Что такое термическая струйная печать. Краткие характеристики струйной пьезоэлектрической и термоструйной технологии печати


Основой любого процесса струйной печати является процесс создания капель красителя и переноса этих капель на бумагу или любой другой носитель, пригодный для струйной печати. Управление потоком капель позволяет добиться различной плотности и тональности изображения.
На сегодняшний день существует два различных подхода к созданию управляемого потока капель. Первый метод, основанный на создании непрерывного потока капель, так и называется - метод непрерывной струйной печати . Второй метод создания потока капель предусматривает возможность непосредственного управления процессом создания капли в нужный момент времени. Системы, использующие этот метод управления потоком капель, получили название системы импульсной струйной печати .


Непрерывная струйная печать



Краситель, находящийся под давлением, поступает в сопло и разделяется на капли путем создания быстрых колебаний давления, получаемые с помощью какого-либо электромеханического средства. Колебания давления вызывают соответствующую модуляцию диаметра и скорости выходящий из сопла струи красителя, которая разделяется на отдельные капли под воздействием сил поверхностного натяжения.
Этот метод позволяет достигать очень большой скорости создания капель: до 150 тыс. штук в секунду для коммерческих систем и до миллиона штук для специальных систем. Для управления потокам капель используется электростатическая система отклонения. Вылетающие из сопла капли проходят через заряженный электрод, напряжение на котором меняется в соответствии с управляющим сигналом. Поток капель попадает за тем в пространство между двумя отклоняющимися электродами, имеющими постоянную разность потенциалов. В зависимости от полученного ранее заряда отдельные капли изменяют свою траекторию по-разному. Этот эффект позволяет управлять положением печатаемой точки, так и ее наличием или отсутствием на бумаге. В последнем случае капля отклоняется настолько, что попадает в специальный улавливатель.
Подобные системы позволяют печатать точки диаметром от 20 микрон до одного миллиметра. Типичной является точка размером 100 микрон, что соответствует объему капли в 500 пиколитров. Основное применение такие системы нашли на рынке промышленной печати, в системах маркировки товаров, массовой печати этикеток, медицине и пр.

Импульсная струйная печать



Этот принцип создания потока капель предусматривает возможность непосредственного управления процессом создания капли в определенное время. В отличие от систем непрерывного действия, здесь отсутствует постоянное давление в объеме чернил, а при необходимости создания капли генерируется импульсы давления. Управляемые системы принципиально менее сложны в изготовлении, однако для их работы требуется устройство создания импульсов давления примерно втрое более мощно, чем для систем непрерывного действия. Производительность управляемых систем составляет до 20 тыс. капель в секунду для одного сопла, а диаметр капель - от 20 до 100 микрон, что соответствует объему от 5 до 500 пиколитров. В зависимости от способа создания импульса давления в объеме с чернилами различают пьезоэлектрическую и термическую струйную печать.
Для реализации пьезоэлектрического метода в каждое сопло установлен пьезоэлемент, связанный с чернильным каналом диафрагмой. Под воздействием электрического поля происходит деформация пьезоэлемента, благодаря которому сжимается и разжимается диафрагма, выдавливая каплю чернил через сопло. Подобный метод генерации капли используется в струйных принтерах Epson.
Положительным свойством таких технологий струйной печати является то, что пьезоэффект хорошо управляем электрическим полем, что дает возможность достаточно точно варьировать объемов получаемых капель, а значит и в достаточной степени влияет на размер получаемых пятен на бумаге. Тем не менее, практическое использование модуляции объема капель затруднено тем, что изменяется не только объём, но и скорость движения капли, что при движущейся головке вызывает ошибки позиционирования точки.
С другой стороны, производство печатающих головок для пьезоэлектрической технологии оказывается слишком дорогим в пересчете на одну головку, поэтому в принтерах Epson печатающая головка является частью принтера и по стоимости может составлять до 70% от общей стоимости всего принтера. Выход из строя такой головки требует серьезного сервисного обслуживания.




Для реализации термоструйного метода каждое из сопел оборудовано одним или несколькими нагревательными элементами, которые при пропускании через них тока за несколько микросекунд нагреваются до температуры около 600С. Возникающие при резком нагревании газовый пузырь выталкивает через выходное отверстие сопла порцию чернил, формирующих каплю. При прекращении действия тока нагревательный элемент остывает, пузырь разрушается, а на его место поступает очередная порция чернил из входного канала.
Процесс создания капель в термических печатающих головках после подачи импульса на резистор почти неуправляем и имеет пороговую зависимость объема испаряемого вещества от приложенной мощности, поэтому здесь динамическое управление объемом капели в отличие от пьзоэлектрической технологии весьма затруднительно.
Тем не менее, термические печатающие головки обладают самым высоким соотношением производительности и стоимости производства единицы продукции, поэтому термоструйная печатающая головка обычно является частью картриджа и при замене картриджа на новый автоматически происходи и смена печатающей головки. Однако, применение термических печатающих головок требует разработки специальных чернил, которые могут достаточно легко испаряться без возгорания и не подвержены разрушению при термическом ударе.

Печатающая головка Lexmark



Печатающая головка черного картриджа обычного разрешения 600 dpi для ранних моделей (Lexmark СJP 1020, 1000, 1100, 2030, 3000, 2050) имели 56 дюз, расположенных в два зигзагообразных ряда. Печатающая головка для цветных картриджей этих моделей имели 48 дюз разделенных на три группы по 16 дюз для каждого цвета (Cyan, Magenta, Yellow). Принтер Lexmark CJ 2070 использовал иную печатающую головку, которая содержала 104 монохромных дюзы и 96 цветных.
Для производства печатающих головок струйных принтеров Lexmark, начиная с 7000 серии используется печатающие головки, изготавливаемые с применением лазерной технологии прошивки дюз (Excimer, Excimer 2). Первые модели печатающих головок содержали 208 монохромных дюз и 192 цветных.
Для модели Z51 и старшей модели семейства Zx2 и Zx3 была разработана своя печатающая головка с 400 дюзами. В модели Z51 использовалась лишь половина дюз, а остальные работали в режиме горячего резерва, когда как в следующих моделях были одновременно задействованы все дюзы.
Младшие и средние модели семейства Zx2 используют картриджи, являющиеся модификацией стандартных картриджей высокого разрешения, а младшие и средние модели семейства Zx3, новые модели картриджей Bonsai.
Не оставляйте дюзы печатающей головки открытыми в течение продолжительного времени. Если дюзы оставить открытыми - чернила в них засыхают и засоряют каналы, что приводит к дефектам при печати. Картридж следует оставлять в принтере или в специальном боксе гараже »). Нежелательно также дотрагиваться до дюз и контактов руками, так как сальные выделения от кожи могут испортить поверхность.

Характеристики печатающей головки



Период формирования мениска:
Это период времени, необходимый для повторного заполнения камеры чернилами. Он определяет рабочую частоту печатающей головки (от 0 до 1200 Hz).





Скорость капли:
Низкая скорость приводит непрерывному расположению точки.
Высокая скорость приводит к появлению брызг и разводов.




Масса капли определяется:
Размером нагревающего элемента.
Диаметром сопла.
Обратным давлением.





Замечено, что в обычных струйных принтерах капля чернил, попадая на бумагу принимает форму маленького треугольника, поэтому линии при ближайшем рассмотрении выглядят зазубренными. Это связано с тем, что в полете капля деформируется, а при соприкосновении с бумагой - расплывается. Особенно это заметно в низком режиме при экономной печати. Lexmark предлагает принтеры с новой, прогрессивной технологией печати, при которой форма сопел и скорость движения головки сбалансированы так, что капля чернил дают пятна, как равномерные штрихи. Это позволяет сделать линии гладкими, а качество печати почти неотличимы от лазерной печати. Кроме того, такая форма пятна позволяет избежать белесых полос на отпечатке.


Что такое чернила?



Каждый производитель струйных принтеров разрабатывает и совершенствует свой состав чернил, который наиболее адаптирован к выпускаемой технике. У Lexmark основными компонентами чернил для струйных принтеров является:
-Деионизированная вода (85-95% общего объема)
-Пигмент или краситель
-Растворитель (для пигментов)
-Увлажнитель (Humectant)
-Поверхностно-активное вещество (Surfactant)
-Биоцид
-Буфер (стабилизация pH)

Пигмент или краситель . Чернила на основе пигментов (только черные) изготовлены из твердых частиц, находящихся в жидкости. При попадании таких чернил на бумагу жидкость испаряется и частично впитывается, а порошок прилипает к поверхности, не растекаясь по ней. Поэтому чернила на основе пигментов водостойкие, обладают слабым проникновением в волокна бумаги, но они чувствительны к свету.
Чернила на основе красителей - это, как правило, цветные чернила. Краситель растворим в воде и впитывается вместе с ней в толщу бумаги при высыхании. Такие чернила высыхают быстрее пигментных, светоустойчивы, но зато дают в среднем пятен неправильной формы больше, чем последние.
Увлажнитель. Концентрация увлажнителя влияет на вязкость чернил. Этот параметр должен быть оптимален для данного состава чернил и печатающей головки, совместно с которой они будут использоваться. Действительно, с одной стороны, чем больше вязкость, тем хуже чернила растекаются по поверхности бумаги, давая меньший размер точки и тем более четким будет изображение. С другой стороны, слишком большая вязкость приводит к затянутому времени формирования мениска, что ухудшает скорость печати. Обычно, вязкость чернил является ключевым параметром при определении геометрических каналов в печатающей головке.
Поверхностное натяжение влияет на смачиваемость чернилами всех поверхностей, с которыми они соприкасаются, начиная от резервуаров в картридже и кончая поверхностью бумаги. Слишком низкое статистическое поверхностное натяжение приводит к более быстрому высыханию чернил на поверхности бумаги, но при этом средний объем капли при выдавливании чернил из дюз оказывается завышенным. Слишком высокое поверхностное натяжение увеличивает время высыхания, а следовательно ухудшает стойкость изображения при печати.
Уровень кислотности (РН) низкая кислотность приводит к низкой растворимости компонент чернил в воде и как следствие – плохой водостойкости изображения Стандартным считается уровень кислотности в диапазоне от 7.0 до 9.0.
В нутрии картриджа имеются резервуары с чернилами, дюзы печатающей головки и электрические контакты.
Цветной картридж содержит 3 отдельных ячейки для чернил трех разных цветов. В монохромном картридже содержится только одна ячейка с черными чернилами.

Чернила и цвета

Правильная передача цвета изображения на бумагу является высоко технологичным процессом, требующим учета немалого количества факторов, включая субъективную оценку. В первую очередь цветовая передача изображения зависит от химического состава чернил и бумаги, архитектуры принтера.
Обязательным требованием к чернилам является очень тонкий спектральный состав, иначе получаемые при смешении цвета будут «грязными». После высыхания чернила должны оставаться прозрачными, иначе не будет естественного смешения цветов.
Немаловажным фактором является также устойчивость к выцветанию, экологическая чистота и нетоксичность.
Считается, что оптимальный состав чернил ужу известен. Практически у всех производителей они представляют взвесь очень мелких частиц минерального пигмента. С цветными чернилами дело обстоит хуже, поскольку очень трудно подобрать минеральные красители нужного спектрального состава.
В настоящее время процедуры цветопередачи базируются на так называемых цветовых таблицах, которые используются для преобразования цветового пространства, в котором было создано изображение-оригинал, в некоторое «деформированное» цветовое пространство, учитывающее особенности передачи цветов на бумаге чернилами. Обычно, отдельные цветовые таблицы строятся для каждого типа бумаги и оптимизированы для каждого отдельного типа чернил и печатающих головок.

Драйверы Lexmark



Драйверы принтеров Lexmark после установки готовы к печати с автоматическим режимом распознавания объектов, позволяющим получить хорошее качество изображения без предварительной настройки. Автоматический режим также позволяет добиться оптимального сочетания качества и скорости печати документа. Настройки драйвера на специальную бумагу или выбор цветовых таблиц для более контрастного или естественного тона изображения выполняется очень просто в разделе настроек драйвера «Качество документа» (Document Quality)
Драйверы Lexmark серии Color Fine 2 позволяют автоматически определять тип картриджа, тем самым заметно упрощая процедуру настройки всех систем на другой тип картриджа или смену старого на новый. Характерной особенностью драйверов этой серии является их возможность работать с изображением в стандартах sRGB и ICM.
Стандарт sRGB предлагает, что для описания цветного изображения используется аппаратно-независимое цветное пространство, встроенное в OC Microsoft или в средства работы с Internet. Используя стандартизованное RGB-описание цветового пространства UTI-R BT.709, этот стандарт позволяет минимизировать передачу вместе с изображением дополнительной системы информации, связанной с цветовым профилем оборудования, на котором это изображение создавалось. В системной части файла с изображением лишь дается ссылка на стандарт, в котором оно было создано, а положение-получатель активно используется описанием цветового пространства, представленным операционной системой.
Стандарт ICM позволяет более точно определить разнообразие устройств генераций и отображение цветных изображений посредством использования цветных профилей оборудования для каждого типа устройств, генерирующих изображение и отображающих устройств. Однако, такой подход подразумевает, что системная информация, связанная с профилем оборудования, на котором создано изображение предается в месте с этим изображением.

Фотопечать



Серьезной проблемой в струйной печати является правильная передача светлых тонов изображения. Дело в том, что обычные цветовые решения для струйной печати дают точки изображения насыщенного цвета, поэтому для получения бледных оттенков нужно наносить капли чернил достаточно редко. Это приводит к тому, что при передачи очень светлых тонов пятна располагаются так далеко друг от друга, что становится заметна зернистость изображения, а также возникает проблема с передачей в светлых тонах.
Одним из радикальных способов решения этой проблемы является использование дополнительных чернил светлых тонов. В этом случае темные тона получаются за счет заливки осветленными чернилами. Картридж с такими чернилами обычно становится вместо второго картриджа (черного) и содержит чернила осветленного Cyan, осветленного Magenta и черного. Светло желтый тон не используется, поскольку этот цвет воспринимается человеческим глазом без особой разницы как и желтый.

Струйная печать представляет собой бесконтактный способ печати, при котором создается изображение или текст, благодаря точному нанесению мельчайших капель чернил на . Технология струйной печати существует уже более 50 лет и за все время существования принтеры прошли путь от дорогого до доступного домашнего устройства.

Технологии струйной печати в домашних принтерах

В основе для струйной печати лежит несколько технологий . Наиболее распространенными являются пьезоэлектрическая, термическая и пузырьковая .

Все методы струйной печати имеют общую основу, изложенную еще в 1833 году. Именно тогда пришел французский исследователь к выводу, что жидкость просачиваясь через микроскопическое отверстие, превращается в идеально ровную каплю. В 1951 году технология была использована для коммерческих целей в компании Siemens. Первые результаты, которые были достигнуты для струйной печати, имеют мало общего с современными аналогами.

Исследователи видят такую печать в качестве технологии будущего и постоянно пытаются сделать ее более совершенной. Так, в начале 1960-х годов появились непрерывная струйная печать. С помощью давления обеспечивают непрерывный поток капель, которые могут контролироваться с помощью электрического заряда. Но этот метод имеет свои недостатки: частые сбои, высокая цена, низкое качество печати.

Непрерывная технология струйной печати

При печати по этой технологии краска, находящаяся под давлением, поступает в сопло и разделяется на капли путем быстрого изменения давления. Колебания давления вызывают изменение диаметра и скорости выходящий из сопла струи краски, которая разделяется на отдельные капли под воздействием сил поверхностного натяжения.

Вылетающие из сопла капли краски проходят через заряженный электрод, напряжение на котором меняется управляющим сигналом. Поток капель попадает затем в пространство между двумя отклоняющимися электродами. В зависимости от полученного ранее заряда отдельные капли изменяют свою траекторию по-разному. Этот эффект позволяет управлять как положением печатаемой точки, так и ее наличием или отсутствием на бумаге. В последнем случае капля отклоняется настолько, что попадает в специальный уловитель.

Подобные системы позволяют печатать точки диаметром от 20 микрон до одного миллиметра. Типичной является точка размером 100 микрон, что соответствует объему капли в 500 пиколитров.

Импульсная технология струйной печати

В отличие от непрерывной технологии печати, здесь отсутствует постоянное давление в объеме чернил, а при необходимости создания капли генерируется импульсы давления. Управляющие элементы менее сложны в изготовлении, но требуется устройство создания давления втрое более мощное. Диаметр капель при такой печати равен от 20 до 100 микрон, что соответствует объему от 5 до 500 пиколитров. В зависимости от способа создания импульса давления в объеме с чернилами различают пьезоэлектрическую и термическую струйную печать.

Пьезоэлектрическая печать

Для реализации пьезоэлектрического метода в каждое сопло установлен пьезоэлемент, связанный с чернильным каналом диафрагмой. Под воздействием электрического поля происходит деформация пьезоэлемента, благодаря которому сжимается и разжимается диафрагма, выдавливая каплю чернил через сопло. Подобный метод генерации капли используется в струйных принтерах Epson.

Достоинство этой технологии: пьезоэффект хорошо управляем электрическим полем, что дает возможность достаточно точно варьировать объемов получаемых капель.

Недостатки : при модуляции объема капель изменяется не только объём, но и скорость движения капли, что при движении головки вызывает ошибки позиционирования точки. Производство печатающих головок для пьезоэлектрической технологии оказывается слишком дорогим в пересчете на одну головку, поэтому в принтерах Epson печатающая головка является частью принтера и по стоимости может составлять до 70 — 80 % от общей стоимости всего принтера. Выход из строя такой головки требует серьезного сервисного обслуживания.

Термоструйная печать

Для реализации термоструйного метода каждое из сопел оборудовано одним или несколькими нагревательными элементами, которые за несколько микросекунд нагреваются до температуры около 600 градусов Цельсия. Возникающий при резком нагревании газовый пузырь выталкивает через выходное отверстие порцию чернил.

При прекращении действия тока нагревательный элемент остывает, пузырь разрушается, а на его место поступает очередная порция из входного канала.
Процесс создания капель в термических печатающих головках после подачи импульса на нагреватель почти неуправляем, поэтому здесь динамическое управление объемом капли весьма затруднительно.
Достоинство этой технологии: термические печатающие головки обладают самым высоким соотношением производительности к стоимости производства единицы продукции, поэтому термоструйная печатающая головка обычно является частью картриджа и при замене картриджа на новый автоматически происходит смена печатающей головки.

Недостаток: применение термических печатающих головок требует разработки специальных чернил, которые могут достаточно легко испаряться без возгорания и не подвержены разрушению при термическом ударе.

Достоинства струйной технологии печати

Струйная технология печати имеет свои преимущества, среди которых:

  • отсутствие подготовительного этапа до печати, позволяющий печатать малые тиражи в короткие сроки;
  • низкая стоимость с высоким качеством изображения;
  • возможность печати на различных поверхностях: бумага, ткань, пластик и т. д.;
  • можно проводить один шаг печати и программирования процесса.

Недостатки струйной технологии печати

К недостаткам струйной печати для домашних приложений относят небольшое расхождение с заданным цветом и низкая точность цветопередачи. Именно поэтому, если вы хотите напечатать цветное изображение, лучше сначала вывести на печать пробную версию. А потом, убедившись, что она отвечает всем требованиям, приступить к печати дополнительных копий. Струйная печать является одной из самых доступных. Эта технология не дорогостоящая, поэтому воспользоваться ею сможет любой желающий.

По принципу работы струйные принтеры напоминают матричные, только вместо иголок ударяющих по красящей ленте, краска в струйных принтерах наносится непосредственно на бумагу каплями краски через очень малые отверстия называемые дюзами.

В настоящее время на рынке струйных печатающих устройств наибольшее распространение получили две технологии печати: термоструйная , в которой активизация краски и ее выброс происходят под действием нагрева, и пьезоэлектрическая , в которой выброс краски происходит под давлением, создаваемым колебанием мембраны.

Это принципиально разные технологии, имеющие свои плюсы и минусы.

Пьезоэлектрическая печать использует способность пьезокристаллов деформироваться под воздействием электрического тока. Это позволяет контролировать размер капли, толщину струи и даже скорость выброса капли на бумагу. Всё это позволяет получать изображения высокого разрешения. Также плюсом этой технологии является естественность цветопередачи, а это одно из условий качественной печати фотографий. Технология пьезопечати изобретена и запатентована фирмой Epson . Brother применяет обе технологии.

На сегодняшний день пьезоструйная печать является самой надежной по отношению к другим. При правильном уходе срок службы головки сравним со сроком службы самого печатающего устройства. Как правило пьезоэлектрическая печатающая головка является стационарной, то есть не заменяемой вместе с картриджем. Но вместе с этим есть ряд проблем, таких как очень дорогой ремонт и замена головки. Кроме того, пьезоструйные головки склонны к высоким требованиям к чернилам, возможности проникновения воздуха при замене картриджей или в случае, когда чернила заканчиваются в СНПЧ. При редкой печати сопла головки имеют склонность к закупориванию или косострую. Но если вы часто печатаете, лучше пьезоструйной головки не найти.

В термоструйной технологии подача чернил на бумагу происходит посредством нагревания, применяя температуру до 600 С. При этом качество термоструйной печати на порядок хуже пьезоструйной печати. А всё из-за взрывного характера капли и появления сателлитов, или капель-спутников. Отсюла искажения высококачественных изображений при печати. Кроме того, в следствии температуры образуется нагар и накипь, забивающие дюзы и приводящие к ухудшению цветопередачи, принтер начинает полосить. Кроме того перепады температуры способствуют разрушению печатающей головки, которая сгорает при перегреве. Это основной минус таких ПГ. Но, как правило, термоструйные пг менне дорогие, чем пьезоструйные пг и совмещены с картриджем. В следствии чего их заменяют более часто и с меньшими финансовыми затратами.

Внимание! Если термоструйные картриджи по ошибке заправить чернилами для пьезоэлектрической печати, то последствия могут быть плачевными.

В этой статье поговорим про такой популярный вид печати, как пьезоэлектрическая струйная печать.

Струйная печать печать: что это такое

Пьезоэлектрическая струйная печать это вид печати, при котором изображение наносит на запечатываемый материал с помощью печатающей головки. Такая головка состоит из сотен мелких сопел, из которых под действием мембраны выталкивается жидкий краситель - краска.

Технология печати пьезоэлектрическая струйная позволяет получать очень качественное изображение, из высоким разрешением. Размер капель с красителем в диаметре составляет десятки микрометров, что меньше, чем толщина человеческого волоса.

Процесс пьезоэлектрической струйной печати

Сам процесс печати выглядит так: запечатываемый материал подается из заданной скоростью, а перпендикулярно его движению, перемещается печатающая головка. Она движется от одного края материала к другому, после этого материал продвигается на определенный шаг, и печатающая головка делает новый проход.

Таким образом, запечатывается весь материал.

Этот способ печати разрабатывался из середины 70-х годов, но впервые в серийном производстве применила компания Epson, и в ее принтерах можно было увидеть пьезоэлектрическую струйную печать.

Принцип печатания

Название печати происходит из-за пьезоэлементов, которые применяются в этой технологии. Дело в том, что краситель выталкивается из микроскопических сопел под действием давления, которое создают пьезокристаллы. Эти элементы способны под действием электрического тока изменять свои размеры.

Таким образом, при изменении положительного тока на отрицательное, происходит изменение размера кристалла, и он подобно поршню выталкивает микроскопическую частичку краски из сопла, которая попадает на материал.

Объем капли краски зависит от размеров сопла, эжекционной камеры и силы, с которой кристалл выталкивает краситель наружу.

Таким образом, изменяя электрическое поле, можно управлять изображением, которое нужно получить.

Пьезоэлектрическая печать преимущества и недостатки

Как и любые технологии, пьезоэлектрическая печать пьезоэлектрическая струйная цветная имеет недостатки и преимущества. Кратко их рассмотрим.

Преимущества

Недостатки

1. Иногда, для получения высококачественного изображения, печатающая головка должна несколько раз пройти по той самой странице. Это негативно влияет на скорость и себестоимость печати.

2. Через засохшую краску или попадания воздуха сопла могут закупориваться, что значительно ухудшает качество печати. Для восстановления свойств печатающей головки, нужно ее очищать.

Часто причиной засыхания сопел принтера является использование некачественных поддельных красителей.

3. Принтеры, которые работают на этой технологии, имеют повышенные требования к качеству материала. Ведь краска имеет жидкую консистенцию, и может расплываться на рыхлых бумагах, что ухудшает качество полученного отпечатка. Он будет менее четким, с размытыми границами.

Правда, в последние годы компании Epson разработала новый вид чернил (Epson DURAbrite), который не требует высоких требований к качеству бумаги. Кроме этого, такие краски имеют повышенную устойчивость к воде и солнечному свету.

4. Иногда возможен дефект, когда капли краски не попадают точно на нужное место запечатываемого материала и при детальном рассмотрении это можно заметить.

5. Как правило, печатающая головка устанавливается сразу на принтер, и не является переменной. Кроме этого, эта часть устройства принтера достаточно дорога, в сравнении с головками принтеров, которые используют другие технологии печати.

Иногда, замена печатающей головки по стоимости может равняться едва не цене самого принтера.

Но на бумаге для струйной печати, качество изображения будет очень хорошим.

Как видим, пьезоэлектрическая широко применяется, благодаря своей надежности и качеству печати. И все это при невысоких затратах.

Верим, что наш ответ на вопрос “Пьезоэлектрическая струйная печать это” вас удовлетворил и вы получили информацию про принцип работы, преимущества и недостатки этого вида печати.

В заключение отметим, что кроме описанной нами технологии, в принтерах (пьезоэлектрический принтер) часто используется термоструйная, пузырьковая или . Но это уже тема другой статьи.

Пьезоэлектрическая струйная печать

Пьезоэлектрические струйные головки для принтеров были разработаны в семидесятых годах. В большинстве таких принтеров избыточное давление в камере с чернилами создается с помощью диска из пьезоэлектрика, который изменяет свою форму (выгибается) при подведении к нему электрического напряжения. Выгнувшись, диск, который служит одной из стенок камеры с чернилами, уменьшает ее объем. Под действием избыточного давления жидкие чернила вылетают из сопла в виде капли.

Пионер пьезоэлектрической технологии - фирма Epson - не смогла успешно соревноваться в объеме продаж со своими конкурентами Canon и Hewlett-Packard из-за сравнительно высокой технологической стоимости пьезоэлектрических печатающих головок - они дороже и сложнее, чем пузырьковые печатающие головки.

Пузырьковая струйная печать (bubble-jet)

Фирма Hewlett-Packard создала первый струйный принтер с использованием пузырьковой технологии ThinkJet в 1985 году. Сейчас Canon и Hewlett-Packard владеют большинством патентов на эту технологию, и путем обмена лицензиями им удалось захватить практически весь мировой рынок.

Часть продукции они продают под своими торговыми марками, часть - на основе лицензионных соглашений под торговыми марками партнеров. Огромные доходы они также получают от торговли "сердцами" струйных принтеров - печатающими головками и связанными с ними другими электромеханическими "органами".

Успех этих принтеров был обусловлен тем, что они обеспечивали качество печати почти такое, как у лазерных принтеров, при цене хорошего матричного принтера. Качество печати таких устройств зависит от размера точки от капельки чернил, а он очень маленький. Конструкция печатающей головки позволяла легко достичь разрешения в 300 точек на дюйм. Полутона на ThinkJet получались не хуже, чем на лазерных LaserJet.

Как уже только что говорилось, и Canon, и Hewlett-Packard производят изделия, использующие один и тот же процесс создания изображения, который можно определить как термическую струйную технологию.

Hewlett-Packard называет его просто струйной технологией (inkjet), а Canon - пузырьковой технологией (bubble-jet). В печатающих системах, использующих струйную пузырьковую технологию, текст и графика воспроизводятся при попадании на бумагу капелек чернил, вылетевших из очень тонких сопел. Происходит это так.

В стенку сопла встроен нагревательный элемент. При подаче электрического импульса его температура резко возрастает. Поэтому практически все чернила, находящиеся в контакте с нагревательным элементом, мгновенно испаряются. Расширение пара вызывает ударную волну. Под действием избыточного давления капелька чернил буквально "выстреливается" из сопла, как из ствола пистолета. После "выстрела" чернильный пар конденсируется, пузырек схлопывается и в сопле образуется зона пониженного давления, под действием которого всасывается новая порция чернил.

Важной особенностью такого печатающего устройства является простота конструкции сопел. Причем, кроме низкой стоимости изготовления, такие устройства имеют ряд других преимуществ: - высокая надежность каждого сопла упрощает конструкцию и, следовательно, уменьшает размер печатающего узла, так как не надо обеспечивать возможность замены сопел; - сопла можно располагать гораздо ближе друг к другу, а это увеличивает разрешение печати; - бесшумная работа печатающей головки.

Несмотря на доминирование на рынке струйных технологий и взаимный обмен лицензиями, Canon и Hewlett-Packard продолжают жестокую конкурентную борьбу за потребителя. В результате выигрывают миллионы пользователей, так как основным средством борьбы является постоянное повышение качества печати струйных головок.

Различие печатающих головок в том, что нагревательный элемент в головке Canon расположен сбоку от сопла, а у Hewlett-Packard - сзади. Поэтому в головке Canon чернила текут по прямой, а в головке Hewlett-Packard внутри есть специальный резервуар с чернилами.

С точки зрения пользователя, конструктивные отличия, на первый взгляд, невелики, но в некоторых случаях они могут иметь решающее значение при выборе между устройствами, снабженными печатающими головками этих двух фирм. Например, струйные плоттеры серии TechJet, производимые фирмой CalComp, снабжены головками Canon. Те, кто работал с первыми струйными плоттерами Hewlett-Packard, знают, что основной их недостаток, с точки зрения нашего пользователя, привередливость к бумаге для печати. Применять обычный ватман или другие стандартные чертежные материалы практически невозможно, так как либо из-за неровности бумаги пишущая головка в некоторых местах задевает за лист и размазывает неуспевшие еще высохнуть чернила, либо чернила слишком хорошо впитываются в бумагу и расплываются. Использовать же для печати только фирменную бумагу Hewlett-Packard - слишком дорого.

Разработчики CalComp учли то, что ширина рабочего поля у плоттера формата А0 в 4 раза больше, чем у принтера, поэтому при той же кривизне листа абсолютная величина отставания его от валика графопостроителя может быть существенно выше. Вывод - надо увеличить зазор между головкой и листом бумаги. Именно успехи Canon в миниатюризации головок и повышении разрешения печати позволили конструкторам CalComp без ухудшения качества получаемого изображения на новых плоттерах отодвинуть головку от листа. Теперь зазор увеличился почти до 6 мм, что позволяет применять любой ватман, даже такой, который сначала слегка отсырел, а потом высох.

Новые чернила Canon также упростили выбор бумаги для плоттера - теперь линии на чертежах не расплываются, так как чернила просто не успевают растекаться - они высыхают.



Поделиться