Для анализа мультипликативной модели можно использовать способ. Применение способа цепной подстановки


к.э.н., директор по науке и развитию ЗАО "КИС"

Анализ мультипликативной модели (Часть1)

В предыдущей статье мы рассмотрели один из методов прогнозирования, используемый для временных рядов - анализ аддитивной модели. Нашей задачей было представить пример расчета трендовых значений объема продаж и дать прогноз на будущие периоды на основе изложенных формул, не углубляясь в обоснование коэффициентов. Тем более, широкие возможности программного продукта Microsoft Excel позволяют расчет тренда сделать быстро, используя встроенные статистические функции.

Очевидно, чтобы выполнить прогноз, применяя стандартные технологии, нужна информация. И вот эта проблема является достаточно серьезной. Как правило, на современных предприятиях статистические ряды не накоплены. Информационная база начинается где-то в 90-х годах, а многое в тот период было неопределенным. Государственные статистические данные стали не актуальными, и достоверность данных далеко не безоговорочна.

Но функции планирования и прогнозирования являются основными видами деятельности любой организации, а стабилизационные процессы, протекающие в нашей стране за последний период, все же позволяют надеяться, что определенный тренд развития существует, и в будущем не будет нарушен. Определенные выводы можно будет делать и без полных статистических данных на маленькой выборке. Главное, правильно сформулировать условия решения задачи и выбрать метод, который был бы адекватен статистической природе изучаемых временных рядов.

Так, например, прежде чем определять метод, которым следует строить прогноз, аналитик должен решить для себя: обладает ли ряд, который он изучает, свойством сезонности.

Сезонность является объективным свойством временных рядов. Сезонная вариация - это повторение данных через небольшой промежуток времени, т.е. если форма кривой, которая описывает продажи товара, повторяет свои характерные очертания и тенденции, то о таком ряде можно говорить, что он обладает сезонностью. В этом случае, период прогнозирования должен быть достаточно большой, чтобы можно было наблюдать сезонные всплески и колебания продаж.

В некоторых временных рядах значение сезонной вариации - это определенная доля трендового значения, т.е. сезонная вариация увеличивается с возрастанием значений тренда. В таких случаях используется мультипликативная модель.

Для мультипликативной модели фактическое значение рассчитывается по формуле:

Расчет фактического значения в мультипликативной модели

Т - трендовое значение

S - сезонная вариация

Е - ошибка прогноза

Анализ мультипликативной модели рассмотрим на примере. В таблице указан объем продаж за последние одиннадцать кварталов. На основании этих данных дадим прогноз объема продаж на следующие два квартала.

Опираясь на предложенный алгоритм, на первом этапе исключим влияние сезонной вариации. Воспользуемся методом скользящей средней, заполним следующие столбцы таблицы.


Метод скользящей средней

Простое скользящее среднее (Simple Moving Avarage) - это средний арифметический показатель (объем продаж, объем производства, цена) за определенный период времени.

Одним важным достоинством скользящих средних является их способность давать сигналы о развороте тренда, подтверждать рост, спад.

Общая формула для вычисления SMA за n-ый период такая:


Простое скользящее среднее за период N

где n - период усреднения,

Р(i) - усредняемый объем (i - 1) период тому назад (i-е измерение или отсчет),

P(1) - объем продаж за последний период,

P(n) - самый старый по оси времени объем рассматриваемого нами временного промежутка.

1 год = 4 квартала. Поэтому найдем среднее значение объема продаж за 4 последовательных квартала. Для этого нужно сложить 4 последовательных числа из второго столбца, разделить на 4 (количество слагаемых) и результат запишем в третий столбец напротив третьего слагаемого: (63 74 79 120)/4=84 ; (74 79 120 67)/4=85; и т.д.

Если скользящая средняя вычисляется для нечетного числа сезонов, то результат не центрируется, в нашем примере число сезонов - восемь, поэтому сумму двух чисел из третьего столбца, разделим на 2 и запишем в четвертый столбец напротив верхнего из них: (84 85)/2=2=84,5.

Оценка сезонной вариации для аддитивной модели рассчитывается как разность объема продаж и центрированной скользящее средней. Для мультипликативных моделей - это отношение. Числа второго столбца делим на числа четвертого и результат округляем до трех цифр и запишем в пятый столбец: 79/84,5=0,935.

Следующим этапом необходимо исключить сезонную вариацию из фактических данных - провести десезонализация данных. Но это уже в следующем выпуске.

Страница
6

Примером мультипликативной модели является двухфакторная модель объема реализации

где Ч - среднесписочная численность работников;

CB - средняя выработка на одного работника.

Кратные модели:

Примером кратной модели служит показатель срока оборачиваемости товаров (в днях) . ТОБ.Т:

,

где ЗТ - средний запас товаров; ОР - однодневный объем реализации.

Смешанные модели представляют собой комбинацию перечисленных выше моделей и могут быть описаны с помощью специальных выражений:

Примерами таких моделей служат показатели затрат на 1 руб. товарной продукции, показатели рентабельности и др.

Для изучения зависимости между показателями и количественного измерения множества факторов, повлиявших на результативный показатель, приведем общие правила преобразования моделей с целью включения новых факторных показателей.

Для детализации обобщающего факторного показателя на его составляющие, которые представляют интерес для аналитических расчетов, используют прием удлинения факторной системы.

Если исходная факторная модель

то модель примет вид

.

Для выделения некоторого числа новых факторов и построения необходимых для расчетов факторных показателей применяют прием расширения факторных моделей. При этом числитель и знаменатель умножаются на одно и тоже число:

.

Для построения новых факторных показателей применяют прием сокращения факторных моделей. При использовании данного приема числитель и знаменатель делят на одно и то же число.

.

Детализация факторного анализа во многом определяется числом факторов, влияние которых можно количественные оценить, поэтому большое значение в анализе имеют многофакторные мультипликативные модели. В основе их построения лежат следующие принципы: · место каждого фактора в модели должно соответствовать его роли в формировании результативного показателя; · модель должна строиться из двухфакторной полной модели путем последовательного расчленения факторов, как правило качественных, на составляющие; · при написании формулы многофакторной модели факторы должны располагаться слева направо в порядке их замены.

Построение факторной модели – первый этап детерминированного анализа. Далее определяют способ оценки влияния факторов.

Способ цепных подстановок заключается в определении ряда промежуточных значений обобщающего показателя путем последовательной замены базисных значений факторов на отчетные. Данный способ основан на элиминировании. Элиминировать – значит устранить, исключить воздействие всех факторов на величину результативного показателя, кроме одного. При этом исходя из того, что все факторы изменяются независимо друг от друга, т.е. сначала изменяется один фактор, а все остальные остаются без изменения. потом изменяются два при неизменности остальных и т.д.

В общем виде применение способа цепных постановок можно описать следующим образом:

где a0, b0, c0 - базисные значения факторов, оказывающих влияние на обобщающий показатель у;

a1 , b1, c1 - фактические значения факторов;

ya, yb, - промежуточные изменения результирующего показателя, связанного с изменением факторов а, b, соответственно.

Общее изменение Dу=у1–у0 складывается из суммы изменений результирующего показателя за счет изменения каждого фактора при фиксированных значениях остальных факторов:

Рассмотрим пример:

Таблица 2

Исходные данные для факторного анализа

Показатели

Условные обозначения

Базисные значения

Фактические значения

Изменение

Абсолютное (+,-)

Относительное (%)

Объем товарной продукции, тыс. руб.

Количество работников, чел

Выработка на одного работающего, тыс.руб.

Анализ влияния на объем товарной продукции количества работников и их выработки проведем описанным выше способом на основе данных табл.2. Зависимость объема товарной продукции от данных факторов можно описать с помощью мультипликативной модели:

Тогда влияние изменения величины количества работников на обобщающий показатель можно рассчитать по формуле:

Таким образом, на изменение объема товарной продукции положительное влияние оказало изменение на 5 человек численности работников, что вызвало увеличение объема продукции на 730 тыс. руб. и отрицательное влияние оказало снижение выработки на 10 тыс. руб., что вызвало снижение объема на 250 тыс. руб. Суммарное влияние двух факторов привело к увеличению объема продукции на 480 тыс. руб.

Преимущества данного способа: универсальность применения, простота расчетов.

Недостаток метода состоит в том, что, в зависимости от выбранного порядка замены факторов, результаты факторного разложения имеют разные значения. Это связано с тем, что в результате применения этого метода образуется некий неразложимый остаток, который прибавляется к величине влияния последнего фактора. На практике точностью оценки факторов пренебрегают, выдвигая на первый план относительную значимость влияния того или иного фактора. Однако существуют определенные правила, определяющие последовательность подстановки: · при наличии в факторной модели количественных и качественных показателей в первую очередь рассматривается изменение количественных факторов; · если модель представлена несколькими количественными и качественными показателями, последовательность подстановки определяется путем логического анализа.

Мультипликативная модель.

Пример 2. Выручка от реализации продукции (объем продукции - V) может быть выражена как произведение комплекса факторов: численность персонала (Чп), доля рабочих в общей численности персонала (dр); среднегодовая выработка одного рабочего (Вр)

V = Чп * dр * Вр


Смешанная (комбинированная) модель представляет собой сочетание в различных комбинациях предыдущих моделей: Пример 4. Рентабельность предприятия (Р) определяется как частное от деления балансовой прибыли (Пбал) на среднегодовую стоимость основных (ОС) и нормируемых оборотных (ОБ) средств:

Ø Преобразования детерминированных факторных моделей

Для моделирования различных ситуаций в факторном анализе применяются специальные методы преобразования типовых факторных моделей. Все они основаны на приеме детализации . Детализация – разложение более общих факторов на менее общие. Детализация позволяет на основе знания экономической теории упорядочить анализ, содействует комплексному рассмотрению факторов, указывает значимость каждого из них.

Развитие детерминированной факторной системы достигается, как правило, за счет детализации комплексных факторов. Элементные (простые) факторы не раскладываются.

Пример 1. Факторы

Большая часть традиционных (специальных) приемов детерминированного факторного анализа основана на элиминировании . Прием элиминирования используется для определения изолированного фактора путем исключения воздействия всех остальных. Исходной посылкой данного приема является следующая: Все факторы изменяются независимо друг от друга: сначала изменяется один, а все другие остаются без изменения, затем изменяются два, три и т.д. при неизменности остальных. Прием элиминирования является в свою очередь основой для других приемов детерминированного факторного анализа, цепных подстановок, индексных, абсолютных и относительных (процентных) разниц.

Ø Прием цепных подстановок

Цель.

Область применения . Все виды детерминированных факторных моделей.

Ограничение на использование.

Порядок применения . Рассчитывается ряд скорректированных значений результативного показателя путем последовательной замены базисных значений факторов на фактические.

Расчет влияния факторов целесообразно проводить в аналитической таблице.

Исходная модель: П = А х В х С х Д

А

Ø Прием абсолютных разниц

Цель. Измерение изолированного влияния факторов на изменение результативного показателя.

Область применения. Детерминированные факторные модели; в том числе:

1. Мультипликативные

2. Смешанные (комбинированные)

типа Y = (A-B)C и Y = A(B-C)

Ограничения на использование. Факторы в модели должны быть последовательно расположены: от количественных к качественным, от более общих к более частным.

Порядок применения. Величина влияния отдельного фактора на изменение результативного показателя определяется путем умножения абсолютного прироста исследуемого фактора на базисную (плановую) величину факторов, которые в модели находятся справа от него, и на фактическую величину факторов, расположенных слева.

В случае исходной мультипликативной модели П = А х В х С х Д получим: изменение результативного показателя

1. За счет фактора А:

DП А = (А 1 – А 0) х В 0 х С 0 х Д 0

2. За счет фактора В:

DП В = А 1 х (В 1 - В 0) х С 0 х Д 0

3. За счет фактора С:

DП С = А 1 х В 1 х (С 1 - С 0) х Д 0

4. За счет фактора Д:

DП Д = А 1 х В 1 х С 1 х (Д 1 - Д 0)

5. Общее изменение (отклонение) результативного показателя (баланс отклонений)

D П = D П а + D П в + D П с + D П д

Баланс отклонений должен соблюдаться (так же как в приеме цепных подстановок).

Ø Прием относительных (процентных) разниц

Цель. Измерение изолированного влияния факторов на изменение результативного показателя.

Область применения . Детерминированные факторные модели, включая:

1) мультипликативные;

2) комбинированные типа Y = (А – В) С,

целесообразно применять, когда известны определенные ранее относительные отклонения факторных показателей в процентах или коэффициентах.

Требования к последовательности расположения факторов в модели отсутствуют.

Исходная посылка . Результативный признак изменяется пропорционально изменению факторного признака.

Порядок применения . Величина влияния отдельного фактора на изменение результативного показателя определяется путем умножения базисного (планового)значения результативного показателя на относительный прирост факторного признака.



Исходная модель:

Изменение результативного показателя:

1. За счет фактора А:


За счет фактора В:

2. За счет фактора С:


Баланс отклонений . Общее отклонение результативного показателя складывается из отклонений по факторам:

D Y = Y 1 - Y 0 = D Y A + D Y B + D Y C

Ø Индексный метод

Цель. Измерение относительного и абсолютного изменения экономических показателей и влияния на него различных факторов.

Область применения .

1. Анализ динамики показателей, в том числе агрегированных (сложенных).

2. Детерминированные факторные модели; включая мультипликативные и кратные.

Порядок применения . Абсолютное и относительное изменение экономических явлений.

Агрегатный индекс стоимости продукции (товарооборота)


I pq – характеризует относительное изменение стоимости продукции в действующих ценах (ценах соответствующего периода)

Разность числителя и знаменателя (åp 1 q 1 - åp o q 0) – характеризует абсолютное изменение стоимости продукции в отчетном периоде по сравнению с базисным.

Агрегатный индекс цен:


I p – характеризует относительное изменение средней цены на совокупность видов продукции (товаров).

Разность числителя и знаменателя (åp 1 q 1 - åp o q 1) – характеризует абсолютное изменение стоимости продукции вследствие изменения цен на отдельные ее виды.

Агрегатный индекс физического объема продукции:

характеризует относительное изменение объема продукции в фиксированных (сопоставимых) ценах.

åq 1 p 0 - åq 0 p 0 – разность числителя и знаменателя характеризует абсолютное изменение стоимости продукции вследствие изменения физических объемов различных ее видов.

На основе индексных моделей проводится факторный анализ.

Так, классической аналитической задачей является определение влияния на стоимость продукции фактора количества (физического объема) и цен:

В абсолютных величинах

å p 1 q 1 - å p 0 q 0 = (å q 1 p 0 - å q 0 p 0) + (å p 1 q 1 - å p 0 q 1).

Аналогично, используя индексную модель, можно определить влияние на полную себестоимость продукции (zq) факторов ее физического объема (q) и себестоимости единицы продукции различных видов (z)

В абсолютном выражении

å z 1 q 1 - å z 0 q 0 = (å q 1 z 0 - å q 0 z 0) + (å z 1 q 1 - å z 0 q 1)

Ø Интегральный метод

Цель. Измерение изолированного влияния факторов на изменение результативного показателя.

Область применения . Детерминированные факторные модели, в том числе

· Мультипликативные

· Кратные

· Смешанные типа


Преимущества. По сравнению с приемами, основанными на элиминировании, дает более точные результаты, поскольку дополнительный прирост результативного показателя за счет взаимодействия факторов распределяется пропорционально их изолированному воздействию на результативный показатель.

Порядок применения . Величина влияния отдельного фактора на изменение результативного показателя определяется на основе формул для разных факторных моделей, выведенных с применением дифференцирования и интегрирования в факторном анализе.


Изменение результативного показателя за счет фактора х

D¦ х = D ху 0 +DхDу / 2

за счет фактора у

D¦ у = D ух 0 +DуDх / 2

Общее изменение результативного показателя: D¦ = D¦ х + D¦ у

Баланс отклонений

D¦ = ¦ 1 - ¦ 0 = D¦ х +D¦ у

Задание . На основе данных, скорректированных на инфляцию, о прибыли компании за 12 кварталов (табл.) построить мультипликативной модель тренда и сезонности для прогнозирования прибыли компании на следующие два квартала. Дать общую характеристику точности модели и сделать выводы.

Решение проводим с помощью калькулятора Построение мультипликативной модели временного ряда .
Общий вид мультипликативной модели следующий:
Y = T x S x E
Эта модель предполагает, что каждый уровень временного ряда может быть представлен как сумма трендовой (T), сезонной (S) и случайной (E) компонент.
Рассчитаем компоненты мультипликативной модели временного ряда.
Шаг 1 . Проведем выравнивание исходных уровней ряда методом скользящей средней. Для этого:
1.1. Найдем скользящие средние (гр. 3 таблицы). Полученные таким образом выровненные значения уже не содержат сезонной компоненты.
1.2. Приведем эти значения в соответствие с фактическими моментами времени, для чего найдем средние значения из двух последовательных скользящих средних – центрированные скользящие средние (гр. 4 табл.).

t y t Скользящая средняя Центрированная скользящая средняя Оценка сезонной компоненты
1 375 - - -
2 371 657.5 - -
3 869 653 655.25 1.33
4 1015 678 665.5 1.53
5 357 708.75 693.38 0.51
6 471 710 709.38 0.66
7 992 718.25 714.13 1.39
8 1020 689.25 703.75 1.45
9 390 689.25 689.25 0.57
10 355 660.5 674.88 0.53
11 992 678.25 669.38 1.48
12 905 703 690.63 1.31
13 461 685 694 0.66
14 454 690.5 687.75 0.66
15 920 - - -
16 927 - - -

Шаг 2 . Найдем оценки сезонной компоненты как частное от деления фактических уровней ряда на центрированные скользящие средние (гр. 5 табл.). Эти оценки используются для расчета сезонной компоненты S. Для этого найдем средние за каждый период оценки сезонной компоненты S j . Сезонные воздействия за период взаимопогашаются. В мультипликативной модели это выражается в том, что сумма значений сезонной компоненты по всем кварталам должна быть равна числу периодов в цикле. В нашем случае число периодов одного цикла равно 4.
Показатели 1 2 3 4
1 - - 1.33 1.53
2 0.51 0.66 1.39 1.45
3 0.57 0.53 1.48 1.31
4 0.66 0.66 - -
Всего за период 1.74 1.85 4.2 4.28
Средняя оценка сезонной компоненты 0.58 0.62 1.4 1.43
Скорректированная сезонная компонента, S i 0.58 0.61 1.39 1.42

Для данной модели имеем:
0.582 + 0.617 + 1.399 + 1.428 = 4.026
Корректирующий коэффициент: k=4/4.026 = 0.994
Рассчитываем скорректированные значения сезонной компоненты S i и заносим полученные данные в таблицу.
Шаг 3 . Разделим каждый уровень исходного ряда на соответствующие значения сезонной компоненты. В результате получим величины T x E = Y/S (гр. 4 табл.), которые содержат только тенденцию и случайную компоненту.
Находим параметры уравнения методом наименьших квадратов .
Система уравнений МНК:
a 0 n + a 1 ∑t = ∑y
a 0 ∑t + a 1 ∑t 2 = ∑y t
Для наших данных система уравнений имеет вид:
16a 0 + 136a 1 = 10872.41
136a 0 + 1496a 1 = 93531.1
Из первого уравнения выражаем а 0 и подставим во второе уравнение
Получаем a 0 = 3.28, a 1 = 651.63
Среднее значения
overline{y} = {sum{}{}{}y_{i}}/{n} = {10872.41}/{16} = 679.53
t y t 2 y 2 t y y(t) (y-y cp) 2 (y-y(t)) 2
1 648.87 1 421026.09 648.87 654.92 940.05 36.61
2 605.46 4 366584.89 1210.93 658.2 5485.32 2780.93
3 625.12 9 390770.21 1875.35 661.48 2960.37 1322.21
4 715.21 16 511519.56 2860.82 664.76 1273.1 2544.83
5 617.72 25 381577.63 3088.6 668.04 3819.95 2532.22
6 768.66 36 590838.18 4611.96 671.32 7944.97 9474.64
7 713.6 49 509219.75 4995.17 674.6 1160.83 1520.44
8 718.73 64 516571.58 5749.83 677.88 1536.93 1668.26
9 674.82 81 455381.82 6073.38 681.17 22.14 40.28
10 579.35 100 335647.52 5793.51 684.45 10034.93 11045.26
11 713.6 121 509219.75 7849.56 687.73 1160.83 669.14
12 637.7 144 406656.13 7652.35 691.01 1749.71 2842.39
13 797.67 169 636280.07 10369.73 694.29 13958.53 10687.5
14 740.92 196 548957.15 10372.83 697.57 3768.85 1878.69
15 661.8 225 437983.3 9927.05 700.85 314.08 1524.97
16 653.2 256 426667.57 10451.17 704.14 693.14 2594.6
136 10872.41 1496 7444901.2 93531.1 10872.41 56823.71 53162.96

Шаг 4 . Определим компоненту T данной модели. Для этого проведем аналитическое выравнивание ряда (T + E) с помощью линейного тренда. Результаты аналитического выравнивания следующие:
T = 651.634 + 3.281t
Подставляя в это уравнение значения t = 1,...,16, найдем уровни T для каждого момента времени (гр. 5 табл.).

t y t S i y t /S i T TxS i E = y t / (T x S i) (y t - T*S) 2
1 375 0.58 648.87 654.92 378.5 0.99 12.23
2 371 0.61 605.46 658.2 403.31 0.92 1044.15
3 869 1.39 625.12 661.48 919.55 0.95 2555.16
4 1015 1.42 715.21 664.76 943.41 1.08 5125.42
5 357 0.58 617.72 668.04 386.08 0.92 845.78
6 471 0.61 768.66 671.32 411.36 1.14 3557.43
7 992 1.39 713.6 674.6 937.79 1.06 2938.24
8 1020 1.42 718.73 677.88 962.03 1.06 3359.96
9 390 0.58 674.82 681.17 393.67 0.99 13.45
10 355 0.61 579.35 684.45 419.4 0.85 4147.15
11 992 1.39 713.6 687.73 956.04 1.04 1293.1
12 905 1.42 637.7 691.01 980.66 0.92 5724.7
13 461 0.58 797.67 694.29 401.25 1.15 3569.68
14 454 0.61 740.92 697.57 427.44 1.06 705.39
15 920 1.39 661.8 700.85 974.29 0.94 2946.99
16 927 1.42 653.2 704.14 999.29 0.93 5225.65

Шаг 5 . Найдем уровни ряда, умножив значения T на соответствующие значения сезонной компоненты (гр. 6 табл.).
Расчет ошибки в мультипликативной модели производится по формуле:
E = Y/(T * S) = 16
Для сравнения мультипликативной модели и других моделей временного ряда можно использовать сумму квадратов абсолютных ошибок:
Среднее значения
overline{y} = {sum{}{}{}y_{i}}/{n} = {10874}/{16} = 679.63
16 927 61194.39 136 10874 1252743.75

R^{2} = 1 - {43064.467}/{1252743.75} = 0.97
Следовательно, можно сказать, что мультипликативная модель объясняет 97% общей вариации уровней временного ряда.
Проверка адекватности модели данным наблюдения.
F = {R^{2}}/{1 - R^{2}}{(n - m -1)}/{m} = {0.97^{2}}/{1 - 0.97^{2}}{(16-1-1)}/{1} = 393.26
где m - количество факторов в уравнении тренда (m=1).
Fkp = 4.6
Поскольку F > Fkp, то уравнение статистически значимо
Шаг 6 . Прогнозирование по мультипликативной модели. Прогнозное значение F t уровня временного ряда в мультипликативной модели есть сумма трендовой и сезонной компонент. Для определения трендовой компоненты воспользуемся уравнением тренда:T = 651.634 + 3.281t
Получим
T 17 = 651.634 + 3.281*17 = 707.416
Значение сезонного компонента за соответствующий период равно: S 1 = 0.578
Таким образом, F 17 = T 17 + S 1 = 707.416 + 0.578 = 707.994
T 18 = 651.634 + 3.281*18 = 710.698
Значение сезонного компонента за соответствующий период равно: S 2 = 0.613
Таким образом, F 18 = T 18 + S 2 = 710.698 + 0.613 = 711.311
T 19 = 651.634 + 3.281*19 = 713.979
Значение сезонного компонента за соответствующий период равно: S 3 = 1.39
Таким образом, F 19 = T 19 + S 3 = 713.979 + 1.39 = 715.369
T 20 = 651.634 + 3.281*20 = 717.26
Значение сезонного компонента за соответствующий период равно: S 4 = 1.419
Таким образом, F 20 = T 20 + S 4 = 717.26 + 1.419 = 718.68

Пример . На основе поквартальных данных построена мультипликативная модель временного ряда . Скорректированные значения сезонной компоненты за первые три квартала равны: 0,8 - I квартал, 1,2 - II квартал и 1,3 - III квартал. Определите значение сезонной компоненты за IV квартал.
Решение. Поскольку сезонные воздействия за период (4 квартала) взаимопогашаются, то имеем равенство: s 1 + s 2 + s 3 + s 4 = 4. Для наших данных: s 4 = 4 - 0.8 - 1.2 - 1.3 = 0.7.
Ответ: Сезонная компонента за IV квартал равна 0.7.



Поделиться