Чугуны (белый, серый, высокопрочный, ковкий). Получение, структура, маркировка, область применения

Серые, высокопрочные и ковкие чугуны относятся к материалам, в которых весь углерод или его часть находится в виде графита. Излом этих чугунов – серый, матовый. В их структуре различают: структуру металлической основы и выделения графита. Отличаются они друг от друга только формой выделений графита.

В серых чугунах графит выделяется в виде пластинок (прожилок, чешуек); в высокопрочных – в виде шариков; в ковких – в виде хлопьев (рис. 4.2).

Пластинчатый графит. В обычном сером чугуне графит образуется в виде лепестков; такой графит называется пластинчатым. На рис. 4.2, а показана структура обычного ферритного чугуна с прожилками графита; пространственный вид таких графитных включений показан на рис. 4.3, а (видно пересечение пластинчатых включений плоскостью шлифа).

Шаровидный графит . В современных так называемых высокопрочных чугунах, выплавленных с присадкой небольшого количества магния (или церия), графит приобретает форму шара. На рис. 4.2, б показана микроструктура серого чугуна с шаровидным графитом, а на рис. 4.3, б – фотография шаровидного графитного включения в электронном микроскопе.

Хлопьевидный графит. Если при отливке получить белый чугун, а затем, используя неустойчивость цементита, с помощью отжига разложить его, то образующийся графит приобретает компактную, почти равноосную, но не округлую форму. Такой графит называется хлопьевидным, или углеродом отжига. Микроструктура чугуна с хлопьевидным графитом показана на рис. 4.2, в . На практике чугун с хлопьевидным графитом называют ковким чугуном.

а б в г

Рис. 4.2. Форма графита в чугунах:

а – пластинчатая (обычный серый чугун), × 100; б – шаровидная (высокопрочный чугун), × 200; в – хлопьевидная (ковкий чугун), × 100; г – вермикулярная, × 100

Рис. 4.3. Графитные включения в чугуне (× 2000):

а – пластинчатые; б – шаровидные

Вермикулярный графит – в виде глистообразных прожилок (рис. 4.2, г ).

Таким образом, чугуны называют:

– с пластинчатым графитом обычным серым чугуном;

– с червеобразным графитом – серым вермикулярным чугуном;

– чугун с шаровидным графитом – высокопрочным чугуном;

– чугун с хлопьевидным графитом – ковким чугуном.

По структуре металлической основы все чугуны классифицируются:

1) на ферритные – со структурой феррита и графита (количество связанного углерода С связ = 0,025%);

2) феррито-перлитные ‑ со структурой феррита, перлита и графита (количество С связ = от 0,025 до 0,8%);

3) перлитные ‑ со структурой перлита и графита (количество С связ = 0,8%).

Отсюда можно сделать заключение, что металлическая основа в этой группе чугунов похожа на структуру эвтектоидной и доэвтектоидной стали и железа и отличается только наличием графитных включений (углерода в свободном состоянии), предопределяющих специфические свойства чугунов.

а б в

Рис. 4.4. Микроструктура серого чугуна:

а – перлитного, × 200; б – феррито-перлитного, × 100; в – ферритного, × 100

Структура перлитного чугуна состоит из перлита с включениями графита (рис. 4.4, а - графит в виде прожилок; типично для серого чугуна). Перлит содержит 0,8% С, следовательно, это количество углерода в сером перлитном чугуне находится в связанном состоянии (т. е. в виде Fe 3 C), остальное количество находится в свободном виде, т. е. в форме графита.

Феррито-перлитный чугун (рис. 4.4, б ) состоит из феррита и перлита + включения веретенообразного графита. В этом чугуне количество связанного углерода меньше 0,8% С.

В ферритном чугуне (рис. 4.4, в ) металлической основой является феррит, и весь углерод, имеющийся в сплаве, присутствует в форме графита (на фотографии в виде веретенообразного графита).

На схемах структур (табл. 4.1) обобщается описанная выше классификация чугуна по строению металлической основы и форме графита.

Серые чугуны. Серые чугуны, как и белые, получаются непосредственно при отливке (при кристаллизации из жидкого расплава). Поскольку образование графита из жидкости – медленный процесс (работа образования зародыша велика: требуется значительная диффузия атомов углерода и отвод атомов железа от фронта кристаллизации графита), то он возможен только в узком интервале температур. Следовательно, охлаждение серого чугуна ведется медленно, и цементит, выделяющийся из жидкого или твердого раствора, будучи неустойчивым химическим соединением, в особенности при высоких температурах, распадается с образованием графита:

Fe 3 C ® Fe γ (С) + C гр при температуре выше 727°С

Fe 3 С ® Fe α (С) + С гр при температуре ниже 727°С (ниже линии PSK).

С ускорением охлаждения чугуна вероятность образования в нем графита уменьшается и при определенной скорости охлаждения часть сплава может закристаллизоваться в соответствии со стабильной, а часть, например поверхностный слой, ‑ с метастабильной диаграммами. Чугунные отливки, у которых поверхностные слои имеют структуру белого чугуна, а сердцевина – серого, называют отбеленными. Отбел их на некоторую глубину – следствие более быстрого охлаждения поверхности. Следовательно, обязательным условием для получения серого чугуна является очень малая скорость охлаждения расплава.

Графит в сером чугуне выделяется в виде пластин. Пластинчатые включения графита в серых чугунах можно рассматривать как трещины, надрезы, создающие большие концентрации напряжений в металлической основе. Поэтому свойства этих чугунов сильно отличаются от свойств стали.

Для определения наличия графита и формы его включений исследуют нетравленый микрошлиф с помощью металлографического микроскопа. Графит выглядит темной фазой на светлом фоне полированной металлической основы, затем микрошлиф травят (3–5%-ным раствором HNO 3 в спирте) и устанавливают структуру металлической основы.

По степени графитизации различают несколько видов серых чугунов: перлитный, перлито-ферритный и ферритный чугун. Если количество связанного углерода будет составлять больше 1%, такой чугун называется половинчатым. Его структура состоит из ледебурита, перлита и графита.

Таблица 4.1

Схемы структур чугуна

Однако кроме скорости охлаждения, существенное влияние на процесс графитизации оказывает количество присутствующих примесей, легирующих элементов и центров кристаллизации (модификаторов).

Все элементы, вводимые в чугун, делятся:

1) на элементы, препятствующие графитизации (Mn, Cr, W, Мо, S, О 2 и т.д.), которые способствуют получению углерода в связном состоянии в виде легированного цементита и других карбидов и препятствуют распаду его при повышенных температурах;

2) элементы графитообразующие (Si, C, Al, Ni, Cu и др.), которые способствуют получению углерода в свободном состоянии в виде графита.

Примеси Mn, Si, S, Р, присутствующие в чугуне, главным образом и влияют на процесс графитизации, а следовательно, на структуру и свойства чугуна.

Чтобы определить, какую структуру следует ожидать в зависимости от суммарного содержания углерода и кремния, а также в зависимости от скорости охлаждения (толщины стенки отливки), пользуются структурной диаграммой (рис. 4.5).

Рис. 4.5. Влияние скорости охлаждения и суммарного содержания кремния

и углерода в чугуне на его структуру:

I – белые чугуны; II – серые перлитные чугуны; III – серые ферритные чугуны

Следовательно, чтобы избежать отбела чугуна, детали тонкого сечения отливают из чугуна с повышенным содержанием графитообразующих элементов (Si, Ni, С). Для отливки деталей крупного сечения можно применить чугун с меньшим содержанием этих элементов.

Величина и форма выделившихся графитных включений зависит также от наличия в жидком чугуне центров кристаллизации.

Центрами кристаллизации могут быть мельчайшие частички окислов Al 2 O 3 , CaО, SiO 2 , MgO и др. Воздействие на процесс графитизации с помощью образования дополнительных центров кристаллизации называется модифицированием, а сами элементы называются модификаторами. Модификаторы вводят в жидкий чугун перед его разливкой.

Серый чугун имеет низкие механические свойства, т. к. пластинки графита надрезают металлическую основу.

В зависимости от прочности металлической основы и количества графита серые чугуны могут иметь предел прочности при растяжении примерно от 100 до 400 МПа при практически нулевом значении относительного удлинения. На сжатие серые чугуны работают много лучше, чем на растяжение, т. к. при сжимающих нагрузках надрезающее действие пластинок графита оказывается незначительным.

Согласно ГОСТ 1412-70, различают 11 марок серого чугуна: СЧ00 (не испытывается); СЧ12-28; СЧ15-52; СЧ18-36; CЧ21-40; СЧ24-44; СЧ28-48; СЧ32-52; СЧЗ6-56; СЧ40-60; СЧ-44-64.

Первая цифра показывает предел прочности при растяжении, а вторая – предел прочности при изгибе в кГ/мм 2 .

Марка чугуна СЧ12-28 характеризуется ферритной металлической основой.

Марки чугуна СЧ15-52, СЧ18-36 – феррито-перлитной металлической основой.

Чугуны этих марок применяются для малоответственных деталей с небольшими нагрузками (строительные колонны, фундаментные плиты, кронштейны, маховики, зубчатые колеса).

Остальные марки имеют перлитную металлическую основу с пониженным содержанием углерода и кремния. Чугуны с перлитной основой применяют для ответственных деталей, работающих на износ при больших давлениях (станины станков, поршни, цилиндры, детали компрессорного, турбинного и металлургического оборудования). Серый чугун указанных марок обязательно модифицируется силикокальцием или ферросилицием, который содержит около 2% кальция, или другими присадками с целью предотвращения первичной кристаллизации по метастабильной диаграмме.

Высокопрочный чугун. Высокопрочный чугун получают путем модифицирования жидкого расплава магнием или церием. Магний и церий вводят в сравнительно небольших количествах: 0,1 – 0,2% к весу жидкого чугуна, подвергающегося модифицированию. Магний и церий способствуют образованию включений графита шаровидной формы (рис. 4.2, б , 4.3, б ).

Шаровидный графит может образовываться в процессе первичной кристаллизации, а также в процессе отжига белого модифицированного чугуна. Безусловно, наиболее желательно образование шаровидного графита непосредственно при первичной кристаллизации, так как в этом случае не требуется высокотемпературного отжига. Кроме того, образование графита в структуре при первичной кристаллизации резко уменьшает усадку сплава. А это в свою очередь существенно упрощает технологию литья.

Маркируются высокопрочные чугуны буквами ВЧ и последующими цифрами.

Первые две цифры марки показывают среднее значение предела прочности при растяжении в кг/мм 2 , вторые – относительное удлинение в процентах. Например, чугун марки ВЧ60-2 имеет предел прочности на растяжение σ = 600МПа; относительное удлинение δ = 2%.

По ГОСТ 7293-70 предусмотрено 9 марок высокопрочного чугуна.

Отливки этих чугунов используют в авто- и дизелестроении для коленвалов, крышек цилиндров; в тяжелом машиностроении – для деталей прокатных станов; в кузнечно-прессовом оборудовании – для траверс прессов, прокатных валков; в химической и нефтяной промышленности – для корпусов насосов, вентилей и т. д. Также их применяют и для деталей, работающих в подшипниках и других узлах трения при повышенных и высоких давлениях (до 1200 МПа).

Ковкий чугун. Ковкие чугуны получаются путем специального графитизирующего отжига (томление) белых доэвтектических чугунов, содержащих от 2,27 до 3,2% С.

Существенный недостаток процесса получения ковкого чугуна – длительность отжига, составляющая 70 – 80 ч. Для его ускорения применяют различные меры (модифицирование алюминием (реже бором, висмутом), повышение температуры первой стадии (но не выше 1080°С)).

В настоящее время разработан метод ускоренного отжига ковкого чугуна, заключающийся в том, что отливки из белого чугуна перед графитизирующим отжигом предварительно закаливаются, что способствует снижению длительности отжига до 30 – 60 ч.

График получения ковкого чугуна показан на рис. 4.6.

Рис. 4.6. Графики получения ковких чугунов

Для получения ковкого чугуна необходимо:

– отливки из малоуглеродистого белого чугуна, содержащего не более 2,8% углерода, медленно нагревать в течение 20 – 25 часов в нейтральной среде до температуры 950 – 1000°С и при этой температуре длительно (10 – 15 ч.) выдерживать (первая стадия графитизации);

– затем медленно охлаждать до температуры немного ниже эвтектоидного превращения (700 – 740°С в зависимости от состава чугуна и длительное время (30 часов) выдерживать при этой температуре (вторая стадия графитизации);

– вести охлаждение на воздухе.

При первой стадии графитизации цементит ледебурита и вторичный цементит распадаются с образованием аустенита и хлопьевидного графита по реакции:

Fe 3 C ® Fe γ (С) + С

Цементит = аустенит + графит

При охлаждении от первой до второй стадии графитизации скорость охлаждения должна обеспечивать выделение вторичного цементита из аустенита и его распад на аустенит и графит по вышеприведенной формуле.

При второй стадии графитизации цементит перлита распадается на феррит и графит по реакции:

Fe 3 C ® Fe α (С) + С

Цементит = феррит + графит

Структура после окончательной обработки будет состоять из феррита и хлопьевидного графита.

Продолжительность всей термической обработки составляет 70 – 80 часов.

Если при второй стадии графитизации выдержка для полного распада цементита перлита на феррит и графит будет недостаточной, то в этом случае получают феррито-перлитный ковкий чугун; если выдержки не будет совсем, получают перлитный ковкий чугун со структурой перлит и хлопьевидный графит.

Желательно, чтобы содержание углерода в ковком чугуне было низким, т. к. с увеличением содержания углерода увеличивается количество свободного графита после отжига чугуна и ухудшаются его свойства. Однако уменьшение содержания углерода повышает температуру плавления, создает трудности при отливке, повышает стоимость отливки и т. д.

Для получения перлитного ковкого чугуна иногда применяют ваграночный белый чугун с содержанием до 3,2% углерода. Отжиг при этом производят в обезуглероживающей (окислительной) среде с последующим охлаждением на воздухе. Такой отжиг обеспечивает значительное выгорание углерода.

Ковкие чугуны маркируются буквами КЧ с цифрами. Первые две цифры указывают предел прочности при растяжении в кг/мм 2 , вторые цифры – относительное удлинение в процентах.

По ГОСТ 1215-59 ковкие чугуны имеет следующие марки:

– ферритный чугун: КЧ37-12, КЧ35-10, КЧ33-8, КЧ30-6;

– феррито-перлитный и перлитный ковкий чугуны: КЧ45-6, КЧ50-4, КЧ56-4, КЧ60-3, КЧ63-2.

Отливки из ковкого чугуна хорошо сопротивляются ударам и вибрационным нагрузкам, хорошо обрабатываются резанием, обладают достаточной вязкостью.

Ковкий чугун используется в автомобильной, тракторной промышленности, сельскохозяйственном машиностроении, вагоно-, станкостроении для деталей высокой прочности, воспринимающих знакопеременные и ударные нагрузки, работающих в условиях повышенного износа. Широкое его применение обусловлено, прежде всего, хорошими литейными свойствами исходного белого чугуна, что позволяет получать тонкостенные отливки сложной формы. Ферритные ковкие чугуны идут на изготовление деталей, эксплуатируемых при высоких динамических и статических нагрузках (кратеры редукторов, ступицы, крюки, скобы) и для менее ответственных (гайки, глушители, фланцы, муфты). Из перлитного ковкого чугуна изготавливают звенья и ролики цепей конвейера, тормозные колодки и др.

Порядок выполнения работы

1. Изучите классификацию чугунов, их строение, маркировку и способы получения.

2. Исследуйте под микроскопом шлифы и указать, к какому виду чугунов относится каждый образец.

3. Определите условия получения изучаемой структуры.

4. Установите влияние каждой структурной составляющей на свойства чугуна.

5. Протравите шлифы и изучите микроструктуру под микроскопом, зарисовать, укажите структурные и фазовые составляющие.

6. Установите различие в свойствах рассмотренных структур.

7. Составьте сводную таблицу рассмотренных структур, полученные данные занесите в табл. 4.2.

8. Составьте отчет о проделанной работе.

При составлении отчета необходимо:

1) привести краткую классификацию чугунов;

2) дать определение белым, серым, высокопрочным и ковким чугунам;

3) начертить часть диаграммы Fe – Fe 3 C, которая относится к области чугунов;

4) зарисовать все просмотренные структуры чугунов до и после травления с указанием названий структурных составляющих и класса чугунов;

5) указать химический состав белых чугунов и их положение на диаграмме;

6) описать способы получения, свойства и область применения каждого вида чугунов; указать маркировку.

Данные по проделанной работе свести в табл. 4.2.

Таблица 4.2

Контрольные вопросы

1. Какие преимущества чугунов перед сталью?

2. Как классифицируются чугуны?

3. Чем характеризуются структура и свойства чугуна?

4. Как влияет форма графита на свойства чугунов?

5. Сколько углерода содержит чугун?

6. В каких видах может находиться углерод в чугунах?

7. В каких чугунах весь углерод находится в химически связанном состоянии?

8. В каких чугунах весь углерод или его часть находится в виде графита?

9. Способы получения, свойства и применение белых чугунов.

10. Как получают белый чугун?

11. Сколько графита в белом чугуне?

12. Какие элементы способствуют отбелу?

13. Какие элементы способствуют графитизации?

14. Какая структура доэвтектического белого чугуна?

15. Какая структура эвтектического белого чугуна?

16. Какова структура заэвтектического белого чугуна?

17. Что такое ледебурит?

18. Что определяет прочность серого чугуна?

19. Как получают серый чугун?

20. Какова структура металлической основы серых чугунов?

21. Хорошо ли куется ковкий чугун?

22. Как получают ковкий чугун?

23. Какие процессы идут на первой стадии графитизации (получение ковких чугунов)?

24. Какие процессы идут на второй стадии графитизации (получение ковких чугунов)?

25. Какова форма графита в ковких чугунах?

26. Структура ковкого чугуна:

27. Как получают высокопрочный чугун?

28. Структура высокопрочного чугуна:

29. Какова форма графита в высокопрочных чугунах?

30. Что такое модифицирование и с какой целью его применяют?

31. Какова форма графита в серых чугунах?

32. Структура серого чугуна

33. Маркировка серых, высокопрочных и ковких чугунов.

34. Что обозначают цифра в марке чугуна СЧ15?

35. Что обозначает цифра в марке чугуна ВЧ60?

36. Что обозначает цифра 30 в марке чугуна КЧ 30-6?

37. Что обозначает цифра 6 в марке чугуна КЧ 30-6?


Буква А в середине марочного обозначения указывает на наличие азота, спе­циально введенного в сталь.

Буква А в начале марочного обозначения указывает на то, что это Автоматная сталь, предназначенная для изготовления деталей массового производства на станках-автоматах (AI2, А30, А40Г – сернистые; ACI4, АС40, АС35Г2 – свинецсодержащие; А35Е, А40ХВ – сернистоселенистые; АЦ20, АЦ40Г – кальцийсодержащие). Цифрами, указывается среднее содержание углерода в сотых долях процента.

Не следует путать с закаливаемостью, которая характеризуется максимальным значением твердости, приобретенной сталью в результате закалки. Закаливаемость зависит главным образом от содержания углерода (см. рис. 6 лабораторной работы № 8).


Похожая информация.


Углерод в чугуне может содержаться в виде цементита (Fe3C) или графита. Цементит имеет светлый цвет, обладает большой твердостью и трудно поддается механической обработке. Графит, наоборот, темного цвета и достаточно мягок. В зависимости от того, какая форма углерода преобладает в структуре, различают: белый, серый, ковкий и высокопрочные чугуны. Чугуны содержат постоянные примеси (Si, Mn, S, P), а в некоторых случаях также легирующие элементы (Cr, Ni, V, Al и др.).

Белый чугун - вид чугуна, в котором углерод в связанном состоянии находится в виде цементита, в изломе имеет белый цвет и металлический блеск. В структуре такого чугуна отсутствуют видимые включения графита и лишь незначительная его часть (0,03-0,30 %) обнаруживается тонкими методами химического анализа или визуально при больших увеличениях. Отливки белого чугуна обладают износостойкостью, относительной жаростойкостью и коррозионной стойкостью. Прочность белого чугуна снижается, а твердость увеличивается с увеличением содержания в нём углерода.

Белый чугун очень тверд, почти не поддается механической обработке и поэтому не применяется для изготовления деталей, а используется для переделки в сталь и для изготовления деталей из ковкого чугуна. Такой чугун называется также передельным.

Серый чугун – сплав железа, кремния (от 1,2- 3,5 %) и углерода, содержащий также постоянные примеси Mn, P, S. В структуре таких чугунов большая часть или весь углерод находится в виде графита пластинчатой формы. Излом такого чугуна из-за наличия графита имеет серый цвет. Отдельной разновидностью (группой марок) серого чугуна является высокопрочный чугун с графитом глобулярной (шаровидной) формы, что достигается путем его модифицирования магнием (Mg), церием (Ce) или другими элементами.

Серый чугун характеризуется высокими литейными свойствами (низкая температура кристаллизации, текучесть в жидком состоянии, малая усадка) и служит основным материалом для литья. Он широко применяется в машиностроении для отливки станин станков и механизмов, поршней, цилиндров.

Высокая хрупкость, свойственная серым чугунам вследствие наличие в их структуре графита, делает невозможным их применение для деталей, работающих в основном «на растяжение» или «на изгиб»; чугуны используются лишь при работе «на сжатие».

Серый чугун маркируется буквами СЧ, после которых указывают гарантированное значение предела прочности в кг/мм², например СЧ30. Высокопрочные чугуны маркируются буквам ВЧ, после которых указывают прочность и, через тире, относительное удлинение в процентах, например ВЧ60-2.

Ковкий чугун –условное название мягкого и вязкого чугуна, получаемого из белого чугуна отливкой и дальнейшей термической обработкой. Используется длительный отжиг, в результате которого происходит распад цементита с образованием графита, то есть процесс графитизации, и поэтому такой отжиг называют графитизирующим.

Ковкий чугун, как и серый, состоит из сталистой основы и содержит углерод в виде графита, однако графитовые включения в ковком чугуне иные, чем в обычном сером чугуне. Разница в том, что включения графита в ковком чугуне расположены в форме хлопьев, которые получаются при отжиге, и изолированны друг от друга, в результате чего металлическая основа менее разобщена, и чугун обладает некоторой вязкостью и пластичностью. Из-за своей хлопьевидной формы и способа получения (отжиг) графит в ковком чугуне часто называют углеродом отжига. Ковкий чугун получил свое название из-за повышенной пластичности и вязкости (хотя обработке давлением не подвергается).

Ковкий чугун обладает повышенной прочностью при растяжении и высоким сопротивлением удару. Из ковкого чугуна изготовляют детали сложной формы: картеры заднего моста автомобилей, тормозные колодки, тройники, угольники и т. д.

Маркируется ковкий чугун двумя буквами и двумя числами, например КЧ 370-12. Буквы КЧ означают ковкий чугун, первое число-предел прочности (в МПа) на разрыв, второе число - относительное удлинение (в процентах), характеризующее пластичность чугуна.

Высокопрочный чугун – чугун, имеющий графитные включения сфероидальной формы. Графит сфероидальной формы имеет меньшее отношение его поверхности к объему, что определяет наибольшую сплошность металлической основы, а следовательно, и прочность чугуна.

Высокопрочный чугун наиболее часто применяется для изготовления изделий ответственного назначения в машиностроении, а также для производства высокопрочных труб (водоснабжение, водоотведение, газо-, нефте-проводы). Изделия и трубы из Высокопрочного чугуна отличаются высокой прочностью, долговечностью, высокими эксплуатационными свойствами.

Сплав железа с углеродом (>2,14 % С) называют чугуном. Присутствие эвтектики в структуре чугуна (см. рис. 87) обусловливает его использование исключительно в качестве литейного сплава. Углерод в чугуне может находиться в виде цементита или графита, или одновременно в виде цементита и графита. Цементит придает излому специфический светлый блеск. Поэтому чугун, в котором весь углерод находится в виде цементита, называют белым. Графит придает излому чугуна серый цвет, поэтому чугун называют серым. В зависимости от формы графита и условий его образования различают следующие чугуны: серый, высокопрочный и ковкий (см. рис. 101 и 102).

СЕРЫЙ И БЕЛЫЙ ЧУГУНЫ

Серый чугун (технический) представляет собой, по существу, сплав Fe-Si-С, содержащий в качестве постоянных примесей Mn, Р и S. В структуре серых чугунов большая часть или весь углерод находится в виде графита. Характерная особенность структуры серых чугунов, определяющая многие его свойства, заключается в том, что графит имеет в поле зрения микрошлифа форму пластинок (см. рис. 88). Наиболее широкое применение получили доэвтектические чугуны, содержащие 2,4- 3,8 % С. Чем выше содержание в чугуне углерода, тем больше образуется графита и тем ниже его механические свойства. В то же время для обеспечения высоких литейных свойств (хорошей жид- котекучести) должно быть не менее 2,4 % С.

Разрез тройной диаграммы состояния Fe-Si-С для постоянного содержания кремния (2 %) показан на рис. 99. В отличие от стабильной диаграммы Fe-С (см. рис. 87) в системе Fe-Si-С перитектическое (Ж+

Рис. 99.

Ж - жидкая фаза; А аустенит; Г * графит

F- 6-феррит-? А), эвтектическое (Ж-*А + Г) и эвтектоид- ное (А -? Ф + Г) превращения протекают не при постоянной температуре, а в некотором интервале температур.

Величина температурного интервала, в котором в равновесии с жидким сплавом находятся аустенит и графит, зависит от содержания кремния. Чем больше содержание кремния, тем шире эвтектический интервал температур.

Охлаждение чугуна в реальных условиях вносит существенные отклонения от условий равновесия. Структура чугуна в отливках зависит в первую очередь от химического состава (содержания углерода и кремния) и скорости кристаллизации.

Кремний способствует процессу графитизации, действуя в том же направлении, что и замедление скорости охлаждения. Изменяя, с одной стороны, содержание в чугуне углерода и кремния, а с другой - скорость охлаждения, можно получить различную структуру металлической основы чугуна. Структурная диаграмма для чугунов, показывающая, какой должна быть структура в отливке с толщиной стенки 50 мм, в зависимости от содер-


Рис. 100.

а - влияние С в Si; ни структуру чугуна: б - влияние скорости охлаждения (толщины отливкн) и суммы С + SI на структуру чугуна; I - белые чугуны; //- V - серые чу- гуны


Рис. 101.

а - белый чугун; б - перлитный серый чугун: в - ферритно-перлитный серый чугун; г - ферритный серый чугун

жания в чугуне кремния и углерода показана на рис. 100, а. При данном содержании углерода, чем больше в чугуне кремния, тем полнее протекает графитизация. Чем больше в чугуне углерода, тем меньше требуется кремния для получения заданной структуры.

В зависимости от содержания углерода, связанного в цементит, различают:

  • 1. Белый чугун (рис. 100, а, /), в котором весь углерод находится в виде цементита Fe 3 C. Структура такого чугуна - перлит, ледебурит и цементит (рис. 100, а, I и 101, а).
  • 2. Половинчатый ч>тун (рис. 100, а , //), большая часть углерода (>0,8 %) находится в виде Fe 3 C. Структура такого чугуна - перлит, ледебурит и пластинчатый графит С
  • 3. Перлитный серый чугун (рис. 100, а, III) структура чугуна (рис. 101, б) - перлит и пластинчатый графит. В этом чугуне 0,7-0,8 °b С находится в виде Fe 3 C, входящего в состав перлита.
  • 4. Ферритно-перлитный (рис. 100, а, /V) серый чугун. Структура такого чугуна (рис. 101, в ) - перлит, феррит и пластинчатый графит (составы см. на рис. 100, а, III). В этом чугуне в зависимости от степени распада эвтектоидного цементита в связанном состоянии находится от 0,7 до 0,1 % С.
  • 5. Ферритный серый чугун (рис. 100, а, V ). Структура (рис. 101, г) - феррит и пластинчатый графит. В этом случае весь углерод находится в виде графита.

При данном содержании углерода и кремния графитизация протекает тем полнее, чем медленнее охлаждение. В производственных условиях скорость охлаждения удобно характеризовать по толщине стенки отливки. Чем тоньше отливка, тем быстрее охлаждение и в меньшей степени протекает графитизация (рис. 100, б).

Следовательно, содержание кремния надо увеличивать в отливке небольшого сечения, охлаждающейся ускоренно, или в чугуне с меньшим содержанием углерода. В толстых сечениях отливок, охлаждающихся медленнее, графитизация протекает полнее и содержание кремния может быть меньше. Количество марганца в чугуне не превышает 1,25-1,4 %. Марганец препятствует гра- фитизации, т. е. затрудняет выделение графита и повышает способность чугуна к отбеливанию - появлению, особенно в поверхностных слоях, структуры белого или половинчатого чугуна. Сера является вредной примесью, ухудшающей механические и литейные свойства чугуна. Поэтому ее содержание ограничивают до 0,1-0,2 %. В сером чугуне сера образует сульфиды (FeS, MnS) или их твердые растворы (Fe, Мп) S .

Механические свойства чугуна обусловлены его структурой, главным образом графитной составляющей. Чугун можно рассматривать как сталь, пронизанную графитом, который играет роль надрезов, ослабляющих металлическую основу структуры. В этом случае механические свойства будут зависеть от количества, величины и характера распределений включений графита.

Чем меньше графитных включений, чем они мельче и больше степень изолированности их, тем выше прочность чугуна. Чугун о большим количеством прямолинейных крупных графитных выделений, разделяющих его металлическую основу, имеет грубозернистый излом и низкие механические свойства. Чугун с мелкими

и завихренными графитными выделениями обладает более высокими свойствами.

Пластинки графита уменьшают сопротивление отрыву, временное сопротивление и особенно сильно пластичность чугуна. Относительное удлинение при растяжении серого чугуна независимо ог свойств металлической основы практически равно нулю (-"0,5 %). Графитные включения мало влияют на снижение предела прочности при сжатии и твердость, величина их определяется главным образом структурой металлической основы чугуна. При сжатии чугун претерпевает значительные деформации и разрушение имеет характер среза под углом 45°. Разрушающая нагрузка при сжатии в зависимости от качества чугуна и его структуры в 3-5 раз больше, чем при растяжении. Поэтому чугун рекомендуется использовать преимущественно для изделий, работающих на сжатие.

Пластинки графита менее значительно, чем при растяжении, снижают прочность и при изгибе, так как часть изделия испытывает сжимающие напряжения. Предел прочности при изгибе имеет промежуточное значение между пределом прочности на растяжение и на сжатие. Твердость чугуна 143-255 НВ.

Графит, нарушая сплошность металлической основы, делает чугун малочувствительным к всевозможным концентраторам напряжений (дефектам поверхности, надрезам, выточкам и т. д.). Вследствие этого серый чугун имеет примерно одинаковую конструктивную прочность в отливках простой формы или с ровной поверхностью и сложной формы с надрезами или с плохо обработанной поверхностью. Графит повышает износостойкость и антифрикционные свойства чугуна вследствие собственного «смазывающего» действия и повышения прочности пленки смазочного материала. Очень важно, что графит улучшает обрабатываемость резанием, делая стружку ломкой.

Металлическая основа в сером чугуне обеспечивает наибольшую прочность и износостойкость, если она имеет перлитную структуру (см. рис. 100, б). Присутствие в структуре феррита, не увеличивая пластичность и вязкость чугуна, снижает его прочность и износостойкость. Наименьшей прочностью обладает ферритный серый чугун.

Серый чугун маркируется буквами С - серый и Ч - чугун (ГОСТ 1412-85). После букв следуют цифры, указывающие минимальное значение временного сопротивления 10" 1 МПа (кгс/мм 2).

Серые чугуны по свойствам и применению можно разделить на следующие группы.

Ферритные и ферритно-перлитные чугуны (СЧ 10, СЧ 15, СЧ 18) имеют временное сопротивление 100-180 МПа (10- 18 кгс/мм 2), предел прочности при изгибе 280-320 МПа (28- 32 МПа). Их примерный состав: 3,5-3,7 % С; 2,0-2,6 % Si; 0,5--0,8 % Ми;

СЧ 15). Эти чугуны применяют для малоответственных деталей, испытывающих небольшие нагрузки в работе с толщиной стенки отливки 10-30 мм. Так, чугун СЧ 10 используют для строительных колонн, фундаментных плит, а чугуны СЧ 15 и СЧ 18 -для литых малонагруженных деталей сельскохозяйственных машин, станков, автомобилей и тракторов, арматуры и т. д.

Перлитные чугуны (СЧ 21, СЧ 24, СЧ 25, СЧ 30, СЧ 35) применяют для ответственных отливок (станин мощных станков и механизмов, поршней, цилиндров, деталей, работающих на износ в условиях больших давлений, компрессоров, арматуры, дизельных цилиндров, блоков двигателей, деталей металлургического оборудования и т. д.) с толщиной стенки до 60-100 мм . Структура этих чугунов - мелкопластинчатый перлит (сорбит) с мелкими завихренными графитными включениями. К перлитным относятся так называемые сталистые и модифицированные чугуны.

При выплавке сталистых чугунов СЧ 24, СЧ 25 в шихту добавляют 20-30 % стального лома; чугуны имеют пониженное содержание углерода, что обеспечивает получение более дисперсной перлитной основы с меньшим количеством графитных включений. Примерный состав: 3,2-3,4 % С; 1,4-2,2 % Si; 0,7-

1,0 % Мп; % Р;

Модифицированные чугуны (СЧ 30, СЧ 35) получают при добавлении в жидкий чугун перед разливкой специальных добавок- модификаторов (графит, 75 %-ный ферросилиций, силико- кальций в количестве 0,3-0,8 % и т. д.). Модифицирование применяют для получения в чугунных отливках с различной толщиной стенок перлитной металлической основы с вкраплением небольшого количества изолированных пластинок графита средней величины.

Модифицированию подвергают низкоуглеродистый чугун, содержащий сравнительно небольшое количество кремния и повышенное количество марганца и имеющий без введения модификатора структуру половинчатого чугуна, т. е. ледебурит, перлит и графит. Примерный химический состав чугуна: 2,2-3,2 % С; 1,0-2,9 % Si; 0,2-1,1 % Мп;

Для снятия литейных напряжений и стабилизации размеров чугунные отливки отжигают при 500-600 °С. В зависимости от формы и размеров отливки выдержка при температуре отжига составляет 2-10 ч. Охлаждение после отжига медленное, вместе о печью. После такой обработки механические свойства изменяются мало, а внутренние напряжения снижаются на 80-90 %. Иногда для снятия напряжений в чугунных отливках применяют естественное старение чугуна - выдержку их на складе в течение 6-10 месяцев; такая выдержка снижает напряжения на 40-50 % .

Антифрикционные чугуны применяют для изготовления подшипников скольжения, втулок и других деталей, работающих при трении о металл, чаще в присутствии смазочного материала. Эти чугуны должны обеспечивать низкое трение (малый коэффициент трения), т. е. антифрикционность. Антифрикционные свойства чугуна определяются соотношением перлита и феррита в основе, а также количеством и формой графита. Антифрикционные чугуны изготовляют следующих марок :

АЧС-1 (3,2-3,6 % С; 1,3-2,0 % Si; 0,6-1,2 % Мп; 0,15- 0,4% Р; % Сг; 1,5-2,0 % Си); АЧС-2 (3,2-3,8% С; 1,4-2,2% Si; 0,3-1% Мп; 0,15-0,4 % Р; % Ti; 0,2- 0,5 % Си) и АЧС-3 (3,2-3,8 % С; 1,7-2,6 % Si; 0,3-0,7 % Мп; 0,15-0,4% Р; 0,2-0,5 % Си;

Детали, работающие в паре с закаленными или нормализованными стальными валами, изготовляют из перлитных серых чугу- нов АЧС-1 и АЧС-2; для работы в паре с термически необработанными валами применяют перлитно-ферритный чугун АЧС-3.

Перлитный чугун, содержащий повышенное количество фос^ фора (0,3-0,5 %), используют для изготовления поршневых колец. Высокая износостойкость колец обеспечивается металлической основой, состоящей из тонкого перлита и равномерно распределенной фосфидной эвтектики при наличии изолированных выделений пластинчатого графита.

  • Графит кристаллизуется в виде довольно сложных форм (см. рис. 88, б, о),но сечение их плоскостью микрошлифа дает вид пластинок.
  • 2 В белых чугунах возможно образование эвтектики (Fe + FeS) и растворение серы в FeaC.
  • Чем больше толщина стенок отливки, тем ниже механические свойства. 149
  • А - антифрикционный, Ч - чугун, С - серый.

Чугунами называют железоуглеродистые сплавы, содержащие более 2 % углерода . Чугун обладает более низкими механическими свойствами, чем сталь, но дешевле и хорошо отливается в изделия сложной формы. Различают несколько видов чугуна.

Белый чугун , в котором весь углерод (2,0...3,8%) находится в связанном состоянии в виде Fe3C (цементита), что и определяет его свойства: высокие твердость и хрупкость, хорошую сопротивляемость износу, плохую обрабатываемость режущими инструментами. Белый чугун применяют для получения серого и ковкого чугуна и стали.

Серый чугун содержит углерод в связанном состоянии только частично (не более 0,5%). Остальной углерод находится в чугуне в свободном состоянии в виде графита. Графитовые включения делают цвет излома серым. Чем излом темнее, тем чугун мягче. Образование графита происходит в результате термической обработки белого чугуна, когда часть цементита распадается на мягкое пластичное железо и графит по реакции Fe3C~>--»-3Fe-[-C. В зависимости от преобладающей структуры различают серый чугун на перлитной, ферритной или ферритоперлитной основе.

Свойства серого чугуна зависят от режима охлаждения и наличия некоторых примесей. Например, чем больше кремния, тем больше выделяется графита, а потому чугун делается мягче. Серый чугун имеет умеренную твердость и легко обрабатывается режущими инструментами. Серый чугун, применяемый в строительстве, должен иметь предел прочности при растяжении не менее 120 МПа, а предел прочности при изгибе 280 МПа.

Из серого чугуна отливают элементы конструкций, хорошо работающие на сжатие: колонны, опорные подушки, башмаки, тюбинги, отопительные батареи, трубы водопроводные и канализационные, плиты для полов, станины и корпусные детали станков, головки и поршни двигателей, зубчатые колеса и другие детали.

Ковкий чугун получают после длительного отжига белого чугуна при высоких температурах, когда цементит почти полностью распадается с выделением свободного углерода на ферритной или перлитной основе. Углеродные включения имеют округлую форму. В отличие от серых ковкие чугуны являются более прочными и пластичными и легче обрабатываются.

Высокопрочные (модифицированные) чугуны значительно превосходят обычные серые по прочности и обладают некоторыми пластическими свойствами. Их применяют для отливок ответственных деталей.

При испытании серого и высокопрочного чугунов определяют предел прочности при растяжении, изгибе и сжатии, а при испытании ковкого чугуна - предел прочности при растяжении, относительное удлинение и твердость.

При маркировке серого и модифицированного чугуна, например СЧ12-28, первые две цифры обозначают предел прочности при растяжении, последующие две - предел прочности при изгибе.

В машиностроении применяют отливки из серого, ковкого и высокопрочного чугуна. Эти чугуны отличаются от белого чугуна тем, что у них весь углерод или большая его часть находится в сво-бодном состоянии в виде графита (а у белого чугуна весь углерод находится в виде цементита).

Структура указанных чугунов состоит из металлической основы аналогично стали (перлит, феррит) и неметаллических включений — графита.

Серый, ковкий и высокопрочный чугуны отличаются друг от дру-га в основном формой графитовых включений. Это и определяет раз-личие механических свойств указанных чугунов.

У серого чугуна графит (при рассмотрении под микро-скопом) имеет форму пластинок.

Графит обладает низкими механическими свойствами. Он нару-шает сплошность металлической основы и действует как надрез или мелкая трещина. Чем крупнее и прямолинейнее формы графи-товых включений, тем хуже механические свойства серого чугуна.

Основное отличие высокопрочного чу-гуна заключается в том, что графит в нем имеет шаровидную (ок-ругленную) форму. Такая форма графита лучше пластинчатой, так как при этом значительно меньше нарушается сплошность металли-ческой основы.

Ковкий чугун получают длительным отжигом отливок из белого чугуна, в результате которого образуется графит хлопьевид-ной формы — углерод отжига.

Механические свойства рассматриваемых чугунов можно улуч-шить термической обработкой. При этом необходимо помнить, что в чугунах создаются значительные внутренние напряжения, поэто-му нагревать чугунные отливки при термической обработке следу-ет медленно, чтобы избежать образования трещин.

Отливки из чугуна подвергают следующим видам термической обработки.

Низкотемпературный отжиг. Чтобы снять внутренние напря-жения и стабилизовать размеры чугунных отливок из серого чугуна, применяют естественное старение или низкотемпературный от-жиг.

Более старым способом является естественное старе-ние , при котором отливка после полного охлаждения претерпева-ет длительное вылеживание — от 3—5 месяцев до нескольких лет. Естественное старение применяют в том случае, когда нет требуемо-го оборудования для отжига. Этот способ в настоящее время почти не применяют; производят главным образом низкотемпературный отжиг. Для этого отливки после полного затвердевания укладыва-ют в холодную печь (или печь с температурой 100—200° С) и вместе с ней медленно, со скоростью 75—100° С в час нагревают до 500— 550° С, при этой температуре их выдерживают 2—5 часов и охлаж-дают до 200° С со скоростью 30—50° в час, а затем на воздухе.

Графитизирующий отжиг .

При отливке изделий возможен час-тичный отбел серого чугуна с поверхности или даже по всему сечению. Чтобы устранить отбел и улучшить обрабатываемость чугуна, производится высокотемпературный графитизирующий отжиг с вы-держкой при температуре 900—950° С в течение 1—4 часов и охлаж-дением изделий до 250—300° С вместе с печью, а затем на воздухе. При таком отжиге в отбеленных участках цементит Fe 3 Cраспадает-ся на феррит и графит, вследствие чего белый или половинчатый чугун переходит в серый.

Нормализация.

Нормализации подвергают отливки простой фор-мы и небольших сечений. Нормализация проводится при 850—900° С с выдержкой 1—3 часа и последующим охлаждением отливок на воз-духе. При таком нагреве часть углерода-графита растворяется в аустените; после охлаждения на воздухе металлическая основа полу-чает структуру трооститовидного перлита с более высокой твер-достью и лучшей сопротивляемостью износу. Для серого чугуна нормализацию применяют сравнительно редко, более широко приме-няют закалку с отпуском.

Закалка.

Повысить прочность серого чугуна можно его закалкой. Она производится с нагревом до 850—900° С и охлаждением в воде. Закалке можно подвергать как перлитные, так и ферритные чугу-ны. Твердость чугуна после закалки достигает НВ 450—500. В структуре закаленного чугуна имеются мартенсит со значительным количеством остаточного аустенита и выделения графита. Эффек-тивным методом повышения прочности и износоустойчивости серого чугуна является изотермическая закалка, которая производится ана-логично закалке стали.

Высокопрочные чугуны с шаровидным графитом можно под-вергать пламенной или высокочастотной поверхностной закалке. Чугунные детали после такой обработки имеют высокую поверхностную твердость, вязкую сердцевину и хорошо сопротивляются ударным нагрузкам и истиранию.

Легированные серые чугуны и высокопрочные магниевые чугуны иногда подвергают азотированию. Поверхностная твердость азоти-рованных чугунных изделий достигает HV600—800° С; такие дета-ли имеют высокую износоустойчивость. Хорошие результаты дает сульфидирование чугуна; так, например, сульфидированные порш-невые кольца быстро прирабатываются, хорошо сопротивляются ис-тиранию, и срок их службы повышается в несколько раз.

Отпуск.

Чтобы снять закалочные напряжения, после закалки производят отпуск. Детали, предназначенные для работы на истира-ние, проходят низкий отпуск при температуре 200—250° С. Чугун-ные отливки, не работающие на истирание, подвергаются высокому отпуску при 500—600° С. При отпуске закаленных чугунов твер-дость понижается значительно меньше, чем при отпуске стали. Это объясняется тем, что в структуре закаленного чугуна большое ко-личество остаточного аустенита, а также тем, что в нем содержится большое количество кремния, который повышает отпускоустойчивость мартенсита.

Для отжига на ковкий чугун применяют белый чугун примерно следующего химического состава: 2,5—3,2% С; 0,6—0,9% Si; 0,3— 0,4% Μη; 0,1-0,2% Ρ и 0,06-0,1% S.

Существуют два способа отжига на ковкий чугун:

графитизирующий отжиг в нейтральной среде, основанный на разложении цементита на феррит и углерод отжига;

обезуглероживающий отжиг в окислительной среде, основанный на выжигании углерода.

Отжиг на ковкий чугун по второму способу занимает 5—6 суток, поэтому в настоящее время ковкий чугун получают главным обра-зом графитизацией. Отливки, очищенные от песка и литников, упаковывают в металлические ящики либо укладывают на поддоне, а затем подвергают отжигу в методических, камерных и других от-жигательных печах.

Процесс отжига состоит из двух стадий графитизации. Первая стадия заключается в равномерном нагреве отливок до 950—1000° С свыдержкой 10—25 часов; затем температуру понижают до 750— 720° С при скорости охлаждения 70—100° С в час. На второй ста-дии при температуре 750—720° С дается выдержка 15—30 часов, затем отливки охлаждаются вместе с печью до 500—400° С и при этой температуре извлекаются на воздух, где охлаждаются с произ-вольной скоростью. При таком ступенчатом отжиге в области темпе-ратур 950—1000° С идет распад (графитизация) цементита. В ре-зультате отжига по такому режиму структура ковкого чугуна пред-ставляет собой зерна феррита с включениями гнезд углерода отжи-га — графита.

Перлитный ковкий чугун получается в результате неполного от-жига: после графитизации при 950—1000° С чугун охлаждается вместе с печью. Структура перлитного ковкого чугуна состоит из перлита и углерода отжига.

Чтобы повысить вязкость, перлитный ковкий чугун подвергают сфероидизации при температуре 700—750° С, что создает структуру зернистого перлита.

Чтобы ускорить процесс отжига на ковкий чугун, изделия из белого чугуна подвергают закалке, затем проводят графитизацию при 1000—1100° С Ускорение графитизации закаленных чугунов при отжиге объясняется наличием большого количества центров графитизации, образовавшихся при закалке. Это дает возможность сократить время отжига закаленных отливок до 15—7 часов.

Термическая обработка ковкого чугуна.

Чтобы повысить проч-ность и износоустойчивость, ковкие чугуны подвергают нормализа-ции или закалке с отпуском. Нормализация ковкого чугуна произ-водится при 850—900° С с выдержкой при этой температуре 1—1,5 часа и охлаждением на воздухе. Если заготовки имеют повышенную твердость, их следует подвергать высокому отпуску при 650—680° С с выдержкой 1—2 часа.



Поделиться