Что такое пропан — бутан (lpg — снг — сжиженный нефтяной газ)? Особенности сжиженных углеводородных газов и их воздействие на организм человека.

Более 30 лет в СССР, затем в России сжиженные и сжатые газы применяются в народном хозяйстве. За это время пройден достаточно трудный путь по организации учета сжиженных газов, разработке технологий по их перекачке, измерению, хранению, транспортировке.

От сжигания до признания

Исторически сложилось, что потенциал газа как источника энергии был недооценен в нашей стране. Не видя экономически обоснованных сфер применения, нефтепромышленники старались избавиться от легких фракций углеводородов, сжигали их без пользы. В 1946 году выделение газовой промышленности в самостоятельную отрасль революционно изменило ситуацию. Объём добычи этого типа углеводородов резко увеличился, как и соотношение в топливном балансе России.

Когда ученые и инженеры научились сжижать газы, стало возможным строить газосжижающие предприятия и доставлять голубое топливо в отдаленные районы, не оборудованные газопроводом, и использовать в каждом доме, в качестве автомобильного топлива, на производстве, а также экспортировать его за твердую валюту.

Что такое сжиженные углеводородные газы

Они делятся на две группы:

  1. Сжиженные углеводородные газы (СУГ) - представляют собой смесь химических соединений, состоящую в основном из водорода и углерода с различной структурой молекул, то есть смесь углеводородов различной молекулярной массы и различного строения.
  2. Широкие фракции легких углеводородов (ШФЛУ) - включают большей частью смеси легких углеводородов гексановой (С6) и этановой (С2) фракций. Их типичный состав: этан 2-5 %, сжиженный газ фракций С4-С5 40-85%, гексановая фракция С6 15-30%, на пентановую фракцию приходится остаток.

Сжиженный газ: пропан, бутан

В газовом хозяйстве именно СУГ применяются в промышленном масштабе. Их основными компонентами являются пропан и бутан. Также в виде примесей в них содержатся более легкие углеводороды (метан и этан) и более тяжелые (пентан). Все перечисленные компоненты являются предельными углеводородами. В состав СУГ могут входить также непредельные углеводороды: этилен, пропилен, бутилен. Бутан-бутилены могут присутствовать в виде изомерных соединений (изобутана и изобутилена).

Технологии сжижения

Сжижать газы научились в начале XX века: в 1913 году за сжижение гелия вручена Нобелевская премия голландцу К. О. Хейке. Некоторые газы доводятся до жидкого состояния простым охлаждением без дополнительных условий. Однако большинство углеводородных «промышленных» газов (углекислый, этан, аммиак, бутан, пропан) сжижаются под давлением.

Производство сжиженного газа осуществляется на газосжижающих заводах, расположенных либо около месторождений углеводородов, либо на пути магистральных газопроводов около крупных транспортных узлов. Сжиженный (или сжатый) природный газ можно легко доставить автомобильным, железнодорожным или водным транспортом к конечному потребителю, где его можно хранить, после чего снова преобразовать в газообразное состояние и подавать в сеть газоснабжения.

Специальное оборудование

Для того чтобы сжижать газы, используются специальные установки. Они значительно уменьшают объём голубого топлива и повышают плотность энергии. С их помощью можно осуществлять различные способы переработки углеводородов в зависимости от последующего применения, свойств исходного сырья и условий окружающей среды.

Установки по сжижению и сжатию предназначены для обработки газа и имеют блочное (модульное) исполнение либо полностью контейнеризированы. Благодаря регазификационным станциям становится возможным обеспечение дешёвым природным топливом даже самых отдалённых регионов. Система регазификации также позволяет хранить природный газ и подавать его необходимое количество в зависимости от потребности (например, в периоды пикового потребления).

Большинство различных газов в сжиженном состоянии находят практическое применение:

  • Жидкий хлор используют для дезинфекции и отбеливания тканей, применяется как химическое оружие.
  • Кислород - в лечебных учреждениях для пациентов с проблемами дыхания.
  • Азот - в криохирургии, для замораживания органических тканей.
  • Водород - как реактивное топливо. В последнее время появились автомобили на водородных двигателях.
  • Аргон - в промышленности для резки металлов и плазменной сварки.

Также можно сжижать газы углеводородного класса, наиболее востребованные из которых - пропан и бутан (н-бутан, изобутан):

  • Пропан (C3H8) является веществом органического происхождения класса алканов. Получают из природного газа и при крекинге нефтепродуктов. Бесцветный газ без запаха, малорастворим в воде. Применяют как топливо, для синтеза полипропилена, производства растворителей, в пищевой промышленности (добавка E944).
  • Бутан (C4H10), класс алканов. Бесцветный горючий газ без запаха, легко сжижаемый. Получают из газового конденсата, нефтяного газа (до 12%), при крекинге нефтепродуктов. Используют как топливо, в химической промышленности, в холодильниках как хладоген, в пищевой промышленности (добавка E943).

Характеристики СУГ

Основное преимущество СУГ - возможность их существования при температуре окружающей среды и умеренных давлениях как в жидком, так и в газообразном состоянии. В жидком состоянии они легко перерабатываются, хранятся и транспортируются, в газообразном имеют лучшую характеристику сгорания.

Состояние углеводородных систем определяется совокупностью влияний различных факторов, поэтому для полной характеристики необходимо знать все параметры. К основным из них, поддающимся непосредственному измерению и влияющим на режимы течения, относятся: давление, температура, плотность, вязкость, концентрация компонентов, соотношение фаз.

Система находится в равновесном состоянии, если все параметры остаются неизменными. При таком состоянии в системе не происходит видимых качественных и количественных метаморфоз. Изменение хотя бы одного параметра нарушает равновесное состояние системы, вызывая тот или иной процесс.

Свойства

При хранении сжиженных газов и транспортировании их агрегатное состояние меняется: часть вещества испаряется, трансформируясь в газообразное состояние, часть конденсируется - переходит в жидкое. Это свойство сжиженных газов является одним из определяющих при проектировании систем хранения и распределения. При отборе из резервуаров кипящей жидкости и транспортировании ее по трубопроводу часть жидкости испаряется из-за потерь давления, образуется двухфазный поток, упругость паров которого зависит от температуры потока, которая ниже температуры в резервуаре. В случае прекращения движения двухфазной жидкости по трубопроводу давление во всех точках выравнивается и становится равным упругости паров.

ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА СЖИЖЕННЫХ УГЛЕВОДОРОДНЫХ ГАЗОВ

Термин «сжиженные углеводородные газы», относится к пропану, бутану, «изо-бутану, смеси пропана и бутана. Среди обычно применяемых топлив сжиженные углеводородные газы -- пока единственные в своем роде виды топлива, которые при сравнительно небольшом давлении и обычной температуре могут транспортироваться и храниться в жидком виде. Однако при обычном давлении и сравнительно низких температурах эти смеси способны испаряться, в этом случае их используют как газы. Переход сжиженных углеводородных газов в газообразное или жидкое состояние зависит от трех факторов -- давления, температуры и объема.

Газообразные углеводороды, входящие в состав сжиженных газов, имеют плотность, которая значительно превышает плотность воздуха, и характеризуются медленной диффузией в атмосферу, невысокой температурой воспламенения, низкими пределами взрываемости в воздухе, возможностью образования конденсата при снижении температуры до точки росы или при повышении давления. В соответствии с ГОСТ 20448--80 для коммунально-бытового потребления выпускают сжиженные углеводородные газы трех марок: СПБТЗ, СПБТЛ -- смесь пропана и бутана технических соответственно зимняя и летняя, БТ -- бутан технический. Чистый пропан как сжиженный газ в качестве топлива можно использовать без регазификации и при температуре до 253 К.

Бутаны без регазификации можно применять в качестве топлива только при температурах, превышающих 273 К. При более низких температурах упругость их паров меньше атмосферного давления. При температурах 318, 313 и 258 К давление я-бутана составляет соответственно 0,49, 0,42 и 0,06 МПа.

Если сжиженные газы используют при высоких температурах, то желательно применение бутанов, так как при одинаковой температуре давление их насыщенных паров примерно в три раза ниже, чем у пропана. Это позволяет хранить жидкую фазу бутанов при обычных температурах (313 К) в резервуарах, рассчитанных на давление 0,7 МПа, а при температурах до 353 К -- в резервуарах, рассчитанных на давление 1,6 МПа.

Плотность жидкой фазы сжиженного газа при температуре 273 К и давлении 0,1 МПа в зависимости от состава равна 0,58--0,6 от плотности воды, т. е. жидкая фаза сжиженного газа примерно в два раза легче воды. Следовательно, отстой воды будет происходить в нижней части резервуаров и аппаратов.

При интенсивном отборе из резервуара паровой фазы температура жидкой, фазы будет снижаться за счет расхода тепла жидкости на испарение. Максимальная температура, при которой жидкость не испаряется, для пропана составляет 231 К, для бутана 273 К. Для смесей пропана и бутанов эта температура является переменной. Она зависит от состава смеси.

ОСОБЕННОСТИ СЖИЖЕННЫХ УГЛЕВОДОРОДНЫХ ГАЗОВ И ИХ ВОЗДЕЙСТВИЕ НА ОРГАНИЗМ ЧЕЛОВЕКА

Сжиженные углеводородные газы являются насыщенными (кипящими жидкостями) при наличии свободной поверхности жидкой фазы. При этом всегда возникает двухфазная система (жидкость -- пар). Давление паров зависит от температуры жидкой фазы и может достигать значительной величины при изменении температуры внешней среды. Это свойство сжиженных углеводородных газов при разрыве аппарата или трубопроводов обусловливает поддержание в них давления в течение длительного времени (до полного освобождения от жидкой фазы), что создает значительно большую опасность для окружающих объектов, чем при разрыве нефтепровода или газопровода природного газа, в которых давление при разрыве быстро снижается до нуля.

Плотность паровой фазы сжиженных углеводородных газов значительно больше плотности воздуха. Плотность паров сжиженных углеводородных газов при температуре 273 К и давлении 0,1 МПа колеблется в пределах 19,6--26,46 кг/м 3 . Относительная плотность (по воздуху) пропана равна 15,62 изо-бутана -- 20,64, н-бутана -- 20,91.

Паровая фаза сжиженных углеводородных газов не рассеивается в атмосфере, поднимаясь вверх (подобно природному газу). Она стелется по поверхности земли или полу помещения (подобно СО 2 и другим тяжелым газам). В связи с этим необходимо устраивать вентиляцию помещений на уровне пола, сквозное проветривание площадки КБ (ГНС) на уровне земли, избегать заглублений и приямков как в помещениях, так и на самой площадке.

Сжиженные углеводородные газы при атмосферном давлении не обладают токсическим (отравляющим) воздействием на организм человека, так как они мало растворяются в крови. Однако, попадая в воздух, они смешиваются с ним и уменьшают содержание кислорода в воздухе. Человек, находящийся в такой, атмосфере, испытывает кислородное голодание, а при значительном содержании сжиженного углеводородного газа в воздухе может погибнуть от удушья. Вдыхание в течение 10 мин воздуха, содержащего 1 % пропана или бутана, не вызывает никаких симптомов отравления. Двухминутное, вдыхание воздуха с 10 %-ным содержанием сжиженных газов вызывает головокружение. Пропилен и бутилен обладают наркотическими свойствами. При содержании в воздухе 15% пропилена потеря сознания наступает через 30 мин, при содержании 24 % -- через 3 мин, при содержании 35--40 % -- через 20 с. В связи с этим все компоненты сжиженных углеводородных газов включены в список вредных для организма человека веществ. Санитарными нормами установлена предельно допустимая концентрация сжиженных углеводородных газов в воздухе рабочей зоны производственных помещений, равная 300 мг/м 3 (в перерасчете на углерод). Эти нормы должны соблюдаться также в рабочей зоне наружных установок. Подобная концентрация примерно в 15--18 раз меньше нижнего предела взрываемости.

Опасное воздействие на человека сжиженных углеводородных газов значительно возрастает, если они содержат сероводород и другие сернистые соединения, являющиеся сильными ядами. При содержании сероводорода в воздухе от 150 до 230 мг/м 3 через несколько часов у человека появляются симптомы легкого отравления, при содержании 310 мг/м 3 --через 5--8 мин наступает сильное раздражение слизистой оболочки глаз, носа и горла. Повышение концентрации от 770 до 1080 мг/м 3 через 1 ч вызывает серьезное отравление, а при концентрации 1540--4620 мг/м 3 наступает смерть.

Пары сжиженных углеводородных газов в смеси с воздухом образуют взрывоопасную смесь. При температуре 273 К и давлении 0,1 МПа предел взрываемости пропана наступает при объемном содержании его в воздухе, равном 2,3--9,5 %, н-бутана--16, 1,5--8,4%, изо-бутана--1,8--8,4%. Вследствие этого, а также из-за очень медленного рассеивания паров сжиженных углеводородных газов в атмосфере смесь их паров с воздухом долгое время и на большом расстоянии от места испарения остается взрыво- и пожароопасной.

Бесконтрольное сгорание сжиженных углеводородных газов в помещениях или на открытых площадках приводит к пожарам. Пожарная опасность этих газов характеризуется жаропроизводительностью, которая превышает 2273 К и обеспечивает измеренную приборами температуру пламени в пределах 2103-- 2198 К, значительной теплотой, выделяемой при сгорании газовоздушной смеси, низкими пределами воспламенения и взрываемости, низкой температурой самовоспламенения, большой потребностью в воздухе при сгорании и большим количеством образующихся при этом продуктов сгорания.

Взрыв газовоздушной смеси возникает при воспламенении и горении ее в ограниченном пространстве (производственном помещении, подвале, канале, резервуаре, топке котла, печи и т. д.). При взрыве газовоздушной смеси в помещении образуется большое количество нагретых газов, в результате увеличения объема которых повышается давление (до 0,858 МПа). Под воздействием такого давления разрушаются строительные конструкции. Фактический объем паровой фазы пропана при испарении жидкой фазы его при температуре 273 К и давлении 0,1 МПа составляет 269 м 3 , мзо-бутана -- 229 м 3 , н-бутана -- 235 м 3 .

Сжиженные углеводородные газы применяются в качестве автомобильного топлива.

За сравнительно короткий промежуток времени пройден достаточно трудный путь по организации учета сжиженных газов, ясного понимания процессов, происходящих при перекачке, измерении, хранении, транспортировке.

Общеизвестно, что добыча и использование нефти и газа в России имеет многовековую историю. Однако технический уровень промыслового газового хозяйства до XX века был исключительно примитивным. Не находя экономически обоснованных областей применения, нефтепромышленники не только не заботились о сохранении газа или легких фракций углеводородов, но и старались от них избавиться. Негативное отношение наблюдалось и к бензиновым фракциям нефти, поскольку они вызывали повышение температуры вспышки и опасность загорания и взрывов. Выделение газовой промышленности в 1946 г. в самостоятельную отрасль позволило революционно изменить ситуацию и резко увеличить как объём добычи газа в абсолютном значении, так и его удельный вес в топливном балансе страны. Быстрые темпы роста добычи газа стали возможны благодаря коренному усилению работ по строительству магистральных газопроводов, соединивших основные газодобывающие районы с потребителями газа крупными промышленными центрами и химическими заводами.

Тем не менее, основательный подход к точному измерению и учету сжиженных газов в нашей стране стал появляться не более 10 - 15 лет назад. Для сравнения, сжиженный газ в Англии производится с начала 30-х годов XX века, с учетом того, что это страна с развитой рыночной экономикой, технология измерения и учета сжиженных газов, а также производство специального оборудования для этих целей стали развиваться практически с началом производства.

Итак, коротко рассмотрим, что представляют собой сжиженные углеводородные газы и как они производятся. Сжиженные газы делятся на две группы:

Сжиженные углеводородные газы (СУГ) - представляют собой смесь химических соединений, состоящую в основном из водорода и углерода с различной структурой молекул, т.е. смесь углеводородов различной молекулярной массы и различного строения. Основными компонентами СУГ являются пропан и бутан, в виде примесей в них содержатся более легкие углеводороды (метан и этан) и более тяжелые (пентан). Все перечисленные компоненты являются предельными углеводородами. В состав СУГ могут входить также непредельные углеводороды: этилен, пропилен, бутилен. Бутан-бутилены могут присутствовать в виде изомерных соединений (изобутана и изобутилена).

ШФЛУ - широкая фракция легких углеводородов, включает в основном смесь легких углеводородов этановой (С2) и гексановой (С6) фракций.

В целом типичный состав ШФЛУ выглядит следующим образом: этан от 2 до 5%; сжиженный газ фракций С4-С5 40-85%; гексановая фракция С6 от 15 до 30%, на пентановую фракцию приходится остаток.

Учитывая широкое применение в газовом хозяйстве именно СУГ, следует более подробно остановиться на свойствах пропана и бутана.

Пропан — это органическое вещество класса алканов. Содержится в природном газе, образуется при крекинге нефтепродуктов. Химическая формула C 3 H 8 (рис. 1). Бесцветный газ без запаха, очень малорастворим в воде. Точка кипения -42,1С. Образует с воздухом взрывоопасные смеси при концентрации паров от 2,1 до 9,5%. Температура самовоспламенения пропана в воздухе при давлении 0,1 МПа (760 мм рт. ст.) составляет 466 °С.

Пропан используется в качестве топлива, основной компонент так называемых сжиженных углеводородных газов, в производстве мономеров для синтеза полипропилена. Является исходным сырьём для производства растворителей. В пищевой промышленности пропан зарегистрирован в качестве пищевой добавки E944, как пропеллент.

Бутан (C 4 H 10) — органическое соединение класса алканов. В химии название используется в основном для обозначения н-бутана. Химическая формула C 4 H 10 . Такое же название имеет смесь н-бутана и его изомера изобутана СН(СНз)з. Бесцветный горючий газ, без запаха, легко сжижаемый (ниже 0 °С и нормальном давлении или при повышенном давлении и обычной температуре — легколетучая жидкость). Содержится в газовом конденсате и нефтяном газе (до 12 %). Является продуктом каталитического и гидрокаталитического крекинга нефтяных фракций.

Производство, как сжиженного газа, так и ШФЛУ осуществляется за счет следующих трех основных источников:

  • предприятия нефтедобычи - получение СУГ и ШФЛУ происходит во время добычи сырой нефти при переработке попутного (связанного) газа и стабилизации сырой нефти;
  • предприятия газодобычи - получение СУГ и ШФЛУ происходит при первичной переработке скважинного газа или несвязанного газа и стабилизации конденсата;
  • нефтеперегонные установки - получение сжиженного газа и аналогичных ШФЛУ происходит при переработке сырой нефти на НПЗ. В данной категории ШФЛУ состоит из смеси бутан-гексановых фракций (С4-С6) с небольшим количеством этана и пропана.

Основное преимущество СУГ - возможность их существования при температуре окружающей среды и умеренных давлениях, как в жидком, так и в газообразном состоянии. В жидком состоянии они легко перерабатываются, хранятся и транспортируются, в газообразном имеют лучшую характеристику сгорания.

Состояние углеводородных систем определяется совокупностью влияний различных факторов, поэтому для полной характеристики необходимо знать все параметры. К основным параметрам, поддающимся непосредственному измерению и влияющим на режимы течения СУГ, относятся давление, температура, плотность, вязкость, концентрация компонентов, соотношение фаз.

Система находится в равновесном состоянии, если все параметры остаются неизменными. При таком состоянии в системе не происходит видимых качественных и количественных изменений. Изменение хотя бы одного параметра нарушает равновесное состояние системы, вызывая тот или иной процесс.

Углеводородные системы могут быть гомогенными и гетерогенными. Если система имеет однородные физические и химические свойства - она гомогенна, если же она неоднородна или состоит из веществ, находящихся в разных агрегатных состояниях - она гетерогенна. Двухфазные системы относятся к гетерогенным.

Под фазой понимается определенная гомогенная часть системы, имеющая четкую границу раздела с другими фазами.

Сжиженные газы при хранении и транспортировании постоянно изменяют свое агрегатное состояние, часть газа испаряется и переходит в газообразное состояние, а часть конденсируется, переходя в жидкое состояние. В тех случаях, когда количество испарившейся жидкости равно количеству сконденсировавшегося пара, система жидкость-газ достигает равновесия и пары на жидкостью становятся насыщенными, а их давление называется давлением насыщения или упругостью паров.

Упругость паров СУГ возрастает с повышением температуры и уменьшается с ее понижением.

Сжиженные углеводородные газы транспортируются в железнодорожных и автомобильных цистернах, хранятся в резервуарах различного объема в состоянии насыщения: в нижней части сосудов размещается кипящая жидкость, а в верхней находятся сухие насыщенные пары. При снижении температуры в резервуарах часть паров сконденсируется, т. е. увеличивается масса жидкости и уменьшается масса пара, наступает новое равновесное состояние. При повышении температуры происходит обратный процесс, пока при новой температуре не наступит равновесие фаз. Таким образом, в резервуарах и трубопроводах происходят процессы испарения и конденсации, которые в двухфазных средах протекают при постоянном давлении и температуре, при этом температуры испарения и конденсации равны.

В реальных условиях в сжиженных газах в том или ином количестве присутствуют водяные пары. Причем их количество в газах может увеличиваться до насыщения, после чего влага из газов выпадает в виде воды и смешивается с жидкими углеводородами до предельной степени растворимости, а затем выделяется свободная вода, которая отстаивается в резервуарах. Количество воды в СУГ зависит от их углеводородного состава, термодинамического состояния и температуры. Доказано, что если температуру СУГ снизить на 15-30 0 С, то растворимость воды снизится в 1,5-2 раза и свободная вода скопится на дне резервуара или выпадет в виде конденсата в трубопроводах. Скопившуюся в резервуарах воду необходимо периодически удалять, иначе она может попасть к потребителю или привести к поломке оборудования.

Согласно методам испытаний СУГ определяют наличие лишь свободной воды, присутствие растворенной допускается.

За рубежом предъявляются более жесткие требования на наличие воды в СУГ и ее количество, посредством фильтрации доводится до 0,001% по массе. Это оправдано, так как растворенная вода в сжиженных газах является загрязнителем, ибо даже при положительных температурах она образует твердые соединения в виде гидратов.

Гидраты можно отнести к химическим соединениям, так как они имеют строго определенный состав, но это соединения молекулярного типа, однако химическая связь на базе электронов у гидратов отсутствует. В зависимости от молекулярной характеристики и структурной формы внутренних ячеек, различные газы внешне представляют собой четко выраженные прозрачные кристаллы разнообразной формы, а гидраты, полученные в турбулентном потоке - аморфную массу в виде плотно спрессованного снега.

В большинстве случаев, говоря о сжиженных газах, подразумеваются углеводороды соответствующие ГОСТ 20448-90 «Газы углеводородные сжиженные для коммунально-бытового потребления» и ГОСТ 27578-87 «Газы углеводородные сжиженные для автомобильного транспорта». Они представляют собой смесь, состоящую в основном из пропана, бутана и изобутана. Благодаря идентичности строения их молекул приближенно соблюдается правило аддитивности: параметры смеси пропорциональны концентрациям и параметрам отдельных компонентов. Поэтому по некоторым параметрам можно судить о составе газов.

Сжиженные углеводородные газы относятся к низкокипящим жидкостям, способным находиться в жидком состоянии под давлением насыщенных паров.

  1. Температура кипения:Пропан -42 0 С; Бутан - 0,5 0 С.
  2. При нормальных условиях объем газообразного пропана больше в 270 раз, чем объем пропана сжиженного.
  3. Сжиженные углеводородные газы характеризуются высоким коэффициентом теплового расширения.
  4. СУГ характеризуются низкой плотностью и вязкостью по сравнению со светлыми нефтепродуктами.
  5. Нестабильность агрегатного состояния СУГ при течении по трубопроводам в зависимости от температуры, гидравлических сопротивлений, неравномерности условных проходов.
  6. Транспортирование, хранение и измерение СУГ возможны только посредством закрытых (герметизированных) систем, рассчитанных, как правило, на рабочее давление 1,6 МПа. ГОСТ Р 55085-2012
  7. Перекачивающие, измерительные операции требуют применения специального оборудования, материалов и технологий.

Во всем мире, углеводородные системы и оборудование, а также устройство технологических систем подчинено единым требованиям и правилам.

Сжиженный газ представляет собой ньютоновскую жидкость, поэтому процессы перекачивания и измерения описываются общими законами гидродинамики. Но функция углеводородных систем сводится не только к простому перемещению жидкости и ее измерению, но и обеспечению уменьшения влияния «отрицательных» физико-химических свойств СУГ.

Принципиально, системы, перекачивающие СУГ, мало отличаются от систем для воды и нефтепродуктов, и, тем не менее, необходимо дополнительное оборудование, гарантирующее качественные и количественные характеристики измерения.

Исходя из этого технологическая углеводородная система, как минимум должна иметь в своем составе резервуар, насос, газоотделитель, измеритель, дифференциальный клапан, отсечной или регулирующий клапан, устройства безопасности от превышения давления или скорости потока.

Резервуар хранения должен быть оборудован входным патрубком для налива продукта, линией слива для отпуска и линией паровой фазы, которая используется для выравнивания давления, возврата паров от газоотделителя или калибровки системы.

Насос - обеспечивает давление, необходимое для движения продукта через систему отпуска. Насос должен быть подобран по емкости, производительности и давлению.

Измеритель - включает преобразователь количества продукта и отсчетное устройство (индикацию) которое может быть электронным или механическим.

Газоотделитель - отделяет пар, образованный во время потока жидкости, прежде чем он достигнет счетчика и возвращает его в паровое пространство резервуара.

Дифференциальный клапан - служит для обеспечения прохождения через счетчик только жидкого продукта, посредством создания после счетчика избыточного дифференциального давления, заведомо большего, чем давление паров в емкости.

Сжиженный газ. Сжиженные углеводородные газы СУГ = Liquefied petroleum gas (LPG) и ШФЛУ == WSLH (wide spread of light hydrocarbons) = NGL (Natural gas liquids)

Сжиженные углеводородные газы (СУГ) Liquefied petroleum gas (LPG) — смесь сжиженных под давлением лёгких углеводородов с температурой кипенияот −50 до 0 °C. Предназначены для применения в качестве топлива, а также используются в качестве сырья для органического синтеза. Состав может существенно различаться, основные компоненты: пропан, изобутан и н-бутан. Производятся СУГ в процессе ректификации широкой фракции лёгких углеводородов (ШФЛУ = WSLH (wide spread of light hydrocarbons) = NGL (Natural gas liquids). ШФЛУ относится к сжиженным углеводородным газам и представляет собой легкокипящую и легковоспламеняющуюся жидкость, пожаро- и взрывоопасную, 4-го класса токсичности.

Таблица 1. Технические требования к ШФЛУ - это сырье для производства СУГ

Показатели Марка А Марка Б Марка В
Углеводородный состав, % масс. С 1 - С 2 , не более 3 5 не регламентируется
С 3 , не менее 15 не регламентируется не регламентируется
С 4 - С 5 , не менее 45 40 35
с 6 и выше, не более 11 25 30
Плотность при 20 о С, кг/м 3 515 - 525 525 - 535 535 и выше
Содержание сернистых соединений в пересчете на серу, % масс., не более 0,025 0,05 0,05
в том числе сероводорода, % масс., не более 0,003 0,003 0,003
Содержание взвешенной воды Отсутствие
Содержание щелочи Отсутствие
Внешний вид Бесцветная прозрачная жидкость.

Пары ШФЛУ образуют с воздухом взрывоопасные смеси с 1,3 - 9,5 % об. при 98 066 Па (1 ата.) 15 - 20 о С.

Таблица 2. Температуры самовоспламенения компонентов ШФЛУ, о С

Пропан (С 3 Н 8) Изо-бутан (С 4 Н 10) Н-бутан (С 4 Н 10) Изо-пентан (С 5 Н 12) Н-пентан (С 5 Н 12)
466 462 405 427 287

Предельно допустимая концентрация паров ШФЛУ в воздухе рабочей зоны составляет не более 300 мг/м 3 . ШФЛУ попадающее на кожу человека вызывает обморожение напоминающее ожог.

Таблица 3. Классификация СУГ в РФ: Пропан технический, Пропан автомобильный, Пропан-бутан автомобильный, Пропан-бутан технический, Бутан технический:

В зависимости от компонентного состава СУГ подразделяются на следующие марки:

Таблица 4. Свойства Параметры торговых марок: Пропан технический, Пропан автомобильный, Пропан-бутан автомобильный, Пропан-бутан технический, Бутан технический

Наименование показателя Пропан технический Пропан автомобильный Пропан-бутан автомобильный Пропан-бутан технический Бутан технический
1. Массовая доля компонентов
Сумма метана, этана и этилена Не нормируется
Сумма пропана и пропилена не менее 75 % масс. Не нормируется
в том числе пропана не нормируется не менее 85±10 % масс. не менее 50±10 % масс. не нормируется не нормируется
Сумма бутанов и бутиленов не нормируется не нормируется не нормируется не более 60 % масс. не менее 60 % масс.
Сумма непредельных углеводородов не нормируется не более 6 % масс. не более 6 % масс. не нормируется не нормируется
2. Доля жидкого остатка при 20 о С не более 0,7 % об. не более 0,7 % об. не более 1,6 % об. не более 1,6 % об. не более 1,8 % об.
3. Давление насыщенных паров не менее 0,16 МПа

(при минус 20 о С)

не менее 0,07 МПа

(при минус 30 о С)

не более 1,6 МПа

(при плюс 45 о С)

не нормируется не нормируется
4. Массовая доля сероводорода и меркаптановой серы
в том числе сероводорода :
не более 0,013 % масс. не более 0,001 % масс. не более 0,001 % масс. не более 0,013 % масс. не более 0,013 % масс.
не более 0,003 % масс.
5. Содержание свободной воды отсутствие
6. Интенсивность запаха, баллы не менее 3

Сжиженные углеводородные газы пожаро- и взрывоопасны, малотоксичны, имеют специфический характерный запах углеводородов, по степени воздействия на организм относятся к веществам 4-го класса опасности. СУГ в воздухе рабочей зоны (в пересчете на углерод) предельных углеводородов (пропан, бутан) — 300 мг/м 3 , непредельных углеводородов (пропилен, бутилен) — 100 мг/м 3 . СУГ образуют с воздухом при концентрации паров пропана от 2,3 до 9,5 %, нормального бутана от 1,8 до 9,1 % (по объёму), при давлении 0,1 МПа и температуре 15 — 20 о С. Температура самовоспламенения пропана в воздухе составляет 470 о С, нормального бутана — 405 о С.

Таблица 4. Физические характеристики: Метан, Этан, Этилен, Пропан, Пропилен, н-Бутан, Изобутан, н-Бутилен, Изобутилен, н-Пентан

Показатель Метан Этан Этилен Пропан Пропилен н-Бутан Изобутан н-Бутилен Изобутилен н-Пентан
Химическая формула СН 4 С 2 Н 6 С 2 Н 4 С 3 Н 8 С 3 Н 6 С 4 Н 10 С 4 Н 10 С 4 Н 8 С 4 Н 8 С 5 Н 12
Молекулярная масса, кг/кмоль 16,043 30,068 28,054 44,097 42,081 58,124 58,124 56,108 56,104 72,146
Молекулярный объем, м 3 /кмоль 22,38 22,174 22,263 21,997 21,974 21,50 21,743 22,442 22,442 20,87
Плотность газовой фазы, кг/м 3 , при 0 о С 0,7168 1,356 1,260 2,0037 1,9149 2,7023 2,685 2,55 2,5022 3,457
Плотность газовой фазы, кг/м 3 , при 20 о 0,668 1,263 1,174 1,872 1,784 2,519 2,486 2,329 2,329 3,221
Плотность жидкой фазы, кг/м 3 , при 0 о 416 546 566 528 609 601 582 646 646 6455
Температура кипения, при 101,3 кПа минус 161 минус 88,6 минус 104 минус 42,1 минус 47,7 минус 0,5 минус 11,73 минус 6,9 3,72 36,07
Низшая теплота сгорания, МДж/м 3 35,76 63,65 59,53 91,14 86,49 118,53 118,23 113,83 113,83 146,18
Высшая теплота сгорания, МДж/м 3 40,16 69,69 63,04 99,17 91,95 128,5 128,28 121,4 121,4 158
Температура воспламенения, о С 545-800 530-694 510-543 504-588 455-550 430-569 490-570 440-500 400-440 284-510
Октановое число 110 125 100 125 115 91,20 99,35 80,30 87,50 64,45
Теоретически необходимое количество воздуха

для горения, м 3 /м 3

3,52 16,66 14,28 23,8 22,42 30,94 30,94 28,56 28,56 38,08

Таблица 5. Критические параметры (температура и давление) газов: Метан, Этан, Этилен, Пропан, Пропилен, н-Бутан, Изобутан, н-Бутилен, Изобутилен, н-Пентан

Газы могут быть превращены в жидкое состояние при сжатии, если температура при этом не превышает определенного значения, характерного для каждого однородного газа. Температура при которой данный газ не может быть сжижен никаким повышением давления, называется критической температурой. Давление, необходимое для сжижения газа при этой критической температуре, называется критическим давлением.

Показатель Метан Этан Этилен Пропан Пропилен н-Бутан Изобутан н-Бутилен Изобутилен н-Пентан
Критическая температура, о С минус 82,5 32,3 9,9 96,84 91,94 152,01 134,98 144,4 155 196,6
Критическое давление, МПа 4,58 4,82 5,033 4,21 4,54 3,747 3,6 3,945 4,10 3,331

Таблица 6. Упругость насыщенных паров МПа, Метан, Этан, Этилен, Пропан, Пропилен, н-Бутан, Изобутан, н-Бутилен, Изобутилен, н-Пентан

Упругостью насыщенных паров сжиженных газов называется давление, при котором жидкость находится в равновесном состоянии со своей газовой фазой. При такой двухфазной системе не происходит ни конденсации паров ни испарения жидкости. Каждому компоненту СУГ при определенной температуре соответствует определенная упругость паров, возрастающая с ростом температуры.

Температура, о С Этан Пропан Изобутан н-Бутан н-Пентан Этилен Пропилен н-Бутилен Изобутилен
минус 50 0,553 0,07 1,047 0,100 0,070 0,073
минус 45 0,655 0,088 1,228 0,123 0,086 0,089
минус 40 0,771 0,109 1,432 0,150 0,105 0,108
минус 35 0,902 0,134 1,660 0,181 0,127 0,130
минус 30 1,050 0,164 1,912 0,216 0,152 0,155
минус 25 1,215 0,197 2,192 0,259 0,182 0,184
минус 20 1,400 0,236 2,498 0,308 0,215 0,217
минус 15 1,604 0,285 0,088 0,056 2,833 0,362 0,252 0,255
минус 10 1,831 0,338 0,107 0,0680 3,199 0,423 0,295 0,297
минус 5 2,081 0,399 0,128 0,084 3,596 0,497 0,343 0,345
0 2,355 0,466 0,153 0,102 0,024 4,025 0,575 0,396 0,399
плюс 5 2,555 0,543 0,182 0,123 0,030 4,488 0,665 0,456 0,458
плюс 10 2,982 0,629 0,215 0,146 0,037 5,000 0,764 0,522 0,524
плюс 15 3,336 0,725 0,252 0,174 0,046 0,874 0,594 0,598
плюс 20 3,721 0,833 0,294 0,205 0,058 1,020 0,688 0,613
плюс 25 4,137 0,951 0,341 0,240 0,067 1,132 0,694 0,678
плюс 30 4,460 1,080 0,394 0,280 0,081 1,280 0,856 0,864
плюс 35 4,889 1,226 0,452 0,324 0,096 1,444 0,960 0,969
плюс 40 1,382 0,513 0,374 0,114 1,623 1,072 1,084
плюс 45 1,552 0,590 0,429 0,134 1,817 1,193 1,206
плюс 50 1,740 0,670 0,490 0,157 2,028 1,323 1,344
плюс 55 1,943 0,759 0,557 0,183 2,257 1,464 1,489
плюс 60 2,162 0,853 0,631 0,212 2,505 1,588 1,645

Таблица 6. Зависимость плотности от температуры: Пропан, Изобутан, н-Бутан

Температура, о С Пропан Изобутан н-Бутан
Удельный объём Плотность Удельный объём Плотность Удельный объём Плотность
Жидкость, л/кг Пар, м 3 /кг Жидкость, кг/л Пар, кг/м 3 Жидкость, л/кг Пар, м 3 /кг Жидкость, кг/л Пар, кг/м 3 Жидкость, л/кг Пар, м 3 /кг Жидкость, кг/л Пар, кг/м 3
минус 60 1,650 0,901 0,606 1,11
минус 55 1,672 0,735 0,598 1,36
минус 50 1,686 0,552 0,593 1,810
минус 45 1,704 0,483 0,587 2,07
минус 40 1,721 0,383 0,581 2,610
минус 35 1,739 0,308 0,575 3,250
минус 30 1,770 0,258 0,565 3,870 1,616 0,671 0,619 1,490
минус 25 1,789 0,216 0,559 4,620 1,639 0,606 0,610 1,650
минус 20 1,808 0,1825 0,553 5,480 1,650 0,510 0,606 1,960
минус 15 1,825 0,156 0,548 6,400 1,667 0,400 0,600 2,500 1,626 0,624 0,615 1,602
минус 10 1,845 0,132 0,542 7,570 1,684 0,329 0,594 3,040 1,635 0,514 0,612 1,947
минус 5 1,869 0,110 0,535 9,050 1,701 0,279 0,588 3,590 1,653 0,476 0,605 2,100
0 1,894 0,097 0,528 10,340 1,718 0,232 0,582 4,310 1,664 0,355 0,601 2,820
плюс 5 1,919 0,084 0,521 11,900 1,742 0,197 0,574 5,070 1,678 0,299 0,596 3,350
плюс 10 1,946 0,074 0,514 13,600 1,756 0,169 0,5694 5,920 1,694 0,254 0,5902 3,94
плюс 15 1,972 0,064 0,507 15,51 1,770 0,144 0,565 6,950 1,715 0,215 0,583 4,650
плюс 20 2,004 0,056 0,499 17,740 1,794 0,126 0,5573 7,940 1,727 0,186 0,5709 5,390
плюс 25 2,041 0,0496 0,490 20,150 1,815 0,109 0,5511 9,210 1,745 0,162 0,5732 6,180
плюс 30 2,070 0,0439 0,483 22,800 1,836 0,087 0,5448 11,50 1,763 0,139 0,5673 7,190
плюс 35 2,110 0,0395 0,474 25,30 1,852 0,077 0,540 13,00 1,779 0,122 0,562 8,170
плюс 40 2,155 0,035 0,464 28,60 1,873 0,068 0,534 14,700 1,801 0,107 0,5552 9,334
плюс 45 2,217 0,029 0,451 34,50 1,898 0,060 0,527 16,800 1,821 0,0946 0,549 10,571
плюс 50 2,242 0,027 0,446 36,800 1,9298 0,053 0,5182 18,940 1,843 0,0826 0,5426 12,10
плюс 55 2,288 0,0249 0,437 40,220 1,949 0,049 0,513 20,560 1,866 0,0808 0,536 12,380
плюс 60 2,304 0,0224 0,434 44,60 1,980 0,041 0,505 24,200 1,880 0,0643 0,532 15,400

Наиболее распространенным является использование СУГ в качестве топлива в двигателях внутреннего сгорания. Обычно для этого используется смесь пропан-бутан. В некоторых странах СУГ использовались с 1940 года как альтернативное топливо для двигателей с искровым зажиганием. СУГ являются третьим наиболее широко используемым моторным топливом в мире. В 2008 более 13 миллионов автомобилей по всему миру работали на пропане. Более 20 млн тонн СУГ используются ежегодно в качестве моторного топлива.

Использование СУГ в качестве топлива в промышленных и коммунально-бытовых нагревательных аппаратах позволяет осуществлять регулирование процесса горения в широком диапазоне, а возможность хранения СУГ в резервуарах делает его более предпочтительным по сравнению с природным газом в случае использования СУГ на автономных узлах теплоснабжения.

Таблица 7. Использование СУГ для производства продуктов для органического синтеза

Основное направление химической переработки СУГ — это термические и термокаталитические превращения. В первую очередь здесь подразумеваются процессы пиролиза и дегидрирования, приводящие к образованию ненасыщенных углеводородов — ацетилена, олефинов, диенов, которые широко применяются для производства высокомолекулярных соединений и кислородсодержащих продуктов. Это направление включает в себя также процесс производства сажи термическим разложением в газовой фазе, а также процесс производства ароматических углеводородов. Схема превращений углеводородных газов в конечные продукты представлена в таблице.

Продукты прямого превращения

углеводородных газов

Производное вещество Конечный продукт
первичное вторичное
Этилен Полиэтилен Полиэтиленовые пластмассы
Окись этилена Поверхностно-активные вещества
Этиленгликоль Полиэфирное волокно, антифриз и смолы
Этаноламины Промышленные растворители, моющие вещества, мыло
Хлорвинил Хлорполивинил Пластиковые трубы, пленки
Этанол Этиловый эфир, уксусная кислота Растворители, химические преобразователи
Ацетальдегид Уксусный ангидрид Ацетатная целлюлоза, аспирин
Нормальный бутан
Винилцетат Поливиниловый спирт Пластификаторы
Поливинилацетат Пластиковые пленки
Этилбензол Стирол Полистироловые пластмассы
Акриловая кислота Волокна, пластмассы
Пропиональдегид Пропанол Гербициды
Пропионовая кислота Консервирующие средства для зерна
Пропилен Акрилонитрил Адипонитрил Волокна (нейлон-66)
Полипропилен Пластичные пленки, волокна
Окись пропилена Пропиленкарбонат Полиуретановые пены
Полипропиленгликоль Специальные растворители
Аллиловый спирт Полиэфирные смолы
Изопропанол Изопропилацетат Растворители типографических красок
Ацетон Растворитель
Изопропилбензол Фенол Фенольные смолы
Акролеин Акрилаты Латексные покрытия
Аллилхлориды Глицероль Смазочные вещества
Нормальные и изомолярные альдегиды Нормальный бутанол Растворитель
Изобутанол Амидные смолы
Изопропилбензол
Номальные бутены Полибутены Смолы
Вторичный бутиловый спирт Метилэтиловый кетон Промышленные растворители, покрытия, связывающие вещества
Депарафинизирующие добавки к нефти
Изобутилен Изобутиленметиловый бутадиеновый сополимер
Бутиловая смола Пластмассовые трубы, герметики
Третичный бутиловый спирт Растворители, смолы
Метилбутиловый третичный эфир Повыситель октанового числа бензина
Метакролеин Метилметакрилат Чистые пластиковые листы
Бутадиен Стирилбутадиеновые полимеры Буна-каучуковая синтетическая резина
Адипонитрил Гексаметилендиамин Нейлон
Сульфолен Сульфолан Очиститель промышленного газа
Хлоропрен Синтетическая резина
Бензол Этилбензол Стирол Полистироловые пластмассы
Изопропилбензол Фенол Фенольные смолы
Нитробензол Анилин
Линейный алкилбензол Разлагающиеся под действием бактерий моющие вещества
Малеиновый ангидрид Модификаторы пластмасс
Циклогексан Капролактам Нейлон-6
Адипиновая кислота Нейлон-66
Толуол Бензол Этилбензол, стирол Полистироловые пластмассы
Изопропилбензол, фенол Фенольные смолы
Нитробензол, хлорбензол, анилин, фенол Красители, резина, фотохимикаты

Кроме перечисленного СУГ используют в качестве аэрозольного энергоносителя. Аэрозолем является смесь активного компонента (духов, воды, эмульгатора) с пропиленом. Это коллоидный раствор, в котором тонкодиспергированные (размером 10 — 15 мкм) жидкие или твердые вещества взвешены в газовой или жидкой, легкоиспаряющейся фазе сжиженного углеводородного газа. Дисперсная фаза — активный компонент, из-за которого и вводят пропеллент в аэрозольные системы, применяющиеся для распыления духов, туалетной воды, полирующих веществ и др.

Введение

Сжиженные углеводородные газы (СУГ) - смесь сжиженных под давлением лёгких углеводородов с температурой кипения от?50 до 0 °C. Предназначены для применения в качестве топлива. Основные компоненты: пропан, пропилен, изобутан, изобутилен, н-бутан ибутилен.

Производится в основном из попутного нефтяного газа. Транспортируется и хранится в баллонах и газгольдерах. Применяется для приготовления пищи, кипячения воды, отопления, используется в зажигалках, в качестве топлива на автотранспорте.

Газы углеводородные сжиженные (пропан-бутан, в дальнейшем СУГ) - смеси углеводородов, которые при нормальных условиях находятся в газообразном состоянии, а при небольшом повышении давления или незначительном понижении температуры переходят из газообразного состояния в жидкое.

Основными компонентами СУГ являются пропан и бутан. Пропан-бутан (сжиженный нефтяной газ, СНГ, по-английски - liquifiedpetroleumgas, LPG) - это смесь двух газов. В состав сжиженного газа входят в небольших количествах также: пропилен, бутилен, этан, этилен, метан и жидкий неиспаряющийся остаток (пентан, гексан).

Сырьем для получения СУГ являются в основном нефтяные попутные газы, газоконденсатных месторождений и газы, получаемые в процессе переработки нефти. сжиженный углеводородный пропан нефтеперегонный

С заводов СУГ в железнодорожных цистернах поступает на газонаполнительные станции (ГНС) газовых хозяйств, где хранится в специальных резервуарах до продажи (отпуска) потребителям. Потребителям СУГ доставляется в баллонах или автоцистернами.

В сосудах (цистернах, резервуарах, баллонах) для хранения и транспортировки СУГ одновременно находится в 2-х фазах: жидкой и парообразной. СУГ хранят, транспортируют в жидком виде под давлением, которое создаётся собственными парами газа. Это свойство делает СУГ удобными источниками снабжения топливом коммунально-бытовых и промышленных потребителей, т.к. сжиженный газ при хранении и транспортировке в виде жидкости занимает в сотни раз меньший объем, чем газ в естественном (газообразном или парообразном) состоянии, а распределяется по газопроводам и используется (сжигается) в газообразном виде.

Сжиженные углеводородные газы (СУГ) состоят из простых углеводородных соединений, являющихся органическими веществами, содержащими в своём составе 2 химических элемента - углерод (С) и водород (Н). Углеводороды отличаются друг от друга количеством атомов углерода и водорода в молекуле, а также характером связей между ними.

Товарный сжиженный газ должен состоять из углеводородов, которые в нормальных условиях являются газами, а при сравнительно небольшом повышении давления и температуре окружающей среды или незначительном понижении температуры при атмосферном давлении переходят из газообразного состояния в жидкое.

Самый простой углеводород, содержащий всего один атом углерода, - метан (СН 4). Он является основным компонентом природного, а также некоторых искусственных горючих газов. Следующий углерод этого ряда - этан (С 2 Н 6) - имеет 2 атома углерода. Углеводород с тремя атомами углерода - пропан (С 3 Н 8), а с четырьмя - бутан (С 4 Н 10).

Все углеводороды этого типа имеют общую формулу С n H 2n+2 и водят в гомологический ряд предельных углеводородов - соединений, в которых углерод до предела насыщен атомами водорода. При нормальных условиях из предельных углеводородов газами являются лишь метан, этан, пропан и бутан.

Для получения сжиженных газов в настоящее время широко применяют природные газы, добываемые из недр Земли, которые представляют собой смесь различных углеводородов, преимущественно метанового ряда (предельных углеводородов). Природные газы чисто газовых месторождений в основном состоят из метана и являются тощими или сухими; тяжелых углеводородов (от пропана и выше) содержат менее 50 г/см 3 . Попутные газы, выделяемые из скважин нефтяных месторождений совместно с нефтью, помимо метана содержат значительное количество более тяжелых углеводородов (обычно более 150 г/м 3) и являются жирными. Газы, которые добывают из конденсатных месторождений, состоят из смеси сухого газа и паров конденсата. Пары конденсата представляют собой смесь паров тяжелых углеводородов (С3, С4, бензина, лигроина, керосина). На газоперерабатывающих заводах из попутных газов выделяют газовый бензин пропан-бутановую фракцию.

ШФЛУ - широкая фракция легких углеводородов, включает в основном смесь легких углеводородов этановой (С 2) и гексановой (С 6) фракций. В целом типичный состав ШФЛУ выглядит следующим образом: этан от 2 до 5%; сжиженный газ фракций С 4 -С 5 40-85%; гексановая фракция С 6 от 15 до 30%, на пентановую фракцию приходится остаток.

Учитывая широкое применение в газовом хозяйстве именно СУГ, следует более подробно остановиться на свойствах пропана и бутана.

Пропамн -- это органическое вещество класса алканов. Содержится в природном газе, образуется при крекинге нефтепродуктов. Химическая формула C 3 H 8 (рис. 1). Бесцветный газ без запаха, очень малорастворим в воде. Точка кипения?42,1С. Образует с воздухом взрывоопасные смеси при концентрации паров от 2,1 до 9,5%. Температура самовоспламенения пропана в воздухе при давлении 0,1 МПа (760 мм рт. ст.) составляет 466 °С.

Пропан используется в качестве топлива, основной компонент так называемых сжиженных углеводородных газов, в производстве мономеров для синтеза полипропилена. Является исходным сырьём для производства растворителей. В пищевой промышленности пропан зарегистрирован в качестве пищевой добавки E944, как пропеллент.

Бутамн (C 4 H 10) -- органическое соединение класса алканов. В химии название используется в основном для обозначения н-бутана. Химическая формула C4H10 (рис. 1). Такое же название имеетсмесь н-бутана и его изомера изобутана CH(CH 3) 3 . Бесцветный горючий газ, без запаха, легко сжижаемый (ниже 0 °C и нормальном давлении или при повышенном давлении и обычной температуре -- легколетучая жидкость). Содержится в газовом конденсате и нефтяном газе (до 12 %). Является продуктом каталитического и гидрокаталитического крекинга нефтяных фракций.

Производство, как сжиженного газа, так и ШФЛУ осуществляется за счет следующих трех основных источников:

  • ? предприятия нефтедобычи - получение СУГ и ШФЛУ происходит во время добычи сырой нефти при переработке попутного (связанного) газа и стабилизации сырой нефти;
  • ? предприятия газодобычи - получение СУГ и ШФЛУ происходит при первичной переработке скважинного газа или несвязанного газа и стабилизации конденсата;
  • ? нефтеперегонные установки - получение сжиженного газа и аналогичных ШФЛУ происходит при переработке сырой нефти на НПЗ. В данной категории ШФЛУ состоит из смеси бутан-гексановых фракций (С4-С6) с небольшим количеством этана и пропана.

Основное преимущество СУГ - возможность их существования при температуре окружающей среды и умеренных давлениях, как в жидком, так и в газообразном состоянии. В жидком состоянии они легко перерабатываются, хранятся и транспортируются, в газообразном имеют лучшую характеристику сгорания.

Состояние углеводородных систем определяется совокупностью влияний различных факторов, поэтому для полной характеристики необходимо знать все параметры. К основным параметрам, поддающимся непосредственному измерению и влияющим на режимы течения СУГ, относятся давление, температура, плотность, вязкость, концентрация компонентов, соотношение фаз.

Система находится в равновесном состоянии, если все параметры остаются неизменными. При таком состоянии в системе не происходит видимых качественных и количественных изменений. Изменение хотя бы одного параметра нарушает равновесное состояние системы, вызывая тот

или иной процесс.

Сжиженные газы при хранении и транспортировании постоянно изменяют свое агрегатное состояние, часть газа испаряется и переходит в газообразное состояние, а часть конденсируется, переходя в жидкое состояние. В тех случаях, когда количество испарившейся жидкости равно количеству сконденсировавшегося пара, система жидкость-газ достигает равновесия и пары над жидкостью становятся насыщенными, а их давление называется давлением насыщения или упругостью паров.

Давление и температура. Давление газа представляет собой суммарный результат соударения молекул о стенки сосуда, занятого этим газом.

Упругость (давление) насыщенных паров газа* p п -важнейший параметр, по которому определяют рабочее давление в резервуарах и баллонах. Температура газа определяет степень его нагретости, т.е. меру интенсивности движения его молекул. Давление и температура сжиженных газов строго соответствуют друг другу.

Упругость паров СУГ - насыщенных (кипящих) жидкостей - изменяется пропорционально температуре жидкой фазы (см.рис.I-1) и является величиной, строго определенной для данной температуры. Во все уравнения, связывающие физические параметры газового или жидкого вещества, входят абсолютные давление и температура, а в уравнения для технических расчетов (прочности стенок баллонов, резервуаров) - избыточное давление.

Упругость паров СУГ возрастает с повышением температуры и уменьшается с ее понижением.

Это свойство сжиженных газов является одним из определяющих при проектировании систем хранения и распределения. При отборе из резервуаров кипящей жидкости и транспортировании ее по трубопроводу часть жидкости испаряется из-за потерь давления, образуется двухфазный поток, упругость паров которого зависит от температуры потока, которая ниже температуры в резервуаре. В случае прекращения движения двухфазной жидкости по трубопроводу давление во всех точках выравнивается и становится равным упругости паров.

Сжиженные углеводородные газы транспортируются в железнодорожных и автомобильных цистернах, хранятся в резервуарах различного объема в состоянии насыщения: в нижней части сосудов размещается кипящая жидкость, а в верхней находятся сухие насыщенные пары (рис. 2). При снижении температуры в резервуарах часть паров сконденсируется, т.е. увеличивается масса жидкости и уменьшается масса пара, наступает новое равновесное состояние. При повышении температуры происходит обратный процесс, пока при новой температуре не наступит равновесие фаз. Таким образом, в резервуарах и трубопроводах происходят процессы испарения и конденсации, которые в двухфазных средах протекают при постоянном давлении и температуре, при этом температуры испарения и конденсации равны.


Рисунок 2. Фазные состояния сжиженных газов при хранении.

В реальных условиях в сжиженных газах в том или ином количестве присутствуют водяные пары. Причем их количество в газах может увеличиваться до насыщения, после чего влага из газов выпадает в виде воды и смешивается с жидкими углеводородами до предельной степени растворимости, а затем выделяется свободная вода, которая отстаивается в резервуарах. Количество воды в СУГ зависит от их углеводородного состава, термодинамического состояния и температуры. Доказано, что если температуру СУГ снизить на 15-30 0 С, то растворимость воды снизится в 1,5-2 раза и свободная вода скопится на дне резервуара или выпадет в виде конденсата в трубопроводах. Скопившуюся в резервуарах воду необходимо периодически удалять, иначе она может попасть к потребителю или привести к поломке оборудования.

Согласно методам испытаний СУГ определяют наличие лишь свободной воды, присутствие растворенной допускается.

За рубежом предъявляются более жесткие требования на наличие воды в СУГ и ее количество, посредством фильтрации доводится до 0,001% по массе. Это оправдано, так как растворенная вода в сжиженных газах является загрязнителем, ибо даже при положительных температурах она образует твердые соединения в виде гидратов.

Плотность . Масса единицы объема, т.е. отношение массы вещества в состоянии покоя к занимаемому им объему, называется плотностью (обозначение). Единица плотности в системе СИ - килограмм на кубический метр (кг/м 3). В общем случае

При движении сжиженных газов с давлением ниже упругости пара, т.е. при движении двухфазных потоков, для определения плотности в точке следует пользоваться пределом отношения:

При многочисленных расчетах, особенно в области термодинамики газов и газо-жидкостных смесей, часто приходится пользоваться понятием относительной плотности d - отношением плотности данного вещества к плотности данного вещества к плотности какого-либо вещества, принимаемой за удельную или стандартную с,

Для твердых и жидких веществ в качестве стандартной принимают плотность дистиллированной воды при давлении 760 мм рт.ст. и температуре 3,98єС (999, 973 кг/м 3 1 т/м 3), для газов - плотность сухого атмосферного воздуха при давлении 760 мм рт.ст. и температуре 0 єС (1,293 кг/м 3).

На рисунке I-2 приведены кривые зависимости плотности насыщенной жидкой и паровой фаз основных компонентов сжиженных газов от температуры. Черной точкой на каждой кривой указана критическая плотность. Это точка перегиба кривой плотности соответствует критической температуре, при которой плотность паровой фазы равна плотности жидкой. Ветвь кривой, расположенная выше критической точки, дает плотность насыщенной жидкой фазы, а ниже - насыщенных паров. Критические точки предельных углеводородов соединены сплошной, а непредельных - штриховой линией. Плотность можно также определить по диаграммам состояния. В общем виде зависимость плотности от температуры выражается рядом

Т = Т0 +(Т-Т 0)+(Т-Т 0) 2 +(Т-Т 0) 2 ±.

Влияние третьего и других членов этого ряда на величину плотности в связи с малыми значениями, и незначительно, поэтому с точностью, вполне достаточной для технических расчетов, им можно пренебречь. Тогда

Т = Т0 +(Т-Т 0)

Где =1.354 для пропана, 1,068 - для н-бутана, 1,145 - для изобутана.

Относительное изменение объема жидкости при изменении температуры на один градус характеризуется температурным коэффициентом объемного расширения вт, который у сжиженных газов (пропана и бутана) в несколько раз больше чем у иных жидкостей.

Пропан - 3,06 *10 -3 ;

Бутан - 2,12 *10 -3 ;

Керосин - 0,95 *10 -3 ;

Вода - 0,19 *10 -3 ;

При повышении давления жидкая фаза пропана и бутана сжимается. Степень сжатия ее оценивается коэффициентом объемной сжимаемости всж, размерность которого обратна размерности давления.

Удельный объем. Объем единицы массы вещества называется удельным объемом (обозначение). Единица удельного объема в системе СИ - кубический метр на килограмм (м 3 /кг)

Удельный объем и плотность являются обратными величинами, т.е.

В отличие от большинства жидкостей, которые при изменении температуры незначительно изменяют свой объем, жидкая фаза сжиженных газов довольно резко увеличивают свой объем при повышении температуры (в 15 раз больше, чем вода). При заполнении резервуаров и баллонов приходится учитывать возможное увеличение объема жидкости (рис. I-3).

Сжимаемость . Оценивается коэффициентом объемного сжатия, м 3 /н,

Величину, обратную р, называют модулем упругости и записывают так:

Сжимаемость сжиженных газов по сравнению с другими жидкостями весьма значительны. Так, если сжимаемость воды (48,310 -9 м 2 /н) принять за 1, то сжимаемость нефти 1,565, бензина 1,92, а пропана - 15,05 (соответственно 75,5610 -9 , 92,7910 -9 и 727,4410 -9 м 2 /н).

Если жидкая фаза занимает весь объем резервуара (баллона), то при повышении температуры расширяться ей некуда и она начинает сжиматься. Давление в резервуаре в этом случае повышается на величину, н/м 2 ,

где t - перепад температур жидкой фазы, .

Повышение давления в резервуаре (баллоне) при повышении температуры окружающей среды не должно быть более допустимого расчетного, иначе возможна авария. Поэтому при заполнении необходимо предусматривать паровую подушку определенной величины, т.е. заполнить резервуар не полностью. Значит, необходимо знать степень заполнения, определяемую соотношением

Если же необходимо выяснить, какой перепад температур допустим при имеющемся заполнении, его можно рассчитать по формуле:

Критические параметры. Газы могут быть превращены в жидкое состояние сжатием, если температура при этом не превышает определенной величины, характерной для каждого однородного газа. Температуру, при превышении которой данный газ не может быть сжижен никаким повышением давления, называют критической температурой газа (Т кр). Давление, необходимое для сжижения газа при критической температуре, называют критическим давлением (р кр). Объем газа, соответствующий критической температуре, называют критическим объемом (Vкр), а состояние газа, определяемое критическими температурой, давлением и объемом, - критическим состоянием газа. Плотность пара над жидкостью при критическом состоянии становится равной плотности жидкости.

Принцип соответственных состояний. Обычно для обобщения опытных данных по исследованию различных процессов и веществ используют критериальные системы, основанные на анализе уравнений движения, теплопроводности и др. Для использования таких уравнений подобия необходимы таблицы физических свойств рабочих сред. Неточность определения физических свойств или отсутствие их не дает возможности использовать уравнения подобия. Особенно это относится к мало изученным рабочим телам, в частности к сжиженным углеводородным газам, о физических свойствах которых в литературе имеются достаточно противоречивые данные, зачастую при случайных давлениях и температурах. В то же время имеются точные данные о критических параметрах и молекулярной массе вещества. Это позволяет, используя приведенные параметры и закон соответственных состояний, который подтвержден многочисленными исследованиями и теоретически обоснован современной кинетической теорией вещества, определять неизвестные параметры.

Для термодинамически подобных веществ, а сжиженные углеводородные газы термодинамически подобны, приведенные уравнения состояния, т.е. уравнения состояния, написанные в безразмерных (приведенных) параметрах (р пр = р/р кр =), имеют один и тот же вид. В разное время различными авторами было предложено до пятидесяти уравнений состояния для реальных веществ. Наиболее известным и употребительным из них является уравнение Ван-дер-Ваальса:

где а и b - константы, присущие данному химическому соединению;

Выразив параметры газа в безразмерных приведенных величинах, можно установить, что для газов существует общее уравнение состояния, не содержащее величин, характеризующий данный газ:

F(р пр, Т пр, V пр) = 0.

Законы газового состояния справедливы только для идеального газа, поэтому в технических расчетах, связанных с реальными газами, их применяют с реальными газами в пределах давления, 2-10 кгс/см 2 и при температурах, превышающих 0. Степень отклонения от законов идеальных газов характеризуется коэффициентом сжимаемости Z = (рис. 1-4 - 1-6). По нему можно определить удельный объем, если известны давление и температура, или давление если известны удельный объем и температура. Зная удельный объем, можно определить и плотность.

Удельный вес. Вес единицы объема вещества, т.е. отношение веса (силы тяжести) вещества к его объему называют удельным весом (обозначение. В общем случае где G вес (сила тяжести вещества, V объем, м 3 . Единица удельного веса в СИ = ньютон на кубический метр (н/м 3). Удельный вес зависит от ускорения силы тяжести в пункте его определения и, следовательно, но является параметром вещества.

Теплота сгорания . Количество тепла, которое выделяется при полном сгорании единицы массы или объема газа, называют теплотой сгорания (обозначение Q). Размерность теплоты сгорания в СИ - джоуль на килогамм (дж/кг) или джоуль на кубический метр (дж/м 3).

Температура воспламенения. Минимальную температуру, до которой должна быть нагрета газовоздушная смесь, чтобы начался процесс горения (реакция горения), называют температурой воспламенения. Она не является постоянной величиной и зависит от многих причин: содержания горючего газа в газовоздушной смеси, степени однородности смеси, размеров и формы сосуда, в котором она нагревается, быстроты и способа нагрева смеси, давления, под которым находится смесь, и др.

Пределы воспламеняемости газа. Газовоздушные смеси могут воспламеняться (взрываться) только в том случае, если содержание газа в воздухе (или кислороде) находится в определенных пределах, вне которых эти смеси самопроизвольно (без постоянного притока тепла извне) не горят. Существование этих пределов объясняется тем, что по мере увеличения содержания в газовоздушной смеси воздуха или чистого газа уменьшается скорость распространения пламени, увеличиваются тепловые потери и горение прекращается. С увеличением температуры газовоздушной смеси пределы воспламеняемости расширяются.

Теплоемкость. Количество теплоты, необходимое для изменения температуры тела или системы на один градус, называют теплоемкостью тела или системы (обозначение С). Размерность в СИ - джоуль на градус Кельвина (дж/К). 1 дж/К - 0,2388 кал/К =0,2388*10 -3 ккал/К.

В практических расчетах различают среднюю и истинную теплоемкость в зависимости от того, в каком интервале температур она определена. Средняя теплоемкость С m представляет собой величину, определенную в конечном интервале температур, т.е.

С m = q/(t 2 -t 1).

Истинная теплоемкость есть величина, определенная в данной точке (при данных р и Т или и Т), т.е.

Различают теплоемкость, определенную при постоянном давлении (С р) или при постоянном объеме (С v).

Теплопроводность. Способность вещества передавать тепловую энергию называют теплопроводностью. Она определяется количеством тепла Q , проходящего через стенку площадью F толщиной за промежуток времени при разности температур t 2 -t 1 , т.е.

где - коэффициент теплопроводности, характеризующий теплопроводящие свойства вещества, вт/(м*К) или ккал/(м*ч*С).

Вязкость - это способность газов или жидкостей оказывать сопротивление сдвигающим усилиям, обусловленная силами сцепления между молекулами вещества. Сила сопротивления скольжению или сдвигу F, и, возникающая при перемещении двух смежных слоев жидкости или газа, пропорциональна изменению (градиенту) скорости вдоль оси, нормальной к направлению потока жидкости изи газа, т.е.

где - коэффициент пропорциональности, нсек/м 2 (в СИ); его называют коэффициентом динамической вязкости 9внутреннего трения) или динамической вязкостью; dw - градиент скорости в двух соседних слоях, находящихся на расстоянии dy.

Во многих технических расчетах пользуются кинематической вязкостью, представляющей собой отношение динамической вязкости жидкости или газа к их плотности, т.е. =/. Единица кинематической вязкости в СИ - квадратный метр на секунду (м 2 /сек).

Вязкость жидкой фазы с возрастанием температуры уменьшается, а вязкость газа и пара увеличивается.

Октановое число газового топлива выше, чем у бензина, поэтому детонационная стойкость сжиженного газа больше, чем бензина даже самого высшего качества. Среднее октановое число сжиженного газа - 105 - недостижимо для любых марок бензина. Это позволяет добиться большей экономичности использования топлива в газовом котле.

Диффузия . Газ легко смешивается с воздухом и равномерней сгорает. Газовая смесь сгорает полностью, поэтому не образуется сажи в топках и на нагревательных элементах.

Давление в емкости. В закрытом сосуде СУГ образует двухфазную систему, состоящую из жидкой и паровой фаз. Давление в емкости зависит от давления насыщенных паров, которое в свою очередь зависит от температуры жидкой фазы и процентного соотношения пропана и бутана в ней. Давление насыщенных паров характеризует испаряемость СУГ. Испаряемость пропана выше чем бутана, поэтому и давление при отрицательных температурах у него значительно выше. Расчетами и экспериментами установлено, что при низких температурах окружающего воздуха эффективнее использовать СУГ с повышенным содержанием пропана, так как при этом обеспечивается надежное испарение газа, а следовательно и достаточность газа для газопотребления. Кроме того, достаточное избыточное давление в емкости обеспечит надежную подачу газа к котлу в сильные морозы. При высоких положительных температурах окружающего воздуха эффективнее использовать СУГ с меньшим содержанием пропана, так как при этом в емкости будет создаваться значительное избыточное давление, что может вызвать срабатывание клапана сброса. Кроме пропана и бутана, в состав СУГ входит незначительное количество метана, этана и других углеводородов, которые могут изменять свойства СУГ. В процессе эксплуатации емкости может образовываться неиспаряемый конденсат, который отрицательно сказывается на работе газовой аппаратуры.

Изменение объема жидкой фазы при нагревании . Правилами Европейской Экономической Комиссии ООН предусмотрена установка автоматического устройства, ограничивающего наполнение емкости до 85% ее объема. Данное требование объясняется большим коэффициентом объемного расширения жидкой фазы, который для пропана составляет 0,003, а для бутана 0,002 на 1°С повышения температуры газа. Для сравнения: коэффициент объемного расширения пропана в 15 раз, а бутана в 10 раз, больше, чем у воды.

Изменение объема газа при испарении. При испарении сжиженного газа образуется около 250л. газообразного. Таким образом, даже незначительная утечка СУГ может быть опасной, так как объем газа при испарении увеличивается в 250 раз. Плотность газовой фазы в 1,5--2,0 раза больше плотности воздуха. Этим объясняется тот факт, что при утечках газ с трудом рассеивается в воздухе, особенно в закрытом помещении. Пары его могут накапливаться в естественных и искусственных углублениях, образуя взрывоопасную смесь. СНиП 42-01-2002 предусматривает обязательную установку газоанализатора, выдающего сигнал отсечному клапану на закрытие в случае скопления газа в концентрации 10% от взрывоопасной.

Одорация. Сам газ практически не пахнет, поэтому для безопасности и своевременной диагностики утечек газа органами обоняния человека в него добавляют незначительные количества сильнопахнущих веществ. При массовой доле меркаптановой серы менее 0,001% СУГ должны быть одорированы. Для одорации применяется этилмеркаптан (С2Н5SH), представляющий собой неприятно пахнущую жидкость плотностью 0,839 кг/л и с точкой кипения 35°С. Порог чувствительности запаха 0,00019 мг/л, предельно допустимая концентрация в воздухе рабочей зоны 1 мг/м 3 . В случае, когда токсичность в норме или несколько ниже нормы, запах одоранта практически не ощущается и его накопления в помещении не наблюдается.

Вывод

Таким образом, можно подвести итог и выделить основные свойства пропан-бутановых смесей, влияющих на условия их хранения, транспортирования и измерения.

1. Сжиженные углеводородные газы относятся к низкокипящим жидкостям, способным находиться в жидком состоянии под давлением насыщенных паров.

Температура кипения:

Пропан -42 0 С;

Бутан - 0,5 0 С.

  • 2. При нормальных условиях объем газообразного пропана больше в 270 раз, чем объем пропана сжиженного.
  • 3. Сжиженные углеводородные газы характеризуются высоким коэффициентом теплового расширения.
  • 4. СУГ характеризуются низкой плотностью и вязкостью по сравнению со светлыми нефтепродуктами.
  • 5. Нестабильность агрегатного состояния СУГ при течении по трубопроводам в зависимости от температуры, гидравлических сопротивлений, неравномерности условных проходов.
  • 6. Транспортирование, хранение и измерение СУГ возможны только посредством закрытых (герметизированных) систем, рассчитанных, как правило, на рабочее давление 1,6 МПа.
  • 7. Перекачивающие, измерительные операции требуют применения специального оборудования, материалов и технологий.

Во всем мире, углеводородные системы и оборудование, а также устройство технологических систем подчинено единым требованиям и правилам.

Сжиженный газ представляет собой ньютоновскую жидкость, поэтому процессы перекачивания и измерения описываются общими законами гидродинамики. Но функция углеводородных систем сводится не только к простому перемещению жидкости и ее измерению, но и обеспечению уменьшения влияния «отрицательных» физико-химических свойств СУГ.

Принципиально, системы, перекачивающие СУГ, мало отличаются от систем для воды и нефтепродуктов, и, тем не менее, необходимо дополнительное оборудование, гарантирующее качественные и количественные характеристики измерения.

Исходя из этого технологическая углеводородная система, как минимум должна иметь в своем составе резервуар, насос, газоотделитель, измеритель, дифференциальный клапан, отсечной или регулирующий клапан, устройства безопасности от превышения давления или скорости потока.



Поделиться