Ядерный ракетный двигатель и ядерный пврд. Беседы о ракетных двигателях

Ракетные двигатели на жидком топливе дали человеку возможность выйти в космос — на околоземные орбиты. Однако подобные ракеты сжигают 99% топлива за первые несколько минут полёта. Остатка топлива может не хватить для путешествия на другие планеты, да и скорость будет настолько малой, что вояж займёт десятки или сотни лет. Решить проблему могут ядерные двигатели. Как? Будем разбираться вместе.

Принцип работы реактивного двигателя очень прост: он переводит топливо в кинетическую энергию струи (закон сохранения энергии), за счёт направления этой струи ракета движется в пространстве (закон сохранения импульса). Важно понимать, что мы не можем разогнать ракету или самолёт до скорости большей, чем скорость истечения топлива — раскалённого газа, выбрасываемого назад.

Космический аппарат New Horizons

Что же отличает эффективный двигатель от неудачного или устаревшего аналога? Прежде всего то, сколько топлива потребуется двигателю, чтобы разогнать ракету до нужной скорости. Этот важнейший параметр ракетного двигателя называется удельный импульс , который определяется как отношение общего импульса к расходу топлива: чем больше этот показатель, тем эффективнее ракетный двигатель. Если ракета практически целиком состоит из топлива (это означает, что в ней нет места для полезного груза, предельный случай), удельный импульс можно считать равным скорости истечения топлива (рабочего тела) из ракетного сопла. Запуск ракеты — крайне дорогостоящее мероприятие, учитывается каждый грамм не только полезного груза, но и топлива, которое тоже весит и занимает место. Поэтому инженеры подбирают всё более и более активное горючее, единица которой давала бы максимальную отдачу, увеличивая удельный импульс.

Подавляющее большинство ракет в истории и современности было оборудовано двигателями, использующими химическую реакцию горения (окисления) топлива.

Они позволили достичь Луны, Венеры, Марса и даже планет дальнего пояса — Юпитера, Сатурна и Нептуна. Правда, космические экспедиции заняли месяцы и годы (автоматические станции Pioneer, Voyager, New Horizons и др.). Необходимо отметить, что все подобные ракеты расходуют значительную часть топлива для отрыва от Земли, и далее продолжают полёт по инерции с редкими моментами включения двигателя.

Космический аппарат Pioneer

Подобные двигатели подходят для вывода ракет на околоземную орбиту, но, чтобы её разогнать хотя бы до четверти скорости света, понадобится невероятное количество топлива (расчёты показывают, что нужно 103200 грамм топлива, при том, что масса нашей Галактики не более 1056 грамма). Очевидно, что для достижения ближайших планет, а тем более звёзд, нам необходимы достаточно большие скорости, обеспечить которые жидкотопливные ракеты не в состоянии.

​Газофазный ядерный двигатель

Дальний космос — дело совсем другое. Взять хотя бы Марс, «обжитый» фантастами вдоль и поперёк: он хорошо изучен и научно перспективен, а самое главное — близок как никто другой. Дело — за «космическим автобусом», который сможет доставить туда экипаж за разумное время, то есть, как можно быстрее. Но с межпланетным транспортом есть проблемы. Его сложно разогнать до нужной скорости, сохранив при этом приемлемые размеры и потратив разумное количество топлива.


RS-25 (Rocket System 25) — жидкостный ракетный двигатель компании Рокетдайн, США. Применялся на планере космической транспортной системы «Space Shuttle», на каждом из которых было установлено три таких двигателя. Более известен как двигатель SSME (англ. Space Shuttle Main Engine — главный двигатель космического челнока). Основными компонентами топлива являются жидкий кислород (окислитель) и водород (горючее). RS-25 использует схему закрытого цикла (с дожиганием генераторного газа).

Решением может быть «мирный атом», толкающий космические корабли. О создании лёгкого и компактного устройства, способного вывести на орбиту хотя бы самого себя, инженеры задумались ещё в конце 50‑х годов прошлого века. Главное отличие ядерных двигателей от ракет с двигателями внутреннего сгорания в том, что кинетическая энергия получается не за счёт сгорания топлива, а за счёт тепловой энергии распада радио­активных элементов. Давайте сравним эти подходы.

Из жидкостных двигателей выходит раскалённый «коктейль» выхлопных газов (закон сохранения импульса), образующихся при реакции топлива и окислителя (закон сохранения энергии). В большинстве случаев это комбинация кислорода и водорода (результат горения водорода — обычная вода). H2O обладает гораздо большей молярной массой, чем водород или гелий, поэтому её труднее разогнать, удельный импульс для подобного двигателя 4 500 м/с.

Наземные испытания NASA новой системы запуска космических ракет, 2016 год (штат Юта, США). Эти двигатели будут установлены на космический корабль Orion, на котором планируется миссия на Марс.

В ядерных двигателях предлагается использовать только водород и разгонять (разогревать) его за счёт энергии ядерного распада. Тем самым идёт экономия на окислителе (кислороде), что уже замечательно, но не всё. Так как у водорода относительно малая удельная масса, нам проще его разогнать до более высоких скоростей. Конечно, можно использовать и другие тепловосприимчивые газы (гелий, аргон, аммиак и метан), но все они не менее чем в два раза проигрывают водороду в самом главном — достижимом удельном импульсе (более 8 км/c).

Так стоит ли его терять? Выигрыш настолько велик, что инженеров не останавливает ни сложность конструкции и управления реактором, ни его большой вес, ни даже радиационная опасность. Тем более никто и не собирается стартовать с поверхности Земли — сборка таких кораблей будет вестись на орбите.

​«Летающий» реактор

Как работает ядерный двигатель? Реак­тор в космическом двигателе намного меньше и компактнее своих наземных аналогов, но все основные компоненты и механизмы управления принципиально те же. Реактор выступает в роли нагревателя, в который подаётся жидкий водород. Температуры в активной зоне достигают (и могут превышать) 3000 градусов. Затем разогретый газ выпускают через сопло.

Однако такие реакторы испускают вредные радиационные излучения. Для защиты экипажа и многочисленного электронного оборудования от радиации нужны основательные меры. Поэтому проекты межпланетных кораблей с атомным движком часто напоминают зонтик: двигатель располагается в экранированном отдельном блоке, соединённом с основным модулем длинной фермой или трубой.

«Камерой сгорания» ядерного двигателя служит активная зона реактора, в которой подаваемый под большим давлением водород нагревается до 3000 и более градусов. Этот предел определяется только жаропрочностью материалов реактора и свойствами топлива, хотя повышение температуры увеличивает удельный импульс.

Тепловыделяющие элементы — это жаропрочные ребристые (для повышения площади теплоотдачи) цилиндры-«стаканы», заполненные урановыми таблетками. Они «омываются» потоком газа, играющего роль и рабочего тела, и охладителя реактора. Вся конструкция изолирована бериллиевыми экранами-отражателями, не выпускающими опасное радиационное излучение наружу. Для управления выделением тепла рядом с экранами расположены специальные поворотные барабаны

Существует ряд перспективных конструкций ядерных ракетных двигателей, реализация которых ждёт своего часа. Ведь в основном они будут применяться в межпланетных путешествиях, которые, судя по всему, уже не за горами.

Проекты ядерных двигателей

Эти проекты были заморожены по разным причинам — недостаток денег, сложность конструкции или даже необходимость сборки и установки в открытом космосе.

«ОРИОН» (США, 1950–1960)

Проект пилотируемого ядерно-импульсного космического корабля («взрыволёт») для исследования межпланетного и межзвёздного ­пространства.

Принцип работы. Из двигателя корабля, в направлении противоположном полёту, выбрасывается ядерный заряд небольшого эквивалента и подрывается на сравнительно малой дистанции от корабля (до 100 м). Ударная сила отражается от массивной отражающей плиты в хвосте корабля, «толкая» его вперёд.

«ПРОМЕТЕЙ» (США, 2002–2005)

Проект космического агентства NASA по разработке ядерного двигателя для космических аппаратов.

Принцип работы. Двигатель космического корабля должен был состоять из ионизированных частиц, создающих тягу, и компактного ядерного реактора, обеспечивающего установку энергией. Ионный двигатель создаёт тягу порядка 60 грамм, но сможет работать постоянно. В конечном счёте, корабль постепенно сможет набрать огромную скорость — 50 км/сек, затратив минимальное количество энергии.

«ПЛУТОН» (США, 1957–1964)

Проект по разработке ядерного прямоточного воздушно-реактивного двигателя.

Принцип работы. Воздух через переднюю часть транспортного средства попадает в ядерный реактор, в котором нагревается. Горячий воздух расширяется, приобретает большую скорость и высвобождается через сопло, обеспечивая необходимую тягу.

NERVA (США, 1952–1972)

(англ. Nuclear Engine for Rocket Vehicle Application) — совместная программа Комиссии по атомной энергии США и NASA по созданию ядерного ракетного двигателя.

Принцип работы. Жидкий гидрогель подаётся в специальный отсек, в котором происходит его нагревание ядерным реактором. Горячий газ расширяется и высвобождается в сопле, создавая тягу.


В конце прошлого года российские ракетные войска стратегического назначения испытали совершенно новое оружие, существование которого, как раньше считалось, невозможно. Крылатая ракета с ядерным двигателем, которой военные эксперты дают обозначение 9М730 - именно то новое оружие, о котором президент Путин говорил в своем Послании Федеральному собранию. Испытание ракеты проводилось предположительно на полигоне Новая земля, ориентировочно в конце осени 2017 года, однако точные данные будут рассекречены еще не скоро. Разработчиком ракеты, также предположительно, является Опытное конструкторское бюро "Новатор" (город Екатеринбург). По заявлению компетентных источников ракета в штатном режиме поразила цель и испытания были признаны полностью успешными. Далее в СМИ появились предполагаемые фотографии пуска (выше) новой ракеты с ядерной силовой установкой и даже косвенные подтверждения, связанные с присутствием в предполагаемое время испытаний в непосредственной близости от полигона "летающей лаборатории" Ил-976 ЛИИ Громова с отметками "Росатома". Однако вопросов появилось еще больше. Реальна ли заявленная возможность ракеты осуществлять полет неограниченной дальности и за счет чего она достигается?

Характеристика крылатой ракеты с ядерной силовой установкой

Характеристики крылатой ракеты с ЯСО, появившиеся в СМИ сразу после выступления Владимира Путина, могут отличаться от реальных, которые будут известны позже. На сегодняшний день достоянием общественности стали следующие данные по размерам и ТТХ ракеты:

Длина
- стартовая - не менее 12 метров,
- маршевая - не менее 9 метров,

Диаметр корпуса ракеты - около 1 метра,
Ширина корпуса - около 1.5 метров,
Высота хвостового оперения - 3.6 - 3.8 метров

Принцип работы российской крылатой ракеты с ядерным двигателем

Разработки ракет с ядерной силовой установкой вели сразу несколько стран, причем разработки начались еще в далеких 1960-х годах. Конструкции, предложенные инженерами отличались лишь в деталях, упрощенно принцип работы можно описать следующим образом: ядерный ректор нагревает поступающую в специальные емкости смесь (разные варианты, от аммиака до водорода) с последующим выбросом через сопла под высоким давлением. Однако вариант крылатой ракеты, о которой говорил российский президент, не подходит ни под один из примеров конструкций, разрабатываемых ранее.

Дело в том, что, по словам Путина, ракета имеет практически неограниченную дальность полета. Это, конечно, нельзя понимать так, что ракета может летать годами, но можно расценить как прямое указание на то, что дальность ее полета многократно превышает дальность полета современных крылатых ракет. Второй момент, который нельзя не заметить, тоже связан с заявленной неограниченной дальностью полета и, соответственно, работы силового агрегата крылатой ракеты. К примеру гетерогенный реактор на тепловых нейтронах, испытанный в двигателе РД-0410, разработкой которого занимались Курчатов, Келдыш и Королев, имел ресурс работы на испытаниях только 1 час и в этом случае о неограниченной дальности полета такой крылатой ракеты с ядерным двигателем не может быть и речи.

Все это наводит на мысль о том, что российские ученые предложили совершенно новую, ранее не рассматриваемую концепцию строения, в которой для нагрева и последующего выброса из сопла используется вещество, имеющее намного экономный ресурс расходования на больших расстояниях. Как пример, это может быть ядерный воздушно-реактивный двигатель (ЯВРД) совершенно нового образца, в котором рабочей массой является атмосферный воздух, нагнетаемый в рабочие емкости компрессорами, нагреваемый ядерной установкой с последующим выбросом через сопла.

Также стоит отметить, что анонсированная Владимиром Путиным крылатая ракета с ядерным силовым агрегатом умеет облетать зоны активного действия систем противовоздушной и противоракетной обороны, а также держать путь к цели на малых и сверхмалых высотах. Это возможно только за счет оснащения ракеты системами следования ландшафту местности, устойчивыми к помехам, создаваемых средствами радиоэлектронной борьбы противника.

ЯДЕРНЫЙ РАКЕТНЫЙ ДВИГАТЕЛЬ (ЯРД) , атомный ракетный двигатель - ракетный двигатель , работающий на ядерном ракетном топливе . Достоинство ЯРД - в высоком удельном импульсе тяги , недостижимом для химических РД. Это объясняется возможностью выбора в качестве рабочего тела РД низкомолекулярных веществ (прежде всего жидкого водорода) и большой энергией ядерных реакций. ЯРД классифицируются по виду происходящих реакций, способу использования выделяющейся энергии и т. д.

В начале 80-х гг. основной тип ЯРД - твердофазный - с твердофазным реактором деления. В нём тепловая энергия продуктов деления ядерного горючего, находящегося в твёрдом состоянии, используется для превращения исходного рабочего тела в высокотемпературный газ, при истечении которого из реактивного сопла создаётся тяга. По аналогии с ЖРД рабочее тело ЯРД хранится в жидком состоянии в баке ДУ, и его подача производится при помощи ТНА. Газ для привода последнего получается нагревом основного рабочего тела в реакторе (например, в газогенераторных тепловыделяющих элементах). Сопло, ТНА и многие другие агрегаты ЯРД аналогичны соответствующим элементам ЖРД. Принципиальное отличие ЯРД от ЖРД заключается в наличии ядерного реактора вместо камеры сгорания.

Запуск ЯРД длится 1-2 мин и начинается с пуска реактора. Эта операция занимает несколько десятков секунд; она ограничена по времени быстродействием системы регулирования реактора и допустимыми по термонапряжениям градиентами изменения температуры в элементах конструкции реактора. После прогрева реактора начинается подача рабочего тела и включается ТНА. На основном режиме система регулирования должна поддерживать предельно допустимую температуру рабочего тела для получения максимального удельного импульса. Изменение тяги производится, как и в ЖРД, изменением расхода рабочего тела.

Работающий реактор является мощным источником радиации - нейтронного и гамма-излучения, которое без принятия специальных мер может привести к недопустимому нагреву рабочего тела (в баках) и конструкции, охрупчиванию и разрушению материалов, нарушению электроизоляции, выходу из строя аппаратуры, полезного груза, лучевому поражению экипажа космического корабля (КК). Снижение потока радиации достигается установкой в реакторе, а также между ним и баком рабочего тела радиационных защитных экранов (защиты), выполняемых из комбинации различных металлов и их соединений (свинец, вольфрам, бор, кадмий, гидрид лития и др.). Т. к. в защитных экранах происходит значительное тепловыделение, то предусматривается их охлаждение (рабочим телом). Защита вместе с реактором составляет основную массу ЯРД . При уменьшении тяги ЯРД от нескольких МН до нескольких кН его удельная масса, с учётом защиты, увеличивается с единиц до десятков г/Н. На КК необходимо также предусматривать биологическую защиту кабины экипажа, которая может совмещаться с защитой от космической радиации. Защитные экраны заметно ухудшают массовые характеристики космического аппарата (КА).



1 - газовая турбина;
2 - выпускной патрубок;
3, 13 - блоки управления мощностью реактора;
4 - регулятор частоты вращения турбины;
5 - блок управления тягой;
6 - датчик давления газа на выходе из реактора;
7 - сопло;
8 - ядерный реактор;
9 - коллектор отбора газа на привод турбины;
10 - регулятор температуры газа для турбины;
11 - орган управления реактором;
12 - датчик температуры газа на выходе из реактора;
14 - главный клапан рабочего тела;
15 - насос;
16 - радиационный защитный экран;
17 - бак с рабочим телом

Реакторное излучение вызывает наведённую, т.е. искусственную радиоактивность конструкции. Она приводит к значительному остаточному тепловыделению в элементах реактора после выключения ЯРД , которое может длиться несколько часов или суток и вызывать расплавление частей реактора. Поэтому в ЯРД многократного включения предусматривается расхолаживание конструкции реактора (путём непрерывной или периодической прокачки рабочего тела) после каждого рабочего цикла. Для указанных ЯРД следует учитывать также возможность «отравления» реактора из-за накопления в его активной зоне радиоактивных продуктов распада (прежде всего ксенона), сильно поглощающих тепловые нейтроны. Содержание этих продуктов достигает максимума примерно через 10 ч после выключения ЯРД .

Хотя работающий ЯРД представляет опасность для обслуживающего персонала, через сутки после его выключения можно без всяких средств индивидуальной защиты находиться несколько десятков минут на расстоянии 50 м от ЯРД и даже подходить к нему. Простейшие средства защиты позволяют входить в рабочую зону ЯРД вскоре после испытаний. Уровень заражения стартовых комплексов и окружающей среды, по-видимому, при принятии необходимых мер не будет являться непреодолимым препятствием к использованию ЯРД на нижних ступенях РН. Проблема радиационной опасности в значительной степени смягчается тем обстоятельством, что водород - основное рабочее тело ЯРД - практически не активируется в реакторе, и поэтому реактивная струя ЯРД не более опасна, чем струя ЖРД.

Практические разработки твердофазных ЯРД , начатые в середине 50-х гг., привели к созданию в конце 60-х гг. стендовых образцов ЯРД с тягой несколько сотен кН. Их рабочим телом является водород - по той причине, что, как и в случае ЖРД, значение удельного импульса ЯРД обратно пропорционально квадратному корню из значения молекулярной массы рабочего тела перед реактивным соплом. Как и в ЖРД, значение удельного импульса ЯРД прямо пропорционально квадратному корню из значения температуры рабочего тела перед соплом. Энергия реакций деления позволяет в принципе нагреть рабочее тело в реакторе до температур, намного больших, чем существующие в камерах сгорания ЖРД. В твердофазном ЯРД , однако, можно получить температуру лишь ~ 3000 К, поскольку дальнейший нагрев рабочего тела ограничен прочностью тепловыделяющих элементов, температура которых на 200-300 К выше температуры рабочего тела (в ЖРД температура конструкции, наоборот, намного ниже, чем температура рабочего тела). Но и в этом случае удельный импульс ЯРД составляет ~ 9 км/с - вдвое больше, чем у лучших современных ЖРД.


Циклограмма работы ЯРД (Т и р - соответственно температура и давление рабочего тела на выходе из реактора):
А - пуск ЯРД (1-5 мин);
Б - основной режим работы (0,5-30 мин);
В - выключение (1-3 мин);
Г - охлаждение реактора (неск. ч - неск. сут);
1 - открытие главного клапана, подача рабочего тела и температурная стабилизация конструкции, пуск и разогрев реактора, раскрутка турбонасосного агрегата;
2 - набор тяги;
3 - выход ЯРД на режим конечной ступени;
4 - режим конечной ступени;
5 - выключение реактора;
6 - останов турбонасосного агрегата;
7 - начало управления тягой;
8 - окончание управления тягой


Изменение теоретического удельного импульса ЯРД для различных рабочих тел в зависимости от температуры их нагрева (давление на входе в сопло 10 МПа):
1 - водород;
2 - метан;
3 - аммиак;
4 - гидразин;
5 - этиловый спирт

Выгоды от использования ЯРД вместо ЖРД несколько снижаются из-за относительного возрастания массы конструкции КА, обусловленного наличием ядерного реактора, радиационной защиты и, наконец, массивного теплоизолированного бака для жидкого водорода (в кислородно-водородном топливе ЖРД этого продукта содержится лишь 14-18%). Число Циолковского для ракетных ступеней с кислородно-водородными ЖРД составляет 7-8, а с применением ЯРД снижается до 3-5. Тем не менее, использование ЯРД вместо ЖРД на верхних ступенях ракет-носителей позволило бы удвоить массу КА, доставляемых на поверхность Луны и посылаемых к Марсу, Юпитеру, Сатурну. Экспедиция на Марс, весьма проблематичная при использовании химических РД, становится осуществимой при оснащении КК твердофазными ЯРД . Такой КК должен иметь массу на околоземной орбите ~ 1000-1500 т, включая несколько разгонных ЯРД с тягой по 0,5-1 МН, удельным импульсом ~ 8200 м/с и временем работы 30-60 мин, тормозной ЯРД для вывода КК на орбиту Марса, разгонный ЯРД для возврата к Земле и марсианский экспедиционный КК с посадочным и взлётным ЖРД. Полёт рассчитан на срок 1,5-2 года.

В стадии научных и инженерных исследований - проблема создания газофазного ядерного ракетного двигателя (с реактором деления), в котором предполагается получить удельный импульс до 25 км/с и более. Пилотируемый КК с начальной массой на околоземной орбите в 2000 т, оснащённый газофазным ЯРД с тягой в 250 кН и удельным импульсом 50 км/с, смог бы совершить облёт Марса за 2 месяца; при этом ЯРД должен проработать около 100 ч. Менее перспективным по сравнению с газофазным представляется коллоидный ядерный ракетный двигатель , занимающий по своим характеристикам промежуточное положение между твердофазным и газофазным ЯРД . Нижний предел тяги упомянутых ЯРД ограничен, как правило, значением в несколько кН. Напротив, радиоизотопный ракетный двигатель относится к микродвигателям: в экспериментальных образцах получена максимальная тяга ~ 1 Н. Проблематичным представляется термоядерный ракетный двигатель . Импульсные ядерные ракетные двигатели , создающие тягу за счёт периодических ядерных взрывов, находятся в стадии инженерно-технической разработки. К гипотетическим ЯРД относятся некоторые виды фотонных ракетных двигателей и радиоизотопный парус .

© Оксана Викторова/Коллаж/Ridus

Заявление, сделанное Владимиром Путиным в ходе своего послания Федеральному собранию, о наличии в России крылатой ракеты, приводимой в движение двигателем на ядерной тяге, вызвало бурный ажиотаж в обществе и СМИ. В то же время о том, что представляет собой такой двигатель, и о возможностях его использования до последнего времени было известно достаточно мало, как широкой общественности, так и специалистам.

«Ридус» попытался разобраться, о каком техническом устройстве мог вести речь президент и в чем состоит его уникальность.

Учитывая, что презентация в Манеже делалась не на аудиторию технических специалистов, а для «общей» публики, ее авторы могли допустить определенную подмену понятий, не исключает заместитель директора Института ядерной физики и технологий НИЯУ МИФИ Георгий Тихомиров.

«То, что говорил и показывал президент, специалисты называют компактными силовыми установками, эксперименты с которыми проводились изначально в авиации, а затем при освоении дальнего космоса. Это были попытки решить неразрешимую проблему достаточного запаса топлива при перелетах на неограниченные дальности. В этом смысле презентация совершенно корректна: наличие такого двигателя обеспечивает энергоснабжение систем ракеты или любого иного аппарата сколь угодно долгое время», - сказал он «Ридусу».

Работы с таким двигателем в СССР начались ровно 60 лет назад под руководством академиков М. Келдыша, И. Курчатова и С. Королева. В те же самые годы аналогичные работы велись в США, но были свернуты в 1965 году. В СССР работы продолжались еще около десятилетия, прежде чем тоже были признаны неактуальными. Возможно, поэтому в Вашингтоне не сильно передернули, заявив, что не удивлены презентацией российской ракеты.

В России идея ядерного двигателя никогда не умирала - в частности, с 2009 года ведется практическая разработка такой установки. Судя по срокам, заявленные президентом испытания вполне укладываются именно в этот совместный проект Роскосмоса и Росатома - поскольку разработчики и планировали провести полевые испытания двигателя в 2018 году. Возможно, в связи с политическими причинами они чуть поднатужились и сдвинули сроки «влево».

«Технологически это устроено так, что ядерный энергоблок нагревает газовый теплоноситель. И этот разогретый газ либо вращает турбину, либо создает реактивную тягу напрямую. Определенное лукавство в презентации ракеты, которую мы услышали, состоит в том, что дальность ее полета все-таки не бесконечна: она ограничена объемом рабочего тела - жидкого газа, который физически можно закачать в баки ракеты», - говорит специалист.

При этом у космической ракеты и крылатой ракеты принципиально разные схемы управления полетом, поскольку у них разные задачи. Первая летит в безвоздушном пространстве, ей не надо маневрировать, - достаточно придать ей первоначальный импульс, и далее она движется по расчетной баллистической траектории.

Крылатая же ракета, наоборот, должна непрерывно менять траекторию, для чего у нее должен быть достаточный запас топлива, чтобы создавать импульсы. Будет ли это топливо воспламеняться ядерной энергоустановкой или традиционной - в данном случае не принципиально. Принципиален только запас этого топлива, подчеркивает Тихомиров.

«Смысл ядерной установки при полетах в дальний космос - это наличие на борту источника энергии для питания систем аппарата неограниченно долгое время. При этом может быть не только ядерный реактор, но и радиоизотопные термоэлектрические генераторы. А смысл такой установки на ракете, полет которой не будет продолжаться долее нескольких десятков минут, мне пока не вполне ясен», - признаётся физик.

Доклад в Манеже лишь на пару недель запоздал по сравнению с заявлением NASA , сделанным 15 февраля, о том, что американцы возобновляют научно-исследовательские работы по ядерному ракетному двигателю, заброшенные ими полвека назад.

Кстати, в ноябре 2017 года уже и Китайская корпорация аэрокосмической науки и техники (CASC) сообщила, что до 2045 года в КНР будет создан космический корабль на ядерном двигателе. Поэтому сегодня можно смело говорить о том, что мировая ядерно-двигательная гонка началась.

Советские и американские ученые разрабатывали ракетные двигатели на ядерном топливе с середины XX века. Дальше прототипов и единичных испытаний эти разработки не продвинулись, но сейчас единственная ракетная двигательная установка, которая использует ядерную энергию, создается в России. «Реактор» изучил историю попыток внедрения ядерных ракетных двигателей.

Когда человечество только начало покорять космос, перед учеными встала задача энергообеспечения космических аппаратов. Исследователи обратили внимание на возможность использования ядерной энергии в космосе, создав концепцию ядерного ракетного двигателя. Такой двигатель должен был использовать энергию деления или синтеза ядер для создания реактивной тяги.

В СССР уже в 1947 году начались работы по созданию ядерного ракетного двигателя. В 1953 году советские специалисты отмечали, что «использование атомной энергии позволит получить практически неограниченные дальности и резко снизить полетный вес ракет» (цитата по изданию «Ядерные ракетные двигатели » под редакцией А.С. Коротеева, М, 2001). Тогда двигательные установки на ядерной энергии предназначались, в первую очередь, для оснащения баллистических ракет, поэтому интерес правительства к разработкам был большим. Президент США Джон Кеннеди в 1961 году назвал национальную программу по созданию ракеты с ядерным ракетным двигателем (Project Rover) одним из четырех приоритетных направлений в завоевании космоса.

Реактор KIWI, 1959 год. Фото: NASA.

В конце 1950-х американские ученые создали реакторы KIWI. Они много раз были испытаны, разработчики сделали большое количество модификаций. Часто при испытаниях происходили неудачи, например, однажды произошло разрушение активной зоны двигателя и обнаружилась большая утечка водорода.

В начале 1960-х как в США, так и в СССР были созданы предпосылки для реализации планов по созданию ядерных ракетных двигателей, но каждая страна шла своей дорогой. США создавали много конструкций твердофазных реакторов для таких двигателей и испытывали их на открытых стендах. СССР вел отработку тепловыделяющей сборки и других элементов двигателя, готовя производственную, испытательную, кадровую базу для более широкого «наступления».

Схема ЯРД NERVA. Иллюстрация: NASA.

В США уже в 1962 году президент Кеннеди заявил, что «ядерная ракета не будет применяться в первых полетах на Луну», поэтому стоит направлять средства, выделяемые на освоение космоса, на другие разработки. На рубеже 1960-1970-х были испытаны еще два реактора (PEWEE в 1968 году и NF-1 в 1972 году) в рамках программы NERVA . Но финансирование было сосредоточено на лунной программе, поэтому программа США по созданию ядерных двигателей сокращалась в объеме, и в 1972 году была закрыта.

Фильм NASA про ядерный реактивный двигатель NERVA.

В Советском Союзе разработки ядерных ракетных двигателей продолжались до 1970-х годов, а руководила ими известнейшая ныне триада отечественных ученых-академиков: Мстислав Келдыш, Игорь Курчатов и . Они оценивали возможности создания и применения ракет с ядерными двигателями достаточно оптимистично. Казалось, что вот-вот, и СССР запустит такую ракету. Прошли огневые испытания на Семипалатинском полигоне - в 1978 году состоялся энергетический пуск первого реактора ядерного ракетного двигателя 11Б91 (или РД-0410), потом еще две серии испытаний - второго и третьего аппаратов 11Б91-ИР-100. Это были первые и последние советские ядерно-ракетные двигатели.

М.В. Келдыш и С.П. Королев в гостях у И.В. Курчатова, 1959 г.



Поделиться