Волновые электростанции как будущее гидроэнергетики. Волновая электростанция

На сегодняшний день существует большое количество различных источников энергии, которые использует человек. Основными считаются конечно же , уголь и , но ведь они когда-то закончатся. К сожалению для многих, но запасов данных углеводородов осталось не так уж и много. По приблизительным расчетам ученых, газ и нефть на нашей планете закончится через 50 лет, а уголь через 400-500. Конечно подобные прогнозы делаются с учетом того, что не будет открыто новых месторождений, но все же стоит задуматься, а что если так и произойдет?!

Конечно волновые электростанции КПД которых имеет приличное значение имеют целый ряд преимуществ делающих их более перспективными перед углеводородами. Главным считается именно коэффициент полезного действия, который имеет высокие показатели. Также стоит отметить, что поплавковая волновая электростанция может также выполнять функцию волногасителя. Благодаря подобному использованию можно обезопасить берега водоемов, у которых бывают сильные приливы. Также волновые могут выполнять охрану морских границ государства, но для этого потребуется небольшое усовершенствование.

Строительство ВЭС

Во время строительства ВЭС необходимо учитывать следующие факторы получения электрической энергии:

  • Требуется брать в расчет показатели кинетической энергии волн. При попадании в трубу волновой электростанции вода оказывает давление на расположенную внутри, которая приводится в движение и вырабатывает энергию. Также данный процесс может осуществляться с помощью давления, которое оказывается водой, выталкивающей воздух из полой камеры.
  • Энергия получаемого от качения поверхности. При подобных случаях на поверхность воды устанавливаются специальные датчики, называемые поплавками. Они отслеживают профили каждой волны и преобразовывают качание в электрическую энергию.

К счастью схема ПВЭС проста, поэтому на строительство и запуск не приходится тратить больших средств, в то время как КПД приливной электростанции позволяет использовать ее даже для крупных городов побережья.

Заключение

Конечно, как и другие альтернативные способы добычи электрической энергии, данный метод не до конца изучен и разработан, но процесс идет очень хорошими темпами. На сегодняшний день даже преобразование не может на равных конкурировать с углеводородными источниками, но следует продолжать исследовать все альтернативные методы. Россия не так давно стала разрабатывать проект получения энергии из ВЭС, но у страны есть большой потенциал и возможности, которые требуется лишь реализовать на все 100%.

Сегодня главными источниками энергии считаются углеводородное сырье – нефть, уголь, газ. Как показывают исследования, угольных залежей при нынешних темпах добычи будет достаточно еще на 4 столетия, а залежи нефти и газа истощатся через 4 десятка и 6 десятков лет соответственно.

Подобное скорое сокращение количества полезных ископаемых требует поиска других методов добычи энергии. Самым многообещающим видом является такой вид гидроэнергетики как волновая.

Единая структура станций волновой энергетики

Станция волновой энергетики – это строение, находящееся на воде, способное за счет волн вырабатывать электрическую энергию. При их возведении необходимо считаться с двумя обстоятельствами:

Энергия движения волн. Волны, направляющиеся в коллектор значительной окружности, заставляют вращаться лопасти турбин, приводящие в рабочее состояние генератор. Существует и другой способ – волна движется сквозь открытую емкость, вытесняя сжатый воздух, вынуждает двигатель работать.

Энергия поверхностного качения. Здесь получение электроэнергии случается благодаря преобразователям - поплавкам, которые следят за направлением волны, находясь на плоскости воды.

Существуют следующие типы подобных поплавков:

Утка «Солтера» - подразумевает огромное число поплавков, которые установлены на одном валу. Для большей результативности данного вида поплавка нужно прикрепить на вал их до 30 штук.

Плот Коккереля представляет собой строение из 4 ячеек, имеющих соединение посредством шарнир, которые движутся из-за силы волн и заставляют работать гидроцилиндрические устройства, обеспечивающие деятельность генераторов.

Преобразователи Pelamis навеваются еще морскими змеями, сегменты в виде цилиндров соединяются шарнирным способом и под действием вол созданная «змея» изгибается, заставляя работать гидравлические поршни.

Достоинства и недостатки гидроэнергетики волн

Сегодня всего только 1% добываемой электрической энергии относится к гидроэнергетике волн, но их ресурсы огромны. Незначительное применение станций волновой энергетики объясняется дорогостоящей на выходе энергией.

Минусами применения станций волновой энергетики являются определенные условия:

Экологические. Огромное число преобразователей волн способно нанести вред экологической системе, потому что волны оказывают значительное влияние на газообмен океана и атмосферы, на очищение поверхности воды от засорений.

Социально-экономические. Определенные виды генераторов, используемые в гидроэнергетике волн, могут нанести вред судоходству. Что повлияет на работу рыбаков, которым придется покинуть крупные рыбопромышленные места.

Однако волновые электростанции помимо минусов имеют и ряд определенных достоинств:

  1. станции могут выступать в качестве волногасителей, а значит, способны защитить берега от разломов и обвалов;
  2. можно расположить волновые электрогенераторы небольшой мощности на конструкциях мостов, причалов, сокращая действие на них;
  3. значительное преимущество перед ветровой энергетикой;
  4. электроэнергия получаемая благодаря морским волнам не завит и не нуждается в углеводородном сырье, залежи которых значительно сокращаются.

Важнейшей целью создателей станций волновой энергетики является модернизация его постройки таким способом, чтобы ощутимо сократить себестоимость производимого электричества.

Территориальное возведение волновых электростанций

Возведение волновых электростанций малых мощностей используется для питания электроэнергией маленьких объектов:

Построек по береговой линии;

Малых селений;

Независимых маяков, буев;

Научных и исследовательских устройств;

Буковых установок.

Португалия

В районе Агусадора в 2008 году произошло значительное событие в гидроэнергетике – впервые начала свою работу волновая электростанция с мощностью 2,25 МВт. Разработкой занималась компания Pelamis Wave из Шотландии, которая подписала с Португалией договор на 8 млн. евро.

На данный момент на станции работают 3 преобразователя по типу змеи, которые на половину находятся в воде. Одна «змея» имеет длину в 120 метров, а весит 750 тонн. Сама станция располагается в 5 км от береговой линии, на нее по кабелям поступает электричество. На станции проводятся работы, способствующие росту мощности этой волновой станции до 21 МВт, в планах установить 25 дополнительных преобразователей, что позволит снабдить электричество 15 тысяч домов.

Норвегия

Появление волновых станций для промышленных целей зафиксировано в 85-м году XX века в Норвегии.

Эта станция – воздушное волновое сооружение, имеет мощность до 500 кВт. Ее опускают на самый низший слой поверхности воды.

Движение океанских волн сопровождается выделением фантастических объемов энергии. Однако человечество пока так и не научилось эффективно перерабатывать эту энергию для своих целей. Одна из успешнейших на данный момент попыток – волновая электростанция Oceanlinx в акватории города Порт-Кембла, Австралия.



В настоящее время в мире проводятся испытания шести волновых электростанций. Электростанция же Oceanlinx у берегов Австралии была введена в эксплуатацию еще в 2005 году, однако затем была демонтирована для реконструкции и переоборудования, и только сейчас вновь запущена в действие.


Принцип работы волновой электростанции заключается в том, что проходящие через нее волны толчками заполняют водой специальную камеру, вытесняя содержащийся в этой камере воздух. Сжатый воздух под давлением проходит через турбину, вращая ее лопасти. В результате вырабатывается электричество.


Основным элементом, определяющим эффективность работы волновой электростанции, является турбина. Из-за того, что направление движения волн и их сила постоянно меняются, обычные турбины для выработки волновой электроэнергии непригодны. Поэтому на станции Oceanlinx используется турбина Denniss-Auld c регулируемым углом поворота лопастей.

Одна силовая установка Oceanlinx обладает мощностью (в пиковом режиме) от 100 кВт до 1,5 МВт. Установка в Порт-Кембла поставляет в электросеть города 450 кВт электричества.

Волновая электростанция - энергетическая установка, расположенная в водной среде, целью которой является получение электрической энергии из кинетической энергии морских или океанических волн. Как и приливные, волновые электростанции располагаются на берегу или океане в непосредственной близости ВИЧ берега, с целью экономии средств на прокладку подводных электрокоммуникаций.

Первая волновая электростанция расположена в Португалии на расстоянии 5 километров от берега. Эта волновая станция была открыта 23 сентября 2008 года. Мощность данной электростанции составляет 2,25 МВт, этого достаточно для

Рис. 4.1.

обеспечение электроэнергией примерно 1600 небольших домов.

Принципиальная схема волновой электростанции аналогична принципиальной схеме гидроэлектростанции, однако вместо плотины с падающим потоком воды здесь используется гидрохвильовий преобразователь, преобразующий энергию волн в запасенную в пневмогидроакумулятори энергию рабочей жидкости.

В качестве примера рассмотрим устройство волновой электростанции Pelamis Р 750. Эта волновая электростанция состоит из нескольких устройств, представляют собой плавающие объекты - гидрохвильови поплавковые преобразователи, соединенные в одну цепь. На рис. 4.1. показана схема устройства этой волновой электростанции. Где: 1 - плавающие поплавковые преобразователи; 2-гидравлические поршни; 3 -поверхность волны; 4 - гидромагистралей; 5 - главный корпус; 6 - контрольно-распределительное устройство; 7 аккумулирующий устройство; 8 - отвод к потребителю.

Размер каждого гидрохвильового поплавкового преобразователя: длина 120 метров, диаметр 3,5 метра, вес 7S0 тонн. Между преобразователями каждой секции закреплены гидравлические поршни. Внутри каждой секции также гидравлические двигатели и электрогенераторы. Под воздействием волн конвертеры качаются на поверхности воды, и это заставляет их крутиться. Движение каждой секции приводит в работу гидравлические поршни, которые, в свою очередь, приводят в движение маслу. Масло проходит через гидравлические двигатели. Эти гидравлические двигатели приводят в движение электрические генераторы, которые делают электроэнергию. Мощность одного такого конвертера составляет 750 кВт. В электрическую энергию превращается примерно 1% энергии волн.

Существует много возможностей получения энергии из волн морей и океанов.

Рис. 4.2.

Среди которых наибольшее распространение получили поглотители колебаний - плавающие на поверхности аттенюаторы и установлены на дне приливные турбины. Одним из интересных решений является энергетический буй - полностью автономное устройство. В этом устройстве используется винтовой компрессор, который крепится якорем ко дну и плавает на поверхности. Электроэнергии производится за счет преобразования поршневой системой и электрогенератором вертикальных перемещений буя на волнах. На берег электричество подается по подводному кабелю.

Интересное устройство под названием Searaser разработан в Англии и напоминает волновую электростанцию, использующую энергию вертикального движения поплавка. Однако сам поплавок не имеет электрических систем и представляет обычный механический насос, который закачивает морскую воду на большую высоту в прибрежные скалы. Этот проект получил название - гидроаккумулирующая электростанция, на рис. 4.3. приведено устройство станции: 1- верхний поплавок; 2 - поверхность волны; 3 - нижний поплавок; 4 - клапан; 5 - поршень; 6-шлзнг; 7 - поплавок поддержки шланга; 8, 9 бетонные якоря; 10 - коллектор. Как видно из приведенного рисунка, основой установки есть 2 поплавка, способных двигаться друг относительно друга. Верхний раскачивается волнами, нижний соединен с дном с помощью цепи и якоря. Между поплавками находится "насосная станция" (цилиндр с поршнем двойного действия, КОТОРЫЙ качает воду при движении вниз и вверх) и клапанами с выходными трубами. Автоматическая подстройка высоты положения верхнего поплавка в зависимости от уровня моря, который меняется в прилив и отлив - телескопическая труба, раздвигается и сложная под действием сил Архимеда и тяжести. К этой "приливной" колонне крепится насос с верхним поплавком. Вода, через коллектор подается на сушу, в горы. В горах устраивается бассейн, в котором вода накапливается и выпускается обратно в море, по пути вращая турбину электростанции, идентичной традиционной ГЭС, но без дамбы. Один полноразмерный поплавок Searaser должен развивать мощность до 0,25 МВт. Основная преимущества в подобной установки, по сравнению с другими,

Рис. 4.3. Гидроаккумулирующей электростанции

заключаются в следующем. В поплавки отсутствуют провода, магниты, которые или электрические контакты и герметичные отсеки для оборудования, что делает его гораздо более дешевым, простым и надежным. Турбины и электрогенераторы волновой станции, расположенные на берегу. В отличие от волновых электростанций, других типов, установка Searaser решает проблему неравномерности силы волн.

В волновых устройств с пневматическими преобразователями под действием волн воздушный поток периодически изменяет свое направление на обратное. Для этих условий и разработана турбина Уэллса, ротор которого имеет выпрямляя действие сохраняя неизменным направление своего вращения при смене направления воздушного потока, следовательно, поддерживается неизменным и направление вращения генератора.

Турбина нашла широкое применение в различных волно-энергетических устройствах. Волновой энергетический устройство "кайма" - самая мощная действующая энергетическая установка с пневматическими преобразователями - построена в Японии в 1976 г.. В своей работе она использует волны высотой до 6 -10 м. На барже длиной 80 м, шириной 12 м и водоизмещением 500 т установлены 22 воздушных камеры, открытые снизу. Каждая пара камер работает на одну турбину Уэллса. Общая мощность установки 1000 кВт. Первые испытания были проведены в 1978 - 1979 pp. у города Цуруока. Энергия передавалась на берег по подводному кабелю длиной около 3 км.

В 1985 в Норвегии в 46 км к северо-западу от города Берген построена промышленная волновая станция, состоящая из двух установок. Первая установка на острове Тофтесталлен работала по пневматическому принципу. Она представляла собой железобетонную камеру, углубленную в скале; над ней была установлена стальная башня высотой 12,3 мм и диаметром 3,6 м. Входящие в камеру волны создавали изменение объема воздуха. Возникающий поток через систему клапанов приводил во вращение турбину и связанный с ней генератор мощностью 500 кВт, годовая выработка составил 1200000. КВт. ч. Однако сильным штормом в конце 1988 башня станции была разрушена.

Конструкция второй установки состоит из конусообразного канала в ущелье длиной около 170 м с бетонными стенками высотой 15 м и шириной в основании 55 м, что входит в резервуар между островами, отделенный от моря дамбами, и плотины с энергетической установкой. Волны, проходя по каналу, сужается увеличивают свою высоту с 1,1 до 15 м и вливаются в резервуар, уровень которого на 3 м выше уровня моря. Из резервуара вода проходит через низконапорные гидротурбины мощностью 350 кВт. Станция ежегодно производит до 2 млн. КВт * ч. электроэнергии.

В Великобритании разрабатывается оригинальная конструкция волновой энергетической установки типа "моллюск", в которой в качестве рабочих органов используются мягкие оболочки - камеры. В камерах находится воздух под давлением, несколько большим атмосферного давления. Накатом волн камеры сжимаются, образуется замкнутый воздушный поток из камер в каркас установки и обратно. На пути потока установлены воздушные турбины Уэллса с электрогенераторами. Сейчас создается опытная плавучая установка с б камер, укрепленных на каркасе длиной 120 м и высотой 8 м. Ожидаемая мощность 500 кВт. Дальнейшие разработки показали, что наибольший эффект дает расположение камер по кругу. В Шотландии на озере Лох-Несс была испытана установка, состоящая из 12 камер и 8 турбин. Теоретическая мощность такой установки до 1200 кВт.

Проект, известный под названием "утка Солтера", представляет собой преобразователь волновой энергии. Рабочей конструкцией является поплавок - "утка", профиль которого рассчитан по законам гидродинамики.

Конструкция этого волнового преобразователя энергии показано на рис. 3.5. В проекте предусматривается монтаж большого количества крупных поплавков, последовательно укрепленных на общем валу. Под действием волн поплавки приходят в движение и возвращаются в исходное положение силой собственного веса. При этом приводятся в действие насосы внутри вала, заполненного специально подготовленной водой. Через систему труб различного диаметра создается разность давления, приводит в движение турбины, установленные между поплавками и поднятые над поверхностью моря. Вырабатываемая электроэнергия передается по подводному кабелю. Для более эффективного распределения нагрузок на валу следует устанавливать 20 - 30 поплавков. В 1978 была испытана модель установки, состоявшая из 20-ти поплавков диаметром 1 м. Выработанная мощность составили 10 кВт. Разработан проект мощной установки из 20 - 30 поплавков диаметром 15 м, укрепленных на валу, длиной 1200 м.

Рис. 4.4. Преобразователь волновой энергии "утка Солтера"

Предполагаемая мощность установки 45 тыс. КВт. Подобные системы, установленные у западных берегов Британских островов, могут обеспечить потребности Великобритании в электроэнергии.

В качестве перспективных энергетических установок можно отметить преобразователь, использующий энергию водяного столба, колеблется. Принцип работы такого преобразователя заключается в следующем. При набегании волны на частично погруженную полость, открытую под водой, столб жидкости в полости колеблется, вызывая изменения давления в газе над жидкостью. Полость связана с атмосферой через турбину. Поток может регулироваться так, чтобы проходить через турбину в одном направлении, или может быть использована турбина Уэллса. Уже известны, по крайней мере, два примера коммерческого использования устройств на этом принципе - сигнальные буи, внедренные в Японии Масудой и в Великобритании сотрудниками Королевского университета Белфаста. Больше и впервые включено в энергосеть устройство построено в Тофтестоллене (Норвегия) фирмой Kvaemor Brug A / S. Основной принцип действия преобразователя, использующего принцип колеблющегося столба показано на рис. 4.4. На этом Рис.: 1 - волновой подъем уровня; 2 - воздушный поток; 3 - турбина; 4 - система впуска и выпуска воздуха; S - направление волны; 6 - опускание волнового уровня; 7 - морское дно.

Рис. 4.5.

В Тофтестоллени он используется в 500-киловаттный установке, построенной на краю отвесной скалы. Кроме того, национальная электрическая лаборатория (NEL) Великобритании предлагает конструкцию, устанавливаемую непосредственно на морском дне. Главное преимущество устройств на принципе водяного колеблющегося столба заключается в том, что скорость воздуха перед турбиной может быть значительно увеличена за счет уменьшения проходного сечения канала. Это позволяет сочетать медленный волновое движение с высокочастотным вращением турбины. Кроме того, здесь создается возможность изъять генерирующий устройство из зоны непосредственного влияния соленой морской воды.

Существуют и другие, менее известные способы преобразования энергии волн в электрическую энергию. Так, волновая электростанция Oceanlinx в акватории города Порт-Кемпбелла (Австралия) использует волны для того, чтобы нагнетать воздух в огромные меха. Сжатый воздух под давлением проходит через турбину, вращая ее лопасти. В результате вырабатывается электроэнергия. Установка Oceanlinx в Порт-Кемпбелла поставляет в электросеть города 450 кВт электроэнергии. У побережья США в Орегоне строится "буйковых" электростанция. Буи под воздействием волн качают магнитный стержень внутри ведущей катушки и генерируют электрический ток.

Електробуйкы, разрабатываемые в Орегонского университете, планируется размещать на расстоянии в два-три километра от побережья. По предварительным расчетам, территория в 25 кв. км сможет поставить электричеством весь штат.

Некоторые типы разработанных и разрабатываемых волновых энергетических установок используют разницу оценок гребня и впадины волны. За счет перелива гребней волны, например, через дамбу, или за счет попеременного открытия клапанов или задвижек происходит заполнение емкостей - бассейнов, перепад, образовавшаяся, уровней в емкости и в море используется водяным колесом или низконапорной гидравлической турбиной для выработки электроэнергии или привода других механизмов. Наиболее известной установкой этого типа является "шлюз Рассела". С целью увеличения действующего перепада уровней (напора) используется эффект набегания волны на пологую поверхность. Для этого рабочая поверхность изготавливается в виде наклонного лотка, сужающийся к верху. Морская волна высотой 1,1 м, собранная по волновому фронту длиной 350 м, при концентрации ее в 12-метровом канале, может привести к возникновению стоячей волны с амплитудой 17 м. Экспериментально установлено, что установка, содержащая наклонную плоскость с углом наклона 30 °, обеспечивает поднятие уровня воды на 2,5 м при средней высоте волны 1,5 м. В США разрабатывается установка этого типа под названием "Дэм Атолл". Основным элементом установки является часть сферы диаметром 100 м и высотой до 30 м, выпуклой частью, выступающей над уровнем моря. На поверхности этого искусственного острова расположены хвиленаправляючи ребра, а в середине - водоприемный отверстие и водовод диаметром до 18 м с гидротурбиной. Горизонтальное давление набегающих волн, может восприниматься и непосредственно различными упругими или подвижными стенками, перемещение которых преобразуется во вращение вала генератора или давление рабочей среды в поршневом насосе. К конструкциям этого типа относится установка "триплейт", предложенная Ф.

Фарлеем. Испытания установки в Великобритании в лабораторных условиях при волнах длиной от 1,5 до 7 м, а также в натурных условиях на крупномасштабной модели при волнах длиной 150 м показали, что расчетный КПД может достигать 80-90% и более.

В настоящее время наиболее распространенными волновыми установками являются поплавковые. Рабочее тело таких установок -поплавець - находится на поверхности моря и совершает вертикальные колебания в соответствии с изменениями уровня воды при ветровом волнении. Вертикальные перемещения поплавка используются для попеременного сжатия газа или жидкости в какой-либо емкости, либо они превратятся во вращательное движение электрического генератора и т.п. Например, буй диаметром 16 м, разработанный в Норвегии, при амплитуде вертикальных перемещений 8 м способен при КПД 80% производить до 4 млн. КВт ч. в год. Амплитуда колебаний поплавка может быть существенно (в 10-12 раз) увеличена за счет совершенствования его конструкции. Для увеличения амплитуды (резонанса) вертикальный цилиндрический поплавок частично (в зависимости от параметров волны и поплавка) заполняется водой или к поплавки подвешивается груз соответствующей массы. Крупномасштабная модель резонансного поплавка, исследована в Японии, имела диаметр 2,2 м, высоту 22 м, массу 13,5 т, пропеллерную турбину диаметром 0,8 м. Амплитуда колебаний поплавка достигала 8 м при волнах высотой от 0,5 до 1, 5 м. На рис. 4.6. показано устройство такой поплавковой станции.

Рис. 4.6.

Где: 1 - поплавок 2 - сжимаемая жидкость 3 - электротурбина с генератором.

Перечисленные выше типы волновых энергетических установок включают элементы, находящиеся на поверхности моря и поэтому подвержены влиянию не только расчетных, но и экстремальных штормовых волн. Для предотвращения такого воздействия можно располагать рабочее тело полностью под уровнем моря. В таких установках "набегающая волна" давления, обусловленная разницей давлений под гребнем и впадиной волны, используется для сжатия эластичных оболочек, уложенных на дно моря в направлении движения волны, или влияния на горизонтальную площадку, укрепленную на опорах на дне моря. Толчки давления в оболочках или над горизонтальной площадкой используются для повышения давления и перемещения рабочей жидкости или газа.

В Великобритании предложена установка "упругая труба", способная воспринимать не только вертикальную, но и горизонтальную составляющую гидростатического давления. Исследования на модели показали высокую скорость реакции "трубы" на изменение волнового давления. В Бристольского университете Великобритании еще в 1976 г.. Была предложена установка под названием "Бристольский цилиндр". Установка представляет собой круговой цилиндр, полностью погружен в поверхностный слой воды параллельно фронту волны. Цилиндр имеет положительную плавучесть и содержится в затопленном состоянии якорной системой, в связях которой устанавливаются погрузочные устройства, например, гидроцилиндры.

В Японии в эти годы сделали и испытали первую в мире крупномасштабную оффшорную плавающую установку "Каишеи" в Японском море. Установка включала 9 генераторов на борту, которые были установлены выше волно-приемных камер, открытые ниже уровня воды. Волнение вызвало периодический сжатие и разрежение воздуха, прогоняли через воздушные турбины с приводом на генераторы. Кроме того, в Японии были сделаны другие по типу большие волновые установки, включая Caisson-type Oscillating Water Column prototype. Эта установка имеет 4 кессона с габаритными размерами каждого кессона 20,9 х2 4,3 х 27,0 метра. Рабочая глубина воды составляла 18 м. Каждый кессон имел 4 открытых с фронтальной части отверстия, обращенных к набегающих волн. Каждое отверстие отвечал отдельном отсеке камеры, которые разделены стинками- перегородками. Поршневая действие осцилуючих водяных колонн вызвал движение воздуха через турбины Уэльса (1,34 м в диаметре, 16 лопастей). Использовали генераторы на 60 кВт каждый. Данный прототип испытывали в Японском море в порту Саката в префектуре Ямагата. Португалия реализует проект 0,5 мегаваттной береговой волновой энергетической установки на острове Рисо (Азорские острова). Размеры бетонной компрессионной камеры составляют 12 × 12 м, а воздуховод для воздушной турбины Уэльса имеет диаметр 2,3 м. В Индии построена опытная установка на 150 кВт также с турбиной Уэльса около острова Тривандрум.

Эдинбургский фирма Aquamarine Power сдала в эксплуатацию Европейском исследовательском центре морской энергии (European Marine Energy Centre), крупнейшая в мире волновую электростанцию "Устрица" (Oyster), созданную при содействии ученых из Королевского университета в Белфасте (Queen"s University Belfast).

Элементы "Устрицы", установленные на дне вряд, похожие на растянутые автонасосы. их вертикальные стенки собраны из пяти больших параллельных труб- поплавков. Волна, идущая к берегу наклоняет эту стенку (вроде бы слегка качает насос ногой) и и, возвращаясь на петлях вокруг горизонтальной оси, приводит в действие поршень, нагнетает воду в трубопровод высокого давления. Поступающая под давлением на берег вода крутит ротор электрогенератора. Расположение между морем и сушей устройства для сбора волновой энергии и електропреобразователи реализован впервые. Выгоды такого варианта размещения действительно очевидны: материалы на суше проработает дольше, и ее обслуживать проще. Oyster уже включен в потребительскую электросеть и начал исправно питать энергией несколько сотен домов на шотландском побережье. На сегодня в морях работают уже десятки сравнительно небольших волновых электростанций. Первая в мире большая коммерческая ВЭС начала генерировать ток в прошлом году в Португалии под городком Агусадора.

В целом создание волновых электростанций определяется оптимальным выбором акватории океана с устойчивым запасом волновой энергии, эффективной конструкцией станции, в которую встроены устройства сглаживания неравномерного режима волнения. Считается, что эффективно волновые станции могут работать при использовании мощности около 80 кВт / м. Опыт эксплуатации существующих установок показал, что вырабатываемая ими электроэнергия пока в 2-3 раза дороже традиционной, но в будущем ожидается значительное снижение ее стоимости. Мощные многомодульные волновые установки могут служить хорошей энергетической базой для создания экологически чистых объектов перерабатывающей промышленности морского и прибрежного базирования.

Волновая электростанция – это один из подвидов электростанций, использующих для выработки электроэнергии кинетическую энергию воды. В данном случае используется энергия волн морей и океанов.

Это относительно новый вид энергетики, хотя ее история насчитывает уже более 200 лет. Чаще всего волновые электростанции устанавливаются недалеко от прибрежных зон там, где потенциальная волновая активность выше всего. К таким местам относятся: западно-европейское побережье, северное побережье Англии, Тихоокеанское побережье Америки (обоих континентов), прибрежная зона Южной Африки, Австралии и Новой Зеландии.

История

Первая так называемая «волновая мельница» была запатентована Парижским патентным бюро аж в 1799 году. С этого момента инженерами и учеными производились многочисленные попытки использования кинетической энергии волн для выработки электричества . Вплоть до начала 20-го века было множество подобных изобретений, правда не одно из них так и не использовалось в промышленных масштабах.

Лишь в 1973 году после катастрофической нехватки нефтяных запасов (нефтяной кризис) интерес исследователей и ученых к альтернативной энергетике заметно возрос. Начались активно разрабатываться и создаваться, в том числе и волновые электростанции.

Первая промышленная волновая электростанция, разработка которой началась в 2005 году, была введена в эксплуатацию 23 сентября 2008 года в 5-ти километровой прибрежной зоне Португалии (район Агусадора). Ее эксплуатационная электрическая мощность составила 2,25 МВт. Сейчас она обеспечивает светом более 1,5 тыс. частных домов.

Принцип работы

Современная волновая электростанция состоит из нескольких специальных конвертеров, мощность каждого из которых может достигать 1 МВт. Каждый конвертер состоит из нескольких секций, между которыми закреплены на движимых конструкциях гидравлические поршни. К каждому поршню или системе поршней привязан гидравлический двигатель, который приводит во вращение электрический генератор .

Под действием волн конвертер начинает качаться, что приводит в движение гидравлические поршни. Последние создают в гидравлической системе, в которой находится масло, давление, а оно в свою очередь движет гидравлическими двигателями.

Один конвертер может достигать в длину до 150 метров и иметь диаметр около 3 метров. Вес одной такой установки не редко достигает 700 – 800 тонн.

Есть и другие конструкции конвертеров, которые представляют собой отдельные буи, расположенные не горизонтально, а вертикально. Принцип их работы аналогичен предыдущему с той лишь разницей, что гидравлические поршни имеют несколько иную форму.

Сложность конструкций всех существующих конвертеров заключается лишь в эксплуатационных особенностях механических их частей. Ведь волновые электростанции, как правило, находятся в соленой воде, поэтому очень важно не допустить ее контакта с металлическими элементами конвертера.

Также очень часто приходится использовать специальные приспособления (волнорезы и тормозные щиты), чтобы снизить чрезмерную энергию волны, которая с легкостью может разрушить всю конструкцию.

Удельная мощность всех волн морей и океанов намного превосходит как ветровую, так и солнечную суммарную энергию. Ученые подсчитали, что средняя эквивалентная мощность волны на нашей планете равняется примерно 15 кВт на погонный метр. И это при средней высоте волн до 1 метра. Если же волны, а это бывает не так уж и редко, достигают высоты 2 и более метров, их эквивалентная мощность может доходить до 80 кВт/м пог.



Поделиться