Время ожидания в очереди. Контрольные вопросы

Рассмотрим n - канальную систему массового обслуживания с ожиданием.

Интенсивность потока обслуживания равна μ. Длительность обслуживания – случайная величина, подчиненная показательному закону распределения. Поток обслуживаний является простейшим пуассоновским потоком событий.

Размер очереди допускает нахождение в ней m заявок.

Для нахождения предельных вероятностей можно использовать следующие выражения.

(0‑1)

где.

Вероятность отказа в обслуживании заявки (отказ произойдет в случае, если все каналы заняты и в очереди находятся m заявок):

(0‑2)

Относительная пропускная способность .

(0‑3)

Абсолютная пропускная способность .

(0‑4)

Среднее число занятых каналов.

Для СМО с очередью среднее число занятых каналов не совпадает (в отличие от СМО с отказами) со средним числом заявок в системе. Отличие равно числу заявок, ожидающих в очереди.

Обозначим среднее число занятых каналов. Каждый занятый канал обслуживает в среднем μ заявок в единицу времени, а СМО в целом – А заявок в единицу времени. Разделив А на μ получим

(0‑5)

Среднее число находящихся в очереди заявок.

Для нахождения среднего числа ожидающих в очереди заявок в случае, если χ≠1, можно использовать выражение:

(0‑6)

(0‑7)

где = .

Среднее число находящихся в системе заявок.

(0‑8)

Среднее время ожидания заявки в очереди .

Среднее время ожидания заявки в очереди можно найти из выражения (χ≠1).

(0‑9)

Среднее время пребывания заявки в системе.

Так же как и в случае с одноканальной СМО имеем:

(0‑10)

Содержание работы .

Подготовка инструментария эксперимента .

Выполняется в соответствии с общими правилами.

Расчет на аналитической модели .

1. В приложение Microsoft Excel подготовьте таблицу следующего вида.

Параметры
СМО

Аналитическая
модель

Имитационная
модель

n

m

T a

Ts

ρ

χ

P0

P1

p2

Pотк

W

nож

q

A

Pотк

W

q

A

2. В столбцах для параметров СМО таблицы запишите свои исходные данные, которые определяются по правилу:

n =1,2,3

m=1,3,5

Для каждой комбинации { n ,m} необходимо найти теоретические и экспериментальные значения показателей СМО для таких пар значений:

= <порядковый номер в списке группы>

3. В столбцы с показателями аналитической модели впишите соответствующие формулы.

Эксперимент на имитационной модели .

1. Установите режим запусков с экспоненциально распределенным временем обслуживания, задав значение соответствующего параметра равным 1.

2. Для каждой комбинации n, m, и осуществите запуск модели.

Результаты запусков внесите в таблицу.

3. Внесите в соответствующие столбцы таблицы формулы для расчета среднего значения показателя Pотк, q и А.

Анализ результатов .

1. Проанализируйте результаты, полученные теоретическим и экспериментальным способами, сравнив результаты между собой.

2. Для одной из комбинаций {n,m} постройте на одной диаграмме графики зависимости Pотк от на теоретически и экспериментально полученных данных.

Оптимизация параметров СМО .

Решите задачу оптимизации размера числа мест в очереди m для двух приборов со средним временем обслуживания = с точки зрения получения максимальной прибыли. В качестве условий задачи возьмите:

- доход от обслуживания одной заявки равным 80у.е./час,

- стоимость содержания одного прибора - 1у.е./час,

- стоимость содержания одного места в очереди – 0.2у.е./час.

1. Для расчетов целесообразно создать таблицу:

Первый столбец заполняется значениями числа приборов n =1.

Второй столбец заполняется значениями чисел натурального ряда (1,2,3…).

Все клетки третьего и четвертого столбцов заполняются значениями.

В клетки столбцов с пятого по четырнадцатый переносятся формулы для столбцов таблицы раздела 0.

В столбцы с исходными данными разделов Доход, Расход, Прибыль внесите значения (см. выше).

В столбцах с вычисляемыми значениями разделов Доход, Расход, Прибыль запишите расчетные формулы:

- число заявок в единицу времени

N r =A

- суммарный доход в единицу времени

I S = I r *N r

- суммарный расход в единицу времени

E S =E s *n + E q *m

- прибыль в единицу времени

P = I S - E S

где

I r - доход от одной заявки ,

E s - расход на один прибор ,

E q - расход на одно место в очереди

2. Заполните строки таблицы для n=2 и n=3.


Найдите m опт для n =1 ,2,3.

3. Постройте на одной диаграмме графики зависимости C(m) для n=1,2,3.

Отчет по работе :

Отчет по работе должен включать:

- исходные данные,

- результаты расчетов и экспериментов с программной моделью,

Графики для P отк ,

- таблицу с данными для нахождения наилучшего m и значение m опт,

- графики зависимости прибыли в единицу времени от m для n=1,2,3.

Контрольные вопросы :

1) Дайте краткое описание многоканальной модели СМО с ограниченной очередью.

2) Какими показателями характеризуется функционирование многоканальной СМО с ограниченной очередью?

3) Как рассчитываются предельные вероятности многоканальной СМО с ограниченной очередью?

4) Как найти вероятность отказа обслуживания заявки?

5) Как найти относительную пропускную способность?

6) Чему равна абсолютная пропускная способность?

7) Как подсчитывается среднее число заявок в системе?

8) Приведите примеры многоканальной СМО с ограниченной очередью.

Задачи .

1) На автозаправочной станции установлены 3 колонки и площадка на 3 автомобиля для ожидания заправки. В среднем на станцию прибывает одна машина каждые 4 минуты. Среднее время обслуживания одной машины - 2,8 мин. Определить характеристики работы автозаправочной станции.

2) На станцию технического осмотра автомобилей, имеющего 3 смотровых поста, в среднем поступает 1 автомобиль за 0,4 часа. Стоянка во дворе вмещает 3 машины. Среднее время работы одного поста - 0,5 часа. Определить характеристики работы СТО.

3) В магазин осуществляется завоз товаров автомобилями. В течение дня прибывают в среднем 6 машин. Подсобные помещения для подготовки товаров к продаже позволяют обрабатывать и хранить товар, привезенный двумя машинами. В магазине работают посменно три фасовщика товаров, каждый из которых в среднем может обрабатывать товар одной машины в течение 5 часов. Продолжительность рабочего дня фасовщиков составляет 12 часов. Определить характеристики работы магазина, а также, какова должна быть емкость подсобных помещений, чтобы вероятность полной обработки товаров была больше 0,96.

4) В магазине работают три кассы. Среднее время обслуживания одного покупателя - 3 мин. Интенсивность потока покупателей - 7 человек в минуту. Число покупателей, стоящих в очереди к кассе, не может превышать 5 человек. Покупатель, пришедший в магазин, в котором в каждой очереди в кассу 5 человек, не ждет, а уходит из магазина. Определить характеристики работы магазина.

5) Оптовый склад производит отпуск товаров клиентам. Погрузку автомашины осуществляют три бригады грузчиков, каждая из которых состоит из 4 человек. Склад одновременно вмещает 5 автомашин и, если в это время прибывает новая автомашина, то она не обслуживается. Интенсивность входящего потока составляет 5 автомашин в час. Интенсивность по грузки составляет 2 автомашины в час. Дайте оценку работы склада и вариант его реорганизации.

6) Таможня располагает тремя терминалами. Интенсивность потока автомашин, перевозящих грузы и подлежащих прохождению таможенного контроля, составляет 30 шт. в сутки. Среднее время таможенной обработки на терминале одной автомашины составляет 3 часа. Если в очереди на прохождение таможенного контроля стоят 5 автомашин, то приезжающие автомашины уезжают на другую таможню. Найти показатели эффективности работы таможни.

7) На строительную площадку в среднем через 40 мин прибывают автомашины со строительным материалом. Среднее время разгрузки одной автомашины составляет 1,8 часа. В разгрузке принимают участие две бригады грузчиков. На территории строительной площадки может находиться в очереди на разгрузку не более 5 автомашин. Определить показатели эффективности работы строительной площадки.

8) На мойку, имеющую три рабочих места, в среднем в час приезжает 12 автомашин. Если в очереди уже находится 6 автомашин, вновь приезжающие автомобили не встают в очередь, а покидают мойку. Среднее время мойки автомашины составляет 20 мин, средняя стоимость услуг мойки - 150 руб. Определить показатели эффективности работы мойки и среднюю величину потери выручки в течение рабочего дня (с 9 до 19 часов).

9) Интенсивность потока автомашин, перевозящих грузы и подлежащих прохождению таможенного контроля, составляет 50 шт. в сутки. Среднее время таможенной обработки на терминале одной автомашины составляет 2,8 часа. Максимальная очередь на прохождение таможенного контроля должна быть не более 8 автомашин. Определить, какое количество терминалов надо открыть на таможне, чтобы вероятность простоя автомашин была минимальна.


В этом разделе рассмотрим СМО типа М/М/n/m< , но, в отличие от предыдущих, наложим ограничение на время ожидания в очереди.
Это ограничение носит принципиальный характер, т.к. при вычислении вероятностей состояний СМО необходимо знание не только текущего состояния (числа требований в системе), но и того, как давно пришли требования, ожидающие обслуживания. Таким образом, процесс К(t) перестает быть марковским.

Время ожидания в очереди может быть ограничено как детерминированной, так и случайной величиной. В обеих случаях процесс К(t), как уже было сказано, характеризуется наличием последействия. Однако, способы формирования на его основе марковской модели СМО существенно различаются.

7.3.1. Время ожидания ограничено случайной величиной τ

В этом случае все зависит от закона распределения ограничения , т.к. именно ограничение вносит в систему последействие. Поэтому вернуть процессу К(t) марковость крайне просто. Достаточно принять для описания случайной величины экспоненциальное распределение. Однако при этом нельзя забывать, что такая операция возможна лишь в том случае, когда реальное распределение или действительно экспоненциальное, или близко к нему. Если это не так, то сформированная математическая модель будет неадекватна реальной СМО.

При экспоненциально распределенном ограничении на время ожидания в очереди, процесс изменения числа требований в СМО по-прежнему будет процессом размножения и гибели с той лишь разницей, что интенсивность гибели увеличится за счет, покидающих очередь требований, у которых время ожидания превысило допустимую величину.

Примем, что распределение времени ожидания имеет вид:

F(t) = 1 - e - функция распределения,

f(t) = e - плотность распределения,

где - интенсивность выхода из очереди за счет превышения допустимого времени ожидания.

Тогда параметры процесса К(t) будут равны:

K , при к

N + (k - n) , при к>n .

Читателю предлагается самостоятельно, руководствуясь материалом раздела 7.2.1, написать модель рассматриваемой СМО, и формулы для вычисления основных характеристик СМО в стационарном режиме.

7.3.2. Время ожидания ограничено неслучайной величиной τ

В этом случае для описания СМО с помощью марковской модели целесообразно использовать второй из приведенных в 7.1. способов, а именно, расширение понятия состояния. Для того, чтобы прогнозировать распределения состояний в будущем, необходимо знать как давно пришли в систему требования, которые в настоящее время находятся в очереди. Это можно сделать, включив в число обобщенных координат, описывающих состояние СМО, давность прихода каждого ожидающего требования, или, что то же самое, время, которое осталось у него до окончания срока ожидания. В рамках процесса К(t), которым мы пользовались во всех предыдущих задачах, это сделать нельзя, и в рассматриваемом случае модель функционирования СМО строится на основании векторного случайного процесса X , характеризующего состояние системы через состояния каждого из n ее каналов:

X = { X (t), X (t),…. X (t)} = { X (t)}

X (t) – это время, которое осталось до освобождения j-ого канала. Таким образом, для каждого момента времени t, мы можем прогнозировать будущие состояния каналов: j-ый канал освободится через х j (t), если за это время не поступят требования из внешнего потока. А так как входящий поток простейший, это значит, что в процессе X последействие отсутствует, т.е. процесс марковский. Найдем распределение этого процесса.

(7.3)

Это функция и плотность n-мерного распределения вектора X (t) в случае, когда все каналы заняты. Занятые (и только они) каналы персонифицированы, т.е. перенумерованы.

То же, что и выше, но в случае, когда занято лишь «к» каналов, а остальные свободны.

(7.4)

В дальнейшем, для простоты, будем трактовать плотность f (t; x …x ) как вероятность того, в СМО занято к каналов, которым присвоены номера от 1 до к., опуская при этом формальное умножение на . Знание этих распределений позволит вычислять вероятности состояний рассматриваемой системы.

Для вывода необходимых уравнений используем марковское свойство процесса X(t), а именно: будем выражать вероятность состояния процесса в момент t+ t (будущее) через его состояние в момент t (настоящее). Предварительно заметим, что - вероятность того, что в системе нет требований.

Для нулевого состояния СМО (в системе нет требований) можем, как и прежде, записать

(7.5)

Второе слагаемое означает, что в момент t в одном из каналов системы было требование, обслуживание которого заканчивалось на интервале t , и этим каналом мог быть любой из n.

Преобразуя и переходя к пределу при t 0, получим:

(7.6)

Рассмотрим случай, когда 0

(7.6)

При составлении этого уравнения учитывалось следующее:

· за время t занятости всех каналов уменьшаются на , и если за это время не подойдет ни одного требования входящего потока, то к моменту t система окажется в нужном состоянии (первое слагаемое правой части);

· второе слагаемое правой части: в момент t был занят к-1 канал, а канал с номером i (из числа персонифицированных) был пустым, и что бы СМО пришла в нужное состояние необходимо: чтобы пришло требование, чтобы время его обслуживания было равно x , и чтобы из (n-к) свободных каналов оно выбрало именно i-ый, причем этим каналом может быть любой из каналов с номерами от 1 до к.

· последнее слагаемое означает, что в момент t был занят (к + 1) канал, но в одном из них (а именно в (к+1)–ом) на интервале обслуживание заканчивалось. Причем таким каналом может быть любой из (n – к).

Теперь рассмотрим случай, когда :

(7.7)

Поясним, как и выше, содержание правой части:

· Первое слагаемое отличается от случая кsign x =1, если x>0, и sign x= - 1, если x<0 ).

· Второе слагаемое в содержательном плане ничем не отличается от случая к

· Третье слагаемое правой части отвечает ситуации, когда все каналы заняты, как это нужно, но один из них «недозанят», например, X (t) = Z < x ; для того, чтобы в момент t+ СМО оказалась в требуемом состоянии надо, чтобы на интервале пришло требование со временем обслуживания (x - z), и стало бы в очередь к i-му каналу, а для этого его занятость z должна быть меньше занятости любого другого канала (z < min x ) т.к. когда все каналы заняты, требование автоматически становится в очередь к тому который раньше освободится; при этом недозанятым может быть любой из n каналов.

Вспоминая определение смешанной частной производной:

,(7.8)

производя группировку членов уравнений, как это делалось выше, и переходя к пределу при , окончательно получим:

(7.9)

(7.10)

Эти уравнения относятся к стационарному режиму, что получило свое выражение в том, что производные плотностей распределения по t приняты равными нулю, а сами плотности записаны в финальной форме, как функции не зависящие от времени. Кроме того, для простоты последующих выкладок, приняты следующие обозначения: f = f и f = f .

Решение этой системы, т.е. отыскание функций f и f , произведем следующим образом. Вначале, исходя из общих соображений содержательного характера, найдем вид этих функций, после чего подставим их в систему уравнений с целью установить, удовлетворяют они им или нет. Если ответ будет положительным, то решение системы уравнений найдено.

Сперва рассмотрим случай 0 . Как говорилось выше, функция f имеет смысл вероятности того, что в СМО занято «к» персонофицированных (перенумерованных) каналов, причем первый освободится через x единиц времени, второй через x , … , к-ый через x . Каналы функционируют независимо, и время обслуживания в каждом распределено экспоненциально. Тогда вероятность рассматриваемого события равна:

(7.11)

Вероятность того, что занято k перенумерованных каналов

P - вероятность того, что в СМО занято k каналов

Рассмотрим СМО с п каналами. На вход системы поступает простейший поток заявок с плотностью l . Время ожидания заявки в очереди Т ож распределено по показательному закону со средним значением . Время обслуживания показательное со средним значением . Параметр n полностью аналогичен параметрам l и m . Его можно интерпретировать, как плотность «потока уходов» заявки, стоящей в очереди.

Пусть максимальное число мест в очереди ограничено и равно т .

В этом случае система имеет т + n + 1 состояние. Размеченный граф состояний выглядит так:

Можно составить уравнения, аналогичные уравнениям Эрланга для предельного стационарного режима при t ® ¥ вероятности состояний, полученные из этих уравнений запишутся так:

, (6.1)

, (6.2)

где .

Параметры a и b выражают соответственно среднее число заявок и среднее число уходов заявки, стоящей в очереди, приходящиеся на среднее время обслуживания одной заявки. Данные формулы достаточно громоздки и требуют большой вычислительной работы. Поэтому их можно записать в другом виде:

(6.3)

(6.4)

Если d не является целым, то вычисление можно провести для двух ближайших к величине d целых числе и произвести между ними линейную интерполяцию.

Средне число занятых каналов определяем по формуле:

(6.5)

Вероятность обслуживания заявки Р обс = .

Если число мест в очереди не ограничено (т ® ¥), то формулы упрощаются с учетом того, то .

Если заявки, попавшие в очередь, не покидают ее, а терпеливо дожидаются обслуживания (n = 0, а значит, и b = 0), то формулы (6.1) и (6.2) превращаются в формулы (5.1), (5.2), которые мы рассматривали в § 5).

Если при этом длина очереди не ограничена (т ® ¥), то получим формулы (4.1), (4.2), мак как система превращается в чистую систему с ожиданием (см. § 4).

Задача 1 . В магазине обслуживают покупателей четыре продавца. Среднее время обслуживания одного покупателя 4 мин. Плотность потока покупателей около двух человек в минуту. В очереди могут ожидать одновременно не более 20 человек. В среднем покупатель, вставший в очередь, ожидает 10 мин., после чего он покидает магазин.



Определить: 1) среднее число занятых продавцов;

2) среднее число покупателей, ожидающих в очереди;

3) вероятность того, что все места в очереди будут заняты;

4) вероятность того, что покупатель будет обслужен;

5) среднее время пребывания в очереди;

6) среднее время, затачиваемое на всю процедуру (ожидание в очереди и обслуживание).

Решение . Работа магазина может быть представлена как работа СМО смешанного типа. Параметры этой системы следующие:

п = 4 – число каналов обслуживания;

т = 20 – максимальное число мест в очереди;

– среднее число покупателей, приходящих в магазин;

– среднее время обслуживания одного покупателя ;

– среднее время ожидания покупателя в очереди. После чего он покидает магазин ;

; ; – целое число.

1) Среднее число занятых продавцов:

то есть практически все продавцы будут заняты.

2) Среднее число покупателей, ожидающих в очереди:

3) Вероятность того, что все места в очереди будут заняты:

то есть все места в очереди будут заняты с вероятностью менее 1 %.

4) Вероятность обслуживания:

6) Среднее время, затачиваемое на всю процедуру:

Задача 2 . С целью увеличения дальности беспосадочного полета производится дозаправка самолетов горючим в воздухе. В районе дозаправки постоянно дежурят четыре самолета-дозаправщика. Если дозаправка началась, то она осуществляется до конца и длится в среднем 10 минут. Если все дозаправщики заняты, то самолет, нуждающийся в дозаправке, может некоторое время «ожидать» (совершать полет по кругу в районе дозаправки); среднее время ожидании 20 минут. Если самолет не дождался дозаправки в воздухе, он садится на запасной аэродром. Интенсивность полетов такова, что в среднем за час в район дозаправки прибывает 24 самолета. Число самолетов, ожидающих дозаправки в воздухе, не ограничено.

Определить: 1) вероятность Р об с того, что самолет будет дозаправлен;

2) среднее число занятых дозаправщиков;

3) вероятность того, что произвольно взятый дозаправщик будет занят;

4) среднее время простоя дозаправщика.

Решение . Рассматриваемая система может быть рассмотрена как СМО смешанного типа с параметрами:

число каналов обслуживания п = 4;

число мест в очереди не ограничено (т ® ¥);

плотность потока заявок ;

плотность потока обслуживаний ;

плотность потока уходов из очереди .

Отсюда – целое число.

По формуле (6.5) находим среднее число дозаправщиков, занятых обслуживанием самолетов:

где R (¥;8) = 1.

Вероятность тог, что самолет будет дозаправлен:

Среднее время простоя дозаправщика:

Задачи .

1. Гарантийная мастерская принимает заказы на ремонт по одному телефону. Среднее число заказов за 1 час – 2п . Среднее время оформления заявки т мин. Считается, что если клиент позвонил, а телефон занят, то он обратится в другую мастерскую (система без очереди). Найти основные характеристики СМО: 1) р 0 , р 1 ; 2) р обс ; 3) ; 4) . Проанализировать, как изменятся соответствующие показатели, если подключить второй телефон. С какой интенсивностью должны работать два работника, чтобы доля потерь заявок была менее 10 %? , менее 5 %?

2. В мастерской по ремонту холодильников имеются 3 мастера. Мастер в среднем может отремонтировать 1 холодильник за 80 минут. Рабочий день составляет 8 часов. В мастерскую в среднем поступает 40 заявок на ремонт за рабочий день. В случае, если все мастера заняты, холодильник в ремонт не принимается (СМО с отказом). Заработная плата мастеров почасовая,

150 рублей в час. Клиент в среднем платит за ремонт 300 рублей (запчасти оплачиваются отдельно). Определить чистую прибыль мастерской за смену. Как изменится прибыль, если пригласить в мастерскую 4-го мастера? Определить количество мастеров, при котором прибыль мастерской максимальна.

3. В платной справочной телефонной службе имеется четыре телефонные линии. В справочную поступает простейший поток заявок со средней интенсивностью 1 заявка в 2 минуты. Ответ на каждый вопрос длится в среднем 6 минут. За ответ на каждый вопрос клиент платит 10 руб.. Эксплуатация одного канала обслуживания составляет 30 руб./час, создание канала обслуживания требует расхода 8000 руб. Определить чистый доход за один час. Через сколько часов произойдет окупаемость системы?

4. Гарантийная мастерская принимает заказы на ремонт по одному телефону. Среднее число поступающих в течение часа заказов – 20, среднее время оформления заказа – 4 минуты. Определить показатели СМО:

1) вероятности состояний системы р 0 , р 1 ; 2) вероятность обслуживания заявки р обс ; 3) среднее число занятых каналов ; 4) вероятность занятости канала; 5) среднее время простоя канала. Проанализировать, как они изменятся, если подключить второй телефон.

5. Средний интервал между поступающими в прокатный пункт заявками и запросами на наличие определенных предметов составляет 5 мин. Принимают заявки два работника, каждый с интенсивностью 12 заявок в час. С какой интенсивностью должен работать один работник, выполняя работу двух, чтобы доля потерянных требований осталась на прежнем уровне? На сколько требуется повысить интенсивность обслуживания двум работникам, чтобы доля потерянных заявок была менее 10 %?

6. На диспетчерском пункте дежурят 4 приемщика заявок на ремонт телерадиоаппаратуры. Заявки принимаются по телефону. В диспетчерский пункт поступает простейший поток заявок с плотностью l = 3 (заявки в минуту). Вызов, поступивший в момент, когда все приемщики заняты, получает отказ. Средняя длительность оформления заявки 2 минуты. Найти все характеристики СМО: 1) вероятности состояний системы р 0 , р 1 ;

2) вероятность обслуживания заявки р обс ; 3)среднее число занятых каналов ; 4) вероятность занятости канала; 5) среднее время простоя канала.

С какой интенсивностью должны работать 2 работника, выполняя работу четырех, чтобы доля потерянных требований осталась на прежнем уровне?

7. Библиотека принимает заявки на книги по одному телефону. Среднее число поступающих в течение часа заявок – 70, среднее время оформления заявки – 2 минуты. Определить показатели СМО (задача 6). Найти, как изменятся параметры системы, если заявки будут приниматься по двум телефонам и при этом доля потерянных заявок уменьшится в 2 раза по сравнению с прежним уровнем. Как изменится время пребывания заявки в системе?

8. Пусть в СМО с отказом поступает в среднем 15 заявок в час. Среднее время обслуживания заявки составляет 12 мин. За обслуживание заявки клиент платит 80 рублей. Содержание одного канала обслуживания обходится 100 рублей в час. Определить число каналов обслуживания, при которых прибыль максимальна.

Литература

1. Венцель Е.С. Теория вероятностей. М., 1962.

2. Венцель Е.С., Овчаров Л.А. Теория вероятностей. М., 1969.

3. Гнеденко Б.В. Лекции по теории массового обслуживания. Изд. КВИРТУ, 1960.

4. Н.Ш.Кремер Теория вероятностей и математическая статистика. Учебник. 2-е издание. Москва, 2003, 2006 ЮНИТИ.

Пери Куклин (Perry Kuklin)

Каждый владелец бизнеса со всеми своими менеджерами хотел бы ежедневно и еженощно видеть не только растущие прибыли, но и счастливых, полностью удовлетворённых покупателей. Один из путей достижения этой цели - создание в грядущем 2014 году лучших условий для ожидающих в очереди клиентов. Вот пять простых способов:

1. Развлеките посетителей

Скопившихся в очереди покупателей надо чем-то отвлечь. А поскольку сегодняшняя культура настроена на все виды экранного действа, занятие ваших очередей созерцанием дисплеев займёт всё внимание посетителей и в их памяти не отложатся связанные с ожиданием отрицательные эмоции.

2. Вперёд, в виртуальность

Электронная очередь – вот на чём всё ещё спотыкаются многие компании. Как такая «куча мала» может сработать в вашу пользу, если вы всё время были зависимы от классической очереди типа «кто последний, я за вами»?

Никогда не забывайте, что большинство людей высоко ценят своё время и свободу действий. Создание электронной очереди глушит в посетителях чувство потери времени и дискомфорт от вынужденного выстраивания в ряд. При наличии электронной очереди клиенты могут присесть, заняться чем-то, кроме утомительного ожидания, да просто насладиться возможностью делать что угодно, без необходимости топтаться в очереди.

3. Следите за очередями

Разрешение проблемы очередей не только в создании более комфортных условий для покупателей; рассмотрите вопрос с точки зрения менеджмента – в конечном итоге это принесёт выгоду вам и удовлетворение покупателям.

Отслеживание движения очереди в реальном времени позволяет ответственным за это менеджерам в любое мгновение держать руку на пульсе каждой из очередей. Для информирования менеджера торгового зала о том, что где-то произошёл сбой, можно настроить любую форму извещения (текстовое сообщение, электронное письмо и пр.). Так он сразу узнает, что персонал компании тормозит, очереди движутся слишком медленно и т.д.

Отслеживание очередей позволяет также фиксировать рекордные показатели скорости их движения, что является бесценной информацией для менеджеров. На её основе они могут прогнозировать периоды пиков и спадов нагрузки, соответственно маневрируя персоналом и количеством работающих кассовых терминалов.

4. Добавьте немного мобильности

Общайтесь с покупателями в очереди самым доступным сегодня способом – через смартфоны. В электронную очередь можно привнести элемент мобильности, позволяющий клиентам через телефон регистрировать своё место в очереди и общаться с персоналом в текстовом режиме, когда их очередь уже подходит.

Развлекательному элементу, описанному выше, тоже не лишне придать мобильности. На экраны смартфонов можно выводить информацию о том, как клиентам улучшить свой покупательский опыт (подписка на купоны, дисконтные карты, грядущие промо-акции и, разумеется, оставшееся время ожидания в очереди).

5. Совместите трансляцию на смартфоны с мерчендайзингом

В розничной торговле решение проблемы очередей воистину элементарно. Клиенты могут увидеть товар и отметить его преимущества самостоятельно, но если представить им изделие в действии, то можно укрепить их стремление к покупке, которое до этого момента могло быть не слишком уверенным. Подумайте вот о чём: в интернет-торговле для увеличения конверсии и уровней продаж широко используются видеоматериалы. Что мешает применять эту технику в оффлайн торговле?

Воспользуйтесь тем, что у покупателя в руках дивайс, который может служить вашей витриной. Предложите клиенту посмотреть видеоролик с хорошо распродающимся товаром, рассказывающий о его особенностях; или даже видеозапись одобрительных высказываний о нём довольных покупателей. Доводя до томящихся в очереди людей такого рода информацию, да ещё с одновременной её прокруткой на больших дисплеях в зоне видимости, вы заботитесь об удовлетворении двух крайне важных потребностей: развлечение клиентов и увеличение продаж компании.

Ожидание в очереди становится последним впечатлением покупателя о вашем бизнесе (представьте себе розничный магазин), а последние слова разговора запоминаются лучше всего – это аксиома. В ряде случаев это вообще основа клиентского опыта (представьте себе аэропорт). Всегда найдутся пути улучшить взаимодействие с людьми, которые пользуются услугами вашего бизнеса, при этом одна из лучших точек для старта – изменение организации очередей.

Перевод Леонида Пеленицына

Будем использовать далее следующие обозначения для среднего значения времени ожидания в очереди требований из приоритетного класса p - W p , и среднего времени пребывания в системе для требований этого класса - T p :

Основное внимание будем уделять системам с относительным приоритетом. Рассмотрим процесс с момента поступления некоторого требования из приоритетного класса p . Будем далее называть это требование меченым. Первая составляющая времени ожидания для меченого требования связана с требованием, которое оно застает в сервере. Эта составляющая равна остаточному времени обслуживания другого требования. Обозначим теперь и будем использовать это обозначение и далее, среднюю задержку меченого требования, связанную с наличием другого требования на обслуживании W 0 . Зная распределение времени между соседними поступлениями входных требований для каждого приоритетного класса, можно всегда вычислить эту величину. В нашем предположении пуассоновского закона для потока заявок каждого класса можно записать

.

Вторая составляющая времени ожидания для меченого требования определяется тем, что перед меченым требованием обслуживаются другие требования, которые меченое требование застало в очереди. Обозначим далее число требований из класса i , которое застало в очереди меченое требование (из класса p ) и которые обслуживаются перед ним N ip . Среднее значение этого числа будет определять величину среднего значения этой составляющей задержки

Третья составляющая задержки связана с требованиями, поступившими после того как пришло меченое требование, однако получившими обслуживание раньше его. Число таких требований обозначим M ip . Среднее значение этой составляющей задержки находится аналогично и составляет

Складывая все три составляющие, получаем, что среднее время ожидания в очереди для меченого требования определяется формулой

Очевидно, что независимо от дисциплины обслуживания число требований, N ip и M ip в системе не может быть произвольным, поэтому существует некоторый набор соотношений, связывающий между собой задержки для каждого из приоритетного класса. Важность этих соотношений для СМО позволяет называть их ЗАКОНАМИ СОХРАНЕНИЯ. Основой законов сохранения для задержек является тот факт, что незаконченная работа в любой СМО в течение любого интервала времени занятости не зависит от порядка обслуживания, если система является консервативной (требования не исчезают внутри системы и сервер не простаивает при непустой очереди).

Распределение времени ожидания существенно зависит от порядка обслуживания, но если дисциплина обслуживания выбирает требования независимо от времени их обслуживания (или любой меры, зависящей от времени обслуживания), то распределение числа требований и времени ожидания в системе инвариантно относительно порядка обслуживания.


Для СМО типа M/G/1 можно показать, что для любой дисциплины обслуживания должно выполняться следующее важное равенство

Это равенство означает, что взвешенная сумма времен ожидания никогда не изменяется, независимо от того, насколько сложна или искусно подобрана дисциплина обслуживания. Если удается сократить задержку для одних требований, то она немедленно возрастет для других.

Для более общей системы с произвольным распределением времени поступления требований G/G/1 закон сохранения может быть записан в виде

.

Общий смысл этого соотношения таков: взвешенная сумма времен задержки остается постоянной. Просто в правой части стоит разность средней незавершенной работы и остаточного времени обслуживания. Если предположить пуассоновский характер входного потока, то выражение для незавершенной работы можно записать в виде

Подставляя его в предыдущее выражение, сразу получается приведенный ранее закон сохранения для СМО типа M/G/1.

Рассмотрим теперь расчет среднего времени ожидания для СМО с обслуживанием в порядке приоритета, задаваемого приоритетной функцией

На рис.1 приведена схема функционирования СМО с такой дисциплиной обслуживания: поступающее требование ставится в очередь слева от требования с равным или большим приоритетом.

Рис. 1 СМО с обслуживанием в порядке приоритета.

Воспользуемся формулой для W p . Исходя из механизма функционирования, можно сразу выписать

Все требования более высокого, чем у меченого приоритета будут обслужены раньше. Из формулы Литтла число требований класса i находящихся в очереди, будет равно:

Требования более высокоприоритетных классов, поступившие в систему после меченого требования, пока оно находится в очереди, также будут обслужены перед ним. Так как меченое требование будет находиться в очереди в среднем W p секунд, то число таких требований будет равно

Непосредственно из формулы (*) получаем:

Эта система уравнений может быть решена рекуррентно, начиная с W 1 ,W 2 и т.д.

Полученная формула позволяет рассчитывать характеристики качества обслуживания для всех приоритетных классов. На рисунке 7.2. показано, как изменяется нормированная величина времени ожидания в очереди для СМО с пятью приоритетными классами с равной интенсивностью потока требований каждого приоритетного класса и равным средним временем обслуживания требований каждого класса (нижний рисунок детализирует кривые при значениях малой нагрузки).

Рисунок 2.Обслуживание в порядке приоритетов в случае относительных приоритетов (Р=5, l Р = l/5, ).

Особую задачу представляет определение законов распределения времени ожидания.

Рассмотрим теперь систему с абсолютными приоритетами и обслуживанием в порядке приоритета с дообслуживанием. Применим подход полностью аналогичный рассмотренному ранее. Средняя задержка в системе меченого требования также состоит из трех составляющих: первая составляющая- это среднее время обслуживания, вторая – это задержка из-за обслуживания тех требований равного или более высокого приоритета, которые меченое требование застало в системе. Третья составляющая средней задержки меченого требования представляет собой задержку за счет любых требований, поступающих в систему до ухода меченого требования и имеющих строго больший приоритет. Расписывая все эти три составляющие общего времени нахождения в системе, получим

.

Весьма интересной задачей является выбор приоритетов для заявок различных классов. Поскольку имеет место закон сохранения, оптимизация имеет смысл только при рассмотрении некоторых дополнительных атрибутов каждого класса требований. Предположим, что можно оценить каждую секунду задержки заявки приоритетного класса p некоторой стоимостью C p . Тогда средняя стоимость секунды задержки для системы может быть выражена через среднее число требований каждого класса, находящихся в системе

Решим задачу нахождения дисциплины обслуживания с относительными приоритетами для системы M/G/1, которая минимизирует среднюю стоимость задержки C . Пусть имеется P приоритетных классов заявок с заданной интенсивностью поступления и средним временем обслуживания. Перенесем в левую часть постоянную сумму и выразим правую часть через известные параметры

Задача состоит в минимизации суммы в правой части этого равенства путем выбора соответствующей дисциплины обслуживания, т.е. выбора последовательности индексов p .

Обозначим

В этих обозначениях задача выглядит так: нужно минимизировать сумму произведений при условии

Условие независимости суммы функций g p от выбора дисциплины обслуживания определяется законом сохранения. Иначе говоря задача состоит в минимизации площади под кривой произведения двух функций, при условии, что площадь под кривой одной из них постоянна.

Решение состоит в том, что сначала упорядочим последовательность значений f p : .

А затем выберем для каждого f p свое значение g p , так, чтобы минимизировать сумму их произведений. Интуитивно ясно, что оптимальная стратегия выбора состоит в подборе наименьшего значения g p для наибольшего f p , далее для оставшихся значений следует поступать тем же образом. Поскольку g p =W p r p , то минимизация сводится к минимизации значений средней задержки. Таким образом, решение рассматриваемой задачи оптимизации состоит в том, что из всех возможных дисциплин обслуживания с относительным приоритетом минимум средней стоимости обеспечивает дисциплина с упорядоченными приоритетами в соответствие с неравенствами

.



Поделиться