чернил из дюз оказывается завышенным. Слишком высокое поверхностное натяжение увеличивает время высыхания, а следовательно ухудшает стойкость изображения при печати.
Уровень кислотности (РН) низкая кислотность приводит к низкой растворимости компонент чернил в воде и как следствие – плохой водостойкости изображения Стандартным считается уровень кислотности в диапазоне от 7.0 до 9.0.
В нутрии картриджа имеются резервуары с чернилами, дюзы печатающей головки и электрические контакты.
Цветной картридж содержит 3 отдельных ячейки для чернил трех разных цветов. В монохромном картридже содержится только одна ячейка с черными чернилами.

Чернила и цвета

Правильная передача цвета изображения на бумагу является высоко технологичным процессом, требующим учета немалого количества факторов, включая субъективную оценку. В первую очередь цветовая передача изображения зависит от химического состава чернил и бумаги, архитектуры принтера.
Обязательным требованием к чернилам является очень тонкий спектральный состав, иначе получаемые при смешении цвета будут «грязными». После высыхания чернила должны оставаться прозрачными, иначе не будет естественного смешения цветов.
Немаловажным фактором является также устойчивость к выцветанию, экологическая чистота и нетоксичность.
Считается, что оптимальный состав чернил ужу известен. Практически у всех производителей они представляют взвесь очень мелких частиц минерального пигмента. С цветными чернилами дело обстоит хуже, поскольку очень трудно подобрать минеральные красители нужного спектрального состава.
В настоящее время процедуры цветопередачи базируются на так называемых цветовых таблицах, которые используются для преобразования цветового пространства, в котором было создано изображение-оригинал, в некоторое «деформированное» цветовое пространство, учитывающее особенности передачи цветов на бумаге чернилами. Обычно, отдельные цветовые таблицы строятся для каждого типа бумаги и оптимизированы для каждого отдельного типа чернил и печатающих головок.

Драйверы Lexmark



Драйверы принтеров Lexmark после установки готовы к печати с автоматическим режимом распознавания объектов, позволяющим получить хорошее качество изображения без предварительной настройки. Автоматический режим также позволяет добиться оптимального сочетания качества и скорости печати документа. Настройки драйвера на специальную бумагу или выбор цветовых таблиц для более контрастного или естественного тона изображения выполняется очень просто в разделе настроек драйвера «Качество документа» (Document Quality)
Драйверы Lexmark серии Color Fine 2 позволяют автоматически определять тип картриджа, тем самым заметно упрощая процедуру настройки всех систем на другой тип картриджа или смену старого на новый. Характерной особенностью драйверов этой серии является их возможность работать с изображением в стандартах sRGB и ICM.
Стандарт sRGB предлагает, что для описания цветного изображения используется аппаратно-независимое цветное пространство, встроенное в OC Microsoft или в средства работы с Internet. Используя стандартизованное RGB-описание цветового пространства UTI-R BT.709, этот стандарт позволяет минимизировать передачу вместе с изображением дополнительной системы информации, связанной с цветовым профилем оборудования, на котором это изображение создавалось. В системной части файла с изображением лишь дается ссылка на стандарт, в котором оно было создано, а положение-получатель активно используется описанием цветового пространства, представленным операционной системой.
Стандарт ICM позволяет более точно определить разнообразие устройств генераций и отображение цветных изображений посредством использования цветных профилей оборудования для каждого типа устройств, генерирующих изображение и отображающих устройств. Однако, такой подход подразумевает, что системная информация, связанная с профилем оборудования, на котором создано изображение предается в месте с этим изображением.

Фотопечать



Серьезной проблемой в струйной печати является правильная передача светлых тонов изображения. Дело в том, что обычные цветовые решения для струйной печати дают точки изображения насыщенного цвета, поэтому для получения бледных оттенков нужно наносить капли чернил достаточно редко. Это приводит к тому, что при передачи очень светлых тонов пятна располагаются так далеко друг от друга, что становится заметна зернистость изображения, а также возникает проблема с передачей в светлых тонах.
Одним из радикальных способов решения этой проблемы является использование дополнительных чернил светлых тонов. В этом случае темные тона получаются за счет заливки осветленными чернилами. Картридж с такими чернилами обычно становится вместо второго картриджа (черного) и содержит чернила осветленного Cyan, осветленного Magenta и черного. Светло желтый тон не используется, поскольку этот цвет воспринимается человеческим глазом без особой разницы как и желтый.



Поделиться