Химическая промышленность и химические технологии. Химическая технология Сообщение на тему современные технологии в химии

В условиях постоянного развития науки и промышленности химия и химическая технология предлагают миру постоянные инновации. Как правило, их суть заключается в совершенствовании методов переработки сырья в предметы потребления и/или средства производства. Происходит это благодаря целому ряду процессов.

Новые химические технологии позволяют:

  • вводить в хозяйственную деятельность новые виды сырья и материалов;
  • перерабатывать абсолютно все виды сырья;
  • заменять дорогостоящие компоненты более дешевыми аналогами;
  • комплексно использовать материалы: получать из одного вида сырья разные продукты и наоборот;
  • рационально расходов, вторичная переработка.

Можно сказать, что общая химическая технология, во многом перераспределяет и регулирует производственные процессы, что на сегодняшний день очень актуально в силу множества положительных факторов, имеющих значение для людей, связанных с промышленностью.

Классификация и описание подотраслей

Химические технологии можно классифицировать по типам веществ, с которыми ведется работа: органическими и неорганическими. Специфика работы зависит от поставленных задач и особенностей сферы, на которую ориентирован конечный продукт.

Химическая технология неорганических веществ - это например, производство кислот, соды, щелочей, силикатов, минеральных удобрений и солей. Все эти продукты широко используются в разных отраслях промышленности, в частности, металлургии, а также в сельском хозяйстве и др.

В фармацевтике и машиностроении часто используют каучуки, спирт, пластмассы, различные красители и т.д. Их производством занимаются предприятия, использующиетехнологии получения органических веществ. Многие из этих предприятий занимают серьезные позиции в отрасли и совей работой существенно влияют на экономику государства.

Абсолютно все процессы и аппараты химической технологии подразделяются на пять основных групп:

  • гидромеханические;
  • тепловые;
  • диффузионные;
  • химические;
  • механические.

В зависимости от особенностей организации, процессы химической технологии бывают непрерывные и периодические.

Современные задачи химической технологии

В связи с повышением интереса к экологической ситуации в мире возрос спрос на инновации, способные оптимизировать процессы производства, уменьшить объемы расходуемого сырья. Это касается также энергетических затрат. Данный вид ресурсов является очень ценным в рамках производства, потому за его расходованием необходимо следить и по возможности минимизировать. С этой целью сегодня активно разрабатываются и внедряются энерго- и ресурсосберегающие процессы в химической технологии. С их помощью производство рационализируют, предотвращая чрезмерные затраты расходных материалов разных категорий. Таким образом, уменьшается вредное воздействие технологий химического производства и антропогенных факторов на природу.

Химическая технология в промышленности на сегодняшний день стала неотъемлемой частью процессов изготовления конечного продукта. Сложно оспорить тот факт, что именно эта сфера человеческой деятельности оказывает наиболее пагубное влияние на состояние планеты в целом. Именно поэтому ученые делают все возможное для предотвращения экологической катастрофы, хотя темпы популяризации и внедрения таких разработок все еще недостаточны.

Применение современных химических технологий способствует улучшению состояния природы, минимизируя объемы используемых в производстве материалов, обеспечивая замену токсичных веществ более безопасными и внедрение в производство новых соединений и т.д. В задачей является восстановление ущерба, нанесенного окружающей среде: истощение ресурсов планеты, загрязнение атмосферы. На протяжении последних лет особенно активно проводятся различные исследования в сфере экологии и рационализации влияния производств на окружающую среду. Обязательный характер приобретает совмещение эффективной деятельности предприятия с безопасностью и нетоксичностью конечных продуктов.

Теоретические основы химической технологии

По мере развития смежных отраслей, подвергаются постоянной модернизации и обновлению основные процессы и аппараты химической технологии, глубже изучаются основные аспекты производства, принципы их работы и эксплуатация машин, используемых для выполнения операций. Базу таких дисциплин составляют теоретические основы химической технологии.

В государствах, признанных мировыми лидерами, обучение студентов на технических специальностях именно в этом направлении считается наиболее важным. Причиной тому, во-первых, определяющая роль процессного инжиниринга в деятельности химической промышленности. А во-вторых, растущее значение данной дисциплины на межотраслевом уровне.

Несмотря на существенные отличия между разными отраслями промышленности, в их основе лежат одни и те же принципы, вписываются различные физические закономерности, химические процессы, тесно взаимосвязанные с современными инженерными отраслями, в том числе материаловедением. Химические технологии за последние годы глубоко проникли даже в те сферы, где допустить их присутствие никому не приходит в голову. Таким образом, на современных рынках все чаще заходит речь о роли процессного инжиниринга в более глобальном смысле, нежели в рамках операций одной отрасли.

Основы химической технологии в отечественном образовании

Успешное развитие той или иной отрасли невозможно при отсутствии качественных учебных заведений, выпускающих квалифицированных специалистов. Поскольку химическая промышленность является важной составляющей экономики страны, требуется создать все необходимые условия для подготовки ценных кадров в этой сфере. На сегодняшний день основы химической технологии являются частью обязательной программы по смежным специальностям во многих высших учебных заведениях по всему миру.

К сожалению, принципы обучения техническим направлениям в России и некоторых странах СНГ кардинально отличаются от методик, принятых в европейских странах и Америке. Это, как правило, негативно сказывается на качестве высшего образования. Например, основные акценты все еще делаются на узких химико-технологических специальностях, а также много внимания уделяется конструкторско-эксплуатационным отраслям механики. Столь узкопрофильные характеристики высшего образования стали основной причиной отставания отечественных производств от зарубежных по таким критериям, как качество продукции, ресурсоемкость, экологичность и т.д.

Основная ошибка состояла в недооцененности процессного инжиниринга как системообразующей и всесторонне применимой дисциплины, и на данный момент основная задача отечественной промышленности - уделять намного больше внимания ее освоению и развитию. На сегодняшний день вопросы подготовки квалифицированных кадров, а также налаживания и оптимизации производства - наиболее насущные проблемы на территории СНГ и РФ в частности.

  1. 1. Введение3
  2. 2. Химическая промышленность3
  3. 3. Химическая технология7
  4. 4. Заключение8

Список литературы9

Введение

Химическая промышленность — вторая после электронной ведущая отрасль индустрии, которая наиболее быстро обеспечивает внедрение достижений научно-технического прогресса во все сферы хозяйства и способствует ускорению развития производительных сил в каждой стране. Особенность современной химической промышленности — ориентация главных наукоемких производств (фармацевтического, полимерных материалов, реагентов и особо чистых веществ), а также продукции парфюмерно-косметической, бытовой химии и т.д. на обеспечение повседневных нужд человека и его здоровья.

Развитие химической промышленности обусловило процесс химизации народного хозяйства. Он предполагает повсеместное широкое использование продукции отрасли, всемерное внедрение химических процессов в разные отрасли хозяйства. Такие отрасли промышленности, как нефтепереработка, тепловая энергетика (кроме АЭС), целлюлозно-бумажная, черная и цветная металлургия, полу-чение строительных материалов (цемент, кирпич и т.д.), а также мно-гие производства пищевой промышленности основаны на использо-вании химических процессов изменения структур исходного веще-ства. При этом они зачастую нуждаются в продукции самой хими-ческой промышленности, т.е. тем самым стимулируют ее ускоренное развитие.

Химическая промышленность

Химическая промышленность — отрасль промышленности, включающая производство продукции из углеводородного, минерального и другого сырья путём его химической переработки. Валовый объём производства химической промышленности в мире составляет около 2 трлн. долл. Объем промышленного производства химической и нефтехимической промышленности России в 2004 году составил 528156 млн. рублей.

Химическая промышленность выделилась в отдельную отрасль с началом промышленного переворота. Первые заводы по производству серной кислоты — важнейшей из минеральных кислот, применяемых человеком, были построены в 1740 (Великобритания, Ричмонд), в 1766 (Франция, Руан), в 1805 (Россия, Подмосковье), в 1810 (Германия, Лейпциг). Для обеспечения потребностей развивающихся текстильной и стекольной промышленности возникло производство кальцинированной соды. Первые содовые заводы появились в 1793 (Франция, Париж), в 1823 (Великобритания, Ливерпуль), в 1843 (Германия, Шёнебек-на-Эльбе), в 1864 (Россия, Барнаул). С развитием в середине XIX в. сельского хозяйства появились заводы искусственных удобрений: в 1842 в Великобритании, в 1867 в Германии, в 1892 в России.

Сырьевые связи, раннее возникновение индустрии способствовали становлению Великобритании, как мирового лидера в химическом производстве, на протяжении трёх четвертей XIX в. С конца XIX в. с ростом потребности экономик в органических веществах лидером в химической промышленности становится Германия. Благодаря быстрому процессу концентрации производств, высокому уровню научно-технического развития, активной торговой политике Германия к началу XX в. завоёвывает мировой рынок химической продукции. В США химическая промышленность начала развиваться позже, чем в Европе, но уже к 1913 по объёму производства химической продукции США заняли и с тех пор удерживают 1-е место в мире среди государств. Этому способствуют богатейшие запасы полезных ископаемых, развитая транспортная сеть, мощный внутренний рынок. Лишь к концу 80-х годов химическая индустрия стран ЕС в общем исчислении превысила объёмы производства в США.

Таблица 1

Подотрасли химической промышленности

Подотрасль

Неорганическая химия

Производство аммиака, Содовые производства, Сернокислотные производства

Органическая химия

Акрилонитрил, Фенол, Окись этилена, Карбамид

Керамика

Силикатные производства

Нефтехимия

Бензол, Этилен, Стирол

Агрохимия

Удобрения, Пестициды, Инсектициды, Гербициды

Полимеры

Полиэтилен, Бакелит, Полиэстер

Эластомеры

Резина, Неопрен, Полиуретаны

Взрывчатые вещества

Нитроглицерин, Нитрат аммония, Нитроцеллюлоза

Фармацевтическая химия

Лекарственные препараты: Синтомицин, Таурин, Ранитидин...

Парфюмерия и косметика

Кумарин, Ванилин, Камфора

Все отмеченные специфические особенности химической промышленности оказывают в настоящее время большое влияние на структуру отрасли. В химической промышленности увеличивается доля наукоемкой продукции высокой стоимости. Получение многих видов массовой продукции, требующей боль-ших затрат сырья, энергии, воды и небезопасной для окружающей среды, стабилизируется или даже сокращается. Однако, процессы структурной перестройки идут по-разному в отдельных группах го-сударств и регионов. Это оказывает заметное воздействие на геогра-фию тех или иных групп производств в мире.

Наибольшее воздействие на развитие хозяйства мира и условия повседневной жизни человеческого общества оказали во второй по-ловине XX в. полимерные материалы, продукция их переработки.

Промышленность полимерных материалов. На нее и производство исходных для синтеза видов углеводородов, полупродуктов из них при-ходится от 30 до 45% стоимости продукции химической промышлен-ности развитых стран мира. Это — основа всей отрасли, ее ядро, тесно связанное практически со всеми химическими производствами. Сырье для получения исходных углеводородов, полупродуктов и самих полимеров — главным образом нефть, попутный и природный газ. Их потребление для производства этого широкого круга продук-тов сравнительно невелико: всего 5-6% добываемой в мире нефти и 5—6% природного газа.

Промышленность пластмасс и синтетических смол. Синтетические смолы в основном идут для получения химических волокон, а пластмассы чаще всего являются исходными конструкционными матери-алами. Это предопределяет использование их во многих сферах промышленности, строительства, а также изделий из них в быту. Мно-жество видов пластмасс, еще большее количество их марок создано в последние десятилетия. Выделяется целый класс пластмасс про-мышленного назначения для самых ответственных изделий в маши-ностроении (фторопласты и др.).

Промышленность химических волокон революционизировала всю легкую промышленность. В 30-е гг. роль химических волокон в струк-туре текстильных была ничтожна: 30% их составляла шерсть, около 70% — хлопок и другие волокна растительного происхождения. Химические во-локна все шире используются в технических целях. Сфера их применения в хозяйстве и бытовом потреблении непрерыв-но растет.

Промышленность синтетического каучука. Спрос на резинотехнические изделия в мире (одних только автомобильных покрышек производится ежегодно 1 млрд.) все в большей степени обеспечиваете использованием синтетического каучука. На его долю приходится 2/3 всего получения натурального и синтетического каучуков. Производ-ство последнего имеет целый ряд преимуществ (меньше затраты средств на сооружение заводов, чем на создание плантаций; меньше затрат труда на его заводское получение; более низкая цена по срав-нению с натуральным каучуком и т.д.). Поэтому его выпуск сложился более чем в 30 государствах.

Промышленность минеральных удобрений. Использование азотных, фосфорных и калийных удобрений во многом определяет уровень раз-вития сельского хозяйства стран и регионов. Минеральные удобрения являются самой массовой продукцией химической промышленности.

Фармацевтическая промышленность приобретает исключительно большое значение для охраны здоровья увеличивающегося населения планеты. Растущая потребность в ее продукции обусловлена:

1) быстрым старением населения, прежде всего во многих про-мышленных государствах мира, что требует внедрения новых слож-ных препаратов в лечебную практику;

2) увеличением сердечно-сосудистых и онкологических заболева-ний, а также появлением новых болезней (СПИД), для борьбы с ко-торыми требуются все более эффективные препараты;

3) созданием новых поколений лекарств ввиду приспособления микроорганизмов к старым их формам.

Резинотехническая промышленность. Продукция этой отрасли все более ориентируется на обеспечение потребностей населения.

Помимо множества бытовых резиновых изделий (коврики, игрушки, шланги, обувь, мячи и т.д.), которые стали обычными потребительскими товарами, растет спрос на комплектующие детали из резины для очень многих видов продукции машиностроения. Сюда относятся средства наземного безрельсового транспорта: покрышки для автомобиля, велосипеда, тракторов, шасси самолетов и т.д. Резиновые изделия, такие как трубопроводы, прокладки, изоляторы и другие, необходимы для многих видов продукции. Этим объясняется обширнейший ассортимент резинотехнических изделий (он превыша-ет 0,5 млн. наименований).

Среди наиболее массовых изделий отрасли выделяется производ-ство покрышек (шин) для разных видов транспорта. Выпуск этих из-делий определяется количеством изготавливаемых в мире транспорт-ных средств, исчисляемых многими десятками миллионов единиц каждого из них. На производство покрышек расходуется 3/4 нату-рального и синтетического каучуков, значительная часть синтетичес-ких волокон, идущих на производство кордной ткани — каркаса шин. Кроме того, для получения резины в качестве наполнителя необхо-димы различные виды сажи — также продукта одной из отраслей хи-мической промышленности — сажевой. Все это определяет тесную взаимосвязь резиновой промышленности с другими отраслями хими-ческой.

Об уровне развития экономики страны можно судить по уровню развития химической промышленности. Она снабжает хозяйство сырьем и материалами, дает возможность применять новые технологические процессы во всех отраслях хозяйства. Внутриотраслевой состав химической промышленности очень сложный:

1) основная химия,

2)химия органического синтеза.

Фармацевтика, фотохимия, бытовая химия, парфюмерия относятся к тонкой химии и могут использовать как органическое, так и неорганическое сырье. Межотраслевые связи химической промышленности обширны - нет такой отрасли хозяйства, с которой она не была бы связана. Научный комплекс, электроэнергетика, металлургия, топливная промышленность, легкая промышленность - химия - текстильная промышленность, сельское хозяйство, пищевая промышленность, строительство, машиностроение, ВПК. Химическая промышленность может использовать разнообразное сырье: нефть, газ, уголь, лес, полезные ископаемые, даже воздух. Следовательно, располагаться химические предприятия могут повсеместно. География химической промышленности обширна: производство калийных удобрений тяготеет к районам добычи сырья, производство азотных удобрений - к потребителю, производство пластмасс, полимеров, волокон, каучука - к районам переработки нефтяного сырья. Химическая промышленность — одна из передовых отраслей научно-технической революции, наряду с машиностроением эта самая динамичная отрасль современной индустрии.

Основные черты размещения сходны с чертами размещения машиностроения; в мировой химической промышленности сложились 4 главных региона. Самый крупный из них — Западная Европа. Особенно быстрыми темпами во многих странах региона химическая промышленность стала развиваться после Второй Мировой войны, когда в структуре отрасли стала лидировать нефтехимия. В результате, центры нефтехимии и нефтепереработки располагаются в морских портах и на трассах магистральных нефтепроводов.

Второй по значению регион — США, где химическая промышленность характеризуется большим разнообразием. Основным фактором размещения предприятий стал сырьевой фактор, что во многом способствовало территориальной концентрации химических производств. Третий регион — Восточная и Юго-Восточная Азия, особенно важную роль играет Япония (с мощной нефтехимией на базе привозной нефти). Растет также значение Китая и новых индустриальных стран, которые специализируются в основном на производстве синтетических продуктов и полуфабрикатов.

Четвертый регион — страны СНГ, располагающие разнообразной химической промышленностью, ориентированной как на сырьевой, так и на энергетический фактор.

Химическая технология

Химическая технология — это наука о процессах и методах химической переработки сырья и промежуточных продуктов.

Оказывается, все процессы, связанные с переработкой и получением веществ, несмотря на их внешнее многообразие, делятся на несколько родственных, однотипных групп, в каждой из них применяются сходные аппараты. Всего таких групп 5 — это химические, гидромеханические, тепловые, массообменные и механические процессы.

В любом химическом производстве мы встречаем одновременно все или почти все перечисленные процессы. Рассмотрим, например, технологическую схему, в которой получают продукт С из двух исходных жидких компонентов А и В по реакции: А + В—С.

Исходные компоненты проходят через фильтр, в котором очищаются от твердых частиц. Затем насосом они подаются в реактор, предварительно нагреваясь до температуры реакции в теплообменнике. Продукты реакции, включающие в себя компонент и примеси непрореагировавших компонентов, направляются на разделение в ректификационную колонну. По высоте колонны происходит многократный обмен компонентами между стекающей жидкостью и поднимающимися из кипятильника парами. При этом пары обогащаются компонентами, имеющими меньшую температуру кипения, чем продукт. Выходящие из верхней части колонны пары компонентов конденсируются в дефлегматоре. Часть конденсата возвращается в реактор, а другая часть (флегма) направляется на орошение ректификационной колонны. Чистый продукт выводится из кипятильника, охлаждаясь до нормальной температуры в теплообменнике.

Установление закономерностей каждой из групп процессов химической технологии открыло зеленый свет перед химической промышленностью. Ведь теперь расчет любого, самого нового химического производства выполняется по известным методикам и почти всегда можно использовать серийно выпускаемые аппараты.

Быстрое развитие химической технологии стало основой химизации народного хозяйства нашей страны. Создаются новые отрасли химического производства, а главное, процессы и аппараты химической технологии широко внедряются в другие отрасли народного хозяйства и в быт. Они лежат в основе производства удобрений, строительных материалов, бензина и синтетических волокон. Любое современное производство, независимо от того, что оно выпускает — автомобили, самолеты или детские игрушки, не обходится без химической технологии.

Одна из наиболее интересных задач, которая может быть решена с помощью химической технологии в недалеком будущем,— использование ресурсов Мирового океана. Вода океана содержит практически все элементы, необходимые человеку. В ней растворены 5,5 млн. т золота и 4 млрд. т урана, огромные количества железа, марганца, магния, олова, свинца, серебра и других элементов, запасы которых на суше истощаются. Но для этого необходимо создать совершенно новые процессы и аппараты химической технологии.

Заключение

Химическая промышленность, как и машиностроение, — одна из самых сложных по своей структуре отраслей промышленности. В ней четко выделяются полупродуктовые отрасли (основной химии, органи-ческой химии), базовые (полимерных материалов — пластмасс и син-тетических смол, химических волокон, синтетического каучука, мине-ральных удобрений), перерабатывающие (синтетических красителей лаков и красок, фармацевтическая, фотохимическая, реактивов, быто-вой химии, изделий резинотехники). Ассортимент ее продукции — около 1 млн. наименований, видов, типов, марок продукции.

Хими́ческая техноло́гия — наука о наиболее экономичных и экологически целесообразных методах и средствах переработки сырых природных материалов в продукты потребления и промежуточные продукты.

Подразделяется на технологию неорганических веществ (производство кислот, щелочей, соды, силикатных материалов, минеральных удобрений, солей и т. д.) и технологию органических веществ (синтетический каучук, пластмассы, красители, спирты, органические кислоты и др.);

Список литературы

  1. 1. Доронин А. А. Новое открытие американских химиков. / Коммерсантъ, №56, 2004г.
    1. 2. Килимник А. Б. Физическая химия: Учебное пособие. Тамбов: Изд-во Тамб. гос. техн. ун-та, 2005. 80 с.
    2. 3. Ким А.М., Органическая химия, 2004
      1. 4. Перепелкин К. Е. Полимерные композиты на основе химических волокон, их основные виды, свойства и применение / Технический текстиль №13, 2006
    3. 5. Травень В.Ф. Органическая химия: Учебник для вузов в 2-х томах. - М.: Академкнига, 2004. - Т.1. - 727 с., Т.2. - 582 с.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

ВОЛЖСКИЙ ПОЛИТЕХНИЧЕСКИЙ ИНСТИТУТ (ФИЛИАЛ) ВОЛГОГРАДСКОГО ГОСУДАРСТВЕННОГО ТЕХНИЧЕСКОГО УНИВЕРСИТЕТА

КАФЕДРА ОБЩАЯ ХИМИЧЕСКАЯ ТЕХНОЛОГИЯ И БИОТЕХНОЛОГИЯ.

ИНДИВИДУАЛЬНАЯ РАБОТА

Тема: Новые материалы в химии и возможности их применения

Выполнил:

студент гр. ВЭ-111

Кузнецова О.В.

Проверил:

Иванкина. О.М.

Волжский, 2008г

Введение

1. Полимерные материалы

2. Синтетические ткани

3. Сохранение и замена материалов

6. Оптические материалы

Список литературы

Введение

Материалы - это вещества, из которых изготавливается различная продукция: изделия и устройства, машины и самолеты, мосты и здания, космические аппараты и микроэлектронные схемы, ускорители заряженных частиц и атомные реакторы, одежда, обувь и д.р. Для каждого вида продукции нужны свои материалы с вполне определенными характеристиками. К свойствам материалов всегда предъявлялись и предъявляются высокие требования.

Современные технологии позволяют производить множество разнообразных высококачественных материалов, однако проблема создания новых материалов с лучшими свойствами остается актуальной и по сей день.

При поиске нового материала с заданными свойствами важно установить его состав и структуру, а также обеспечить условия для управления ими.

В последние десятилетия синтезированы материалы, обладающие удивительными свойствами, например, материалы тепловых экранов для космических аппаратов, высокотемпературные сверхпроводники и т. п. Вряд ли можно перечислить все виды современных материалов. С течением времени их число постоянно возрастает.

Многие конструкционные элементы современных самолетов изготовлены из композиционных полимерных материалов. Одни из таких материалов - кевлар по важному показателю - отношению прочность/масса - превосходит многие материалы, в том числе и самую высококачественную сталь.

1. Полимерные материалы

полимер синтетическая ткань

Пластмассы - это материалы на основе природных или синтетических полимеров, способные приобретать заданную форму при нагревании под давлением и устойчиво сохранять ее после охлаждения. Помимо полимера пластмассы могут содержать наполнители, стабилизаторы, пигменты и другие компоненты. Иногда употребляются другие названия пластмасс - пластики, пластические массы.

Полимеры построены из макромолекул, состоящих из многочисленных малых основных молекул - мономеров. Процесс их образования зависит от многих факторов, вариаций и комбинации которых позволяют получить множество разновидностей полимерной продукции с различными свойствами. Основные процессы образования макромолекул - полимеризация и поликонденсация.

Изменяя структуру молекул и их разнообразные комбинации, можно синтезировать пластмассы с заданными свойствами. Примером можно синтезировать пластмассы с заданными свойствами. Примером может служить АБС - полимер. В его состав входят три основных мономера: акрилонитрат (А), бутадиен (Б) и стирол (С). Первый из них обеспечивает химическую устойчивость, второй - сопротивление удару и третий - твердость и легкость термопластической обработки. Основное значение данных полимеров - замена металлов в различных конструкциях.

Наиболее перспективными материалами с высокой термостойкостью оказались ароматические и гетероароматические структуры с прочным бензольным кольцом: полифениленсульфид, ароматические полиамиды, фторполимеры и др. Данные материалы можно эксплуатировать при температуре 200 - 400 градусов. Главные потребители термостойких пластмасс - авиационная и ракетная техника.

2. Синтетические ткани

С начала ХХ в. химические технологии стали ориентироваться на создание новых волокнистых материалов. К настоящему времени многообразные искусственные волокна изготавливаются в основном из 4 видов химических материалов: целлюлозы (вискозы), полиамида, полиакрилонитрила и полиэфиров.

Объем производства синтетических материалов для изготовителя одежды определяется потребительским спросом, в котором за последние годы наметилась тенденция к снижению. В связи с этим одна из важнейших задач химиков - приблизить по свойствам и качеству искусственные материалы к естественным.

Новшества сегодняшнего дня затронули геометрию волокон. Изготовители текстильного сырья стремятся сделать нити возможно тоньше.

Появились и пустотелые волокна. Они лучше противостоят холоду. Если такое волокно в сечении не круглое, а овальное, то ткань из него легче удаляет с кожи пот.

Одна из разновидностей синтетики - кевлар. Он в 5 раз прочнее на разрыв, чем сталь, и используется для изготовления пуленепробиваемых курток. Излюбленный материал модельеров - эластик - удобен не только в спортивной одежде, но и повседневных костюмах. Существует ткань, в основе которой размещены мельчайшие стеклянные шарики, отражающие свет. Одежда из нее - хорошая защита для тех, кто ночью находится на улице.

Оригинальна технология изготовления ткани для одежды космонавта, которая способна уберечь его за пределами атмосферы от леденящего холода космоса и палящей жары Солнца. Секрет такой одежды в миллионах микроскопических капсул, встроенных в ткань или пенопласт - массу.

Современные ткани часто состоят из несколько слоев, например, из металлической фольги, пряжи и волокна, удаляющие пот.

Новейшие ткани открыли дорогу современной технологии изготовления одежды.

3. Замена материалов

На смену старым материалам приходят новые. Это происходит обычно в 2 случаях: когда возникает дефицит старого материала и когда новый материал более эффективен. Материал - заместитель должен обладать лучшими свойствами. Например, к материалам - заменителям можно отнести пластмассы, хотя считать их определенно новыми материалами вряд ли возможно. Пластмассы могут заменить металл, дерево, кожу и другие материалы.

Не менее сложной является проблема замены цветных металлов. Во многих странах идут по пути экономного, рационального их потребления. Преимущества пластмасс для многих сфер применений вполне очевидны: одна тонна пластмасс в машиностроении экономит 5 - 6 тонн металлов. В производстве, например, пластмассовых винтов, зубчатых колес и др. сокращается число операций обработки, повышается производительность труда на 300-1000%. При обработке металлов материал используется на 70%, а при изготовлении изделий из пластмасс - на 90-95%.

Замена древесины началась в первой половине 20 века. Прежде всего, появилась фанера, а позднее - древесноволокнистые и древесностружечные плиты. В последние десятилетия древесина стала вытесняться алюминием и пластмассами. В качестве примеров можно назвать игрушки, предметы быта, лодки, строительные конструкции и т.п. В то же время наблюдается тенденция увеличения потребительского спроса на товары, изготовленные из древесины.

В дальнейшем пластмассы будут заменяться композиционными материалами, разработке которых уделяется большое внимание.

4. Сверхпрочные и термостойкие материалы

Ассортимент материалов различного назначения постоянно расширяется. Последнее десятилетие создана естественно - научная база для разработки принципиально новых материалов с заданными свойствами. Например, сталь, содержащая 18 % никеля, 8% кобальта и 3 - 5% молибдена, отличается высокой прочностью - отношение прочности к плотности для нее в несколько раз больше, чем для некоторых алюминиевых и титановых сплавов. Преимущественная область ее применения - авиационная и ракетная техника.

Продолжается поиск новых высокопрочных алюминиевых сплавов. Плотность их сравнительно не велика и применяются они при относительно не высоких температурах - примерно до 320 градусов. Для высокотемпературных условий подходят титановые сплавы, обладающие высокой коррозионной стойкостью.

Идет дальнейшее развитие порошковой металлургии. Прессование металлических и других порошков - один из перспективных способов повышения прочности и улучшения других свойств прессуемых материалов.

В последние десятилетие большое внимание уделяется разработке композиционных материалов, т.е. материалов, состоящих из компонентов с различными свойствами. В таких материалах содержится основа, в которой распределены усиливающие элементы: волокна, частицы и т.п. Композиты могут включать стекло, металл, дерево, искусственные вещества, в том числе и пластмассы. Большое число возможных комбинаций компонентов позволяет получить разнообразные композиционные материалы.

При комбинировании поли - и монокристаллических нитей с полимерными матрицами (полиэфирами, фенольными и эпоксидными смолами) получаются материалы, которые по прочности не уступают, стали, но легче ее в 4 - 5 раз.

Материалом будущего станет такой, который будет не только сверхпрочным, но и стойким при длительном воздействии агрессивной среды.

Создание термостойких материалов - одна из важнейших задач развития современных химических технологий.

К настоящему времени разработаны перспективные способы изготовления термостойких материалов. К ним относятся: имплантация ионов, на какой - либо поверхности; плазменный синтез; плавление и кристаллизация в отсутствии гравитации; напыление на поликристаллические, аморфные и кристаллические поверхности с помощью молекулярных пучков; химическая конденсация из газовой фазы в тлеющем плазменном разряде и др.

С применением современных технологий получены, например, нитрид кремния и силицид вольфрама - термостойкие материала для микроэлектроники. Нитрид кремния обладает превосходным электроизолирующим свойствами даже при небольшой толщине слоя-менее 0,2мкм. Силицид вольфрама отличается весьма малым электрическим сопротивлением. Данные материалы в виде тонкой пленки напыляются на элементы интегральных схем. Напыление производится методом плазменного осаждения на менее термостойкую подложку без заметного изменения ее свойств.

Представляет практический интерес способ получения новых керамических материалов для изготовления, например, цельнокерамического блока цилиндров двигателя внутреннего сгорания. Данный способ заключается в отливке кремнийсодержащего полимера в форму заданной конфигурации с последующим нагреванием, при котором полимер превращается в термостойкий и прочный карбид или нитрид кремния.

Новые технологии позволяют синтезировать более термостойкие материалы.

5. Материалы с необычными свойствами

Нитинол представляет собой никель - титановый сплав, обладающий необычным свойством - сохранять первоначальную форму. Поэтому иногда его называют запоминающим металлом, или металлом, обладающим памятью. Нитинол способен сохранять первоначальную форму даже после холодного формирования и термической обработки. Для него характерны сверх - и термоупругость, высокая коррозионная и эрозионная стойкость.

Поначалу нитиноловые изделия служили преимуществом для военных целей - с их помощью в боевых самолетах соединяли различные трубопроводы, доступ к которым ограничен.

Уникальную конструкцию с помощью нитиноловых муфт удалость собрать лет шесть назад в космосе. Монтаж сравнительно длинной мачты для крепления двигателя традиционными методами потребовал бы длительного пребывания космонавтов в космосе, что могло подвергнуть его чрезмерному космическому облучению. Нитиловые муфты позволили быстро и легко собрать 14-метровую мачту.

Наибольшую пользу, может принести применение нитиноловых муфт не для решения разовых космических и узко направленных военных задач, а для народнохозяйственных целей. Это газопроводы, нефтепроводы, бензопроводы, водопроводы. Газо-, нефте - и бензопроводы, заполненные легковоспламеняющимися соответственно газом, нефтью и бензином, представляют повышенную пожароопасность, в связи, с чем при ремонте нельзя применять их сварку, и все восстановительные работы приходится выполнять с помощью резьбовых соединений и крепежного материала. Данная задача гораздо упрощается с применением коррозионностойких нитиноловых муфт, которые срабатывают при пропускании через них относительно небольшого тока, при этом не требуется открытого огня.

Нитиноловые фиксаторы, муфты, спирали находят применение в медицине. С помощью нитиноловых фиксаторов эффективнее соединяются сломанные части костей. Благодаря памяти формы нитиловая муфта лучше фиксируется в десне, предохраняя места сочленений от перегрузок. Нитинол, обладая способностью упруго деформироваться на 8-10%, плавно воспринимает нагрузку, подобно живому зубу, и в результате меньше травмирует десну. Нитиноловая спираль способна восстановить сечение пораженного той или иной болезнью сосуда в организме человека.

Вне всякого сомнения, нитинол - перспективный материал, и в ближайшем будущем станут, известны многие другие примеры успешного его применения.

Жидкие кристаллы - это жидкости, обладающие, как и кристаллы, анизотропией свойств, связанной с упорядоченной ориентацией молекул. Благодаря сильной зависимости свойств жидкого кристалла от внешних воздействий они находят разнообразное применение в технике (в температурных датчиках, индикаторных устройствах, модуляторах света и т.п.). Сегодня на мировом рынке дисплейных технологий жидкокристаллические устройства уступают разве что кинескопам, а по экономичности потребления энергии в дисплеях с относительно небольшой площадью экрана они не имеют конкурентов.

Жидкокристаллическое вещество состоит из органических молекул с преимущественной упорядоченной ориентацией в одном или двух направлениях. Такое вещество обладает текучестью как жидкость, и кристаллическая упорядоченность молекул подтверждается его оптическими свойствами. Различают три основных типа жидких кристаллов: нематические, смектические и холестерические.

Одно из перспективных направлений в химии жидких кристаллов - реализации данных структур при синтезе полимеров. Молекулярная упорядоченность, характерная для нематических жидких кристаллов. Именно такой принцип лежит в основе производства искусственных волокон с исключительно высоким пределом прочности на растяжение, которые могут заменить материалы для изготовления фюзеляжей самолетов, бронежилетов и т.п.

6. Оптические материалы

На смену электрическому сигналу, посылаемому по медному проводу, постепенно приходит значительно более информативный световой сигнал, распространяющийся по светопроводящим волокнам.

Совершенствование технологий изготовление кварцевых нитей позволило менее чем за десятилетний срок примерно в 100 раз сократить потери светового потока. Из новых оптических материалов, например, таких, как фторидные стекла, можно получить еще более прозрачные волокна. В отличие от обычных стекол, состоящих из смеси оксидов металлов, фторидные стекла - это смесь фторидов металлов.

Волоконная оптика открывает чрезвычайно большие возможности для передачи большого объема информации на большие расстояния. Уже сегодня многие телефонные станции, телевидение и т.п. с успехом пользуются волоконно-оптической связью.

Современная химическая технология сыграла важную роль не только в разработке новых оптических материалов - оптических волокон, но и в создании материалов для оптических устройств для переключения, усиления и хранения оптических сигналов. Оптические устройства оперируют в новых временных масштабах обработки световых сигналов. В современных оптических устройствах используются ниобат лития и арсенид галлия-алюминия.

Экспериментальные исследования показывают, что органические стереоизомеры, жидкие кристаллы и полиацетилены обладают лучшими оптическими свойства, чем ниобат лития и является весьма перспективными материалами для новых оптических устройств.

7. Материалы с электрическими свойствами

В начале такими материалами служили преимущественно монокристаллы кремния и германия с содержанием в них относительно небольшой концентрации примесей. Через некоторое время в центре внимания разработчиков оказались монокристаллы арсенида гелия, выращенные на подложках из монокристаллического фосфида индия. Современная технология позволяет получить несколько слоев арсенида галлия различной толщины с различным содержанием примесей. Из арсенид - галлиевых материалов изготавливают рабочие узлы лазеров и лазерных дисплейных устройств, применяемых в длинноволновых оптических линиях связи.

В процессе разработке новых полупроводниковых материалов были неожиданно открыты полупроводниковые свойства аморфного (некристаллического) кремния.

К настоящему времени открыты совершенно новые группы материалов, обладающих электрической проводимостью. Физические свойства их в значительной степени зависят от локальной структуры и молекулярной связей. Некоторые из таких материалов относятся к неорганическим, другие - к органическим соединениям.

В полимерных проводниках большие плоские молекулы служат элементами проводящего столбика и образуют металломакроциклы, соединяющиеся друг с другом посредством ковалентно связанных атомов кислорода. Такая химическая сконструированная молекула обладает электрической проводимостью, и это - настоящая сенсация. Атомы металла и окружающей его в плоском макроцикле группы можно заменить и модифицировать различными способами. В результате можно получит полимер с заданными электропроводящими свойствами.

Технология изготовления полимерных проводников уже освоена, и число разновидностей таких проводников становится все больше. Под воздействием определенных регентов полипарафенилен, парафениленсульфид, полипиррол и другие полимеры приобретают электропроводящие свойства.

В некоторых твердых материалах с ионной подвижной структурой подвижность ионов сравнивается с подвижностью ионов в жидкости. Подобные материалы используются в устройствах памяти, дисплеях, датчиках, а также в качестве электролитов и электродов в батареях.

При создании современной микроэлектронной технике и высокочувствительной аппаратуры используются разнообразные материалы с анизотропными электрическими, магнитными и оптическими свойствами. Такими свойствами обладают ионные кристаллы, органические молекулярные кристаллы, полупроводниковые и многие другие материалы.

Современная технология позволяет получить материал в виде стекла, но не с диэлектрическими свойствами, а с металлической проводимостью или полупроводниковыми свойствами. Такая технология основана на быстром замораживании жидкости, конденсации газовой фазы на очень холодную поверхность или имплантации ионов на поверхность твердого вещества.

Таким образом, с применением современных технологий можно получит новые материалы с необычным комплексом свойств.

8. Высокотемпературные сверхпроводники

Сверхпроводники - это вещества, переходящие в сверхпроводящее состояние при температурах ниже критической.

Сверхпроводящим свойством обладают многие вещества: около половины металлов (например, никель-титановый сплав с критической температурой 9,8 К), несколько сотен сплавов и интерметаллические соединения.

Сверхпроводимость обнаружена ив полимерных веществах. Все это свидетельствует о том, что сверхпроводящим свойством обладают многие минералы, но их критическая температура долгое время оставалась сравнительно низкой.

В конце 1986г. было сделано важное открытие: обнаружено, что некоторые твердые соединения на основе меди и кислорода переходят в сверхпроводимое состояние при температуре выше 90К. Данное явление называется высокотемпературной сверхпроводимостью.

Применение хладагенов, даже таких, как жидкий ксенон, неизбежно приводит к усложнению конструкций, включающих сверхпроводящие материалы. В этом заключается одна из причин сдерживания широкого внедрения высокотемпературных сверхпроводящих материалов.

Высокотемпературная проводимость, открытая свыше десяти лет назад, обещала массу заманчивых перспектив как в области фундаментальной науке, так и в решении чисто технических задач. Усилия ведущих исследователей мира были направлены на получение все новых материалов и исследование их структуры. Исследования продолжаются, ни одно из них пока не смогло решить проблему сверхпроводимости в целом, но каждое помогает понять ее. Обнаружено немало важного и интересного в кристаллической структуре вещества.

9. Материалы диссоциации металлоорганических соединений

Результаты экспериментальных исследований последнего времени показали, что при термической диссоциации ряда металлоорганических соединений получаются чистые металлы различной твердой формы, обладающие уникальными свойствами. К таким металлоорганическим соединениям относятся:

Карбонилы - W(СО) , Мо(СО) , Fe(СО) , Ni (CO) ,

Ацетилацетонаты металлов -

Дикарбонилацетонат родия -

Данным соединениям в газообразном состоянии присуще высокая летучесть. Они разлагаются при нагревании до 100-150С. В результате термической диссоциации можно получить чистую металлическую фазу в различных конденсированных формах: высокодисперсные порошки, металлические вискерсы, беспористые тонкопленочные материалы, ячеистые металлоны, металлические волокна и бумага.

Высоко дисперсные порошки состоят из частиц малых размеров - до 1 - 3 мкм и используются для производства металлокерамики - композиции металла с оксидами, нитридами, боридами, получаемых методом порошковой металлургии.

Металлические викселя представляют собой нитевидные кристаллы диаметром 0,5 - 2,0мкм и длиной 5 - 50 мкм. Металлические вискерсы представляют практический интерес для синтеза новых композиционных материалов с металлической или пластмассовой матрицей.

Беспористые тонкопленочные материалы отличаются высокой плотностью упаковки атомов. По величине отражения света данный материал приближается к серебру.

Ячеистые металлы образуются при осаждении металла в результате проникновения паров металлоорганических соединений в поры любого материала. Таким способом формируется ячеистая металлическая структура.

10. Тонкопленочные материалы для накопителей информации

Любая электронно - вычислительная машина, в том числе и персональный компьютер, содержит накопитель информации - запоминающее устройство, способное накапливать и хранить большой объем информации.

Изготовление современных магнитных накопителей большой емкости основано на применении тонкопленочных материалов. Благодаря применению новых магнитных материалов и в результате совершенствовании технологии изготовления всех тонкопленочных элементов магнитного накопителя за относительно короткий срок поверхностная плотность записи информации увеличилась в пять раз.

Запись с высокой поверхностной плотностью осуществляется на носитель, рабочий слой которого формируется из тонкопленочного кобальтсодержащего материала.

Высокую плотность записи можно реализовать только с помощью преобразователей, тонкопленочный материал магнитопровода которых характеризуется большой магнитной индукции насыщения и высокой магнитной проницаемостью. Для воспроизведения записанной с высокой плотностью информации применяется высокочувствительный тонкопленочный элемент, электрическое сопротивление изменяется в магнитном поле. Такой элемент называется магниторезистивным. Он напыляется из высокопроницаемого магнитного материала, например, пермаллоя.

Таким образом, с применением тонкопленочных магнитных материалов при изготовлении накопителей информации большой емкости уже реализована довольно высокая плотность записи информации. При модернизации таких накопителей и внедрении новых материалов следует ожидать дальнейшего увеличения информационной плотности, что весьма важно для развития современных технических средств записи, накопления и хранения информации.

Список литературы

1. С.Х. Карпенков. Концепции современного естествознания. Москва. 2001г.

2. Хомченко Г.П. Химия для поступающих в ВУЗы. - Высшая школа, 1985. - 357 с.

3. Фурмер И.Э. Общая химическая технология. - М.: Высшая школа, 1987. - 334 с.

4. Лахтин Ю.М., Леонтьева В.П. Материаловедение. -- М.: Машиностроение, 1990

Размещено на Allbest.ru

Подобные документы

    Новые направления развития химии полимеров, синтез полимеров с заданными свойствами. Образование упорядоченных микроструктур в сополимерах блочной и статистической структуры. Результаты экспериментальных исследований, перспектива промышленного применения.

    реферат , добавлен 03.04.2011

    Характеристика биодеградируемых (биоразлагаемых) полимеров - материалов, которые разрушаются в результате естественных природных (микробиологических и биохимических) процессов. Свойства, способы получения и сферы использования биодеградируемых полимеров.

    реферат , добавлен 12.05.2011

    Значение использования прогрессивных видов композиционных материалов, формовочные композиционные материалы с определенными свойствами. Физико-механические свойства полибутилентерефталата, модифицированного высокодисперсной смесью железа и его оксидом.

    статья , добавлен 03.03.2010

    Общая характеристика нанокомпозитных материалов: анализ метафизических свойств, основные сферы применения. Рассмотрение особенностей метаматериалов, способы создания. Знакомство с физическими, электронными и фотофизическими свойствами наночастиц.

    реферат , добавлен 27.09.2013

    О термине "сверхчистые материалы". Методы классификации материалов особой чистоты. Получение чистых цветных металлов. Спутники цветных металлов в рудах. Ионный обмен. Применение химических методов очистки материалов взамен физических.

    реферат , добавлен 27.02.2003

    Химическая стойкость материалов неорганического и органического происхождения. Виды неорганических конструкционных материалов: силикатные, керамические, вяжущие материалы. Органические конструкционные материалы: пластмасс, каучук, резина, древесина.

    реферат , добавлен 04.09.2011

    Области применения в медицине синтетических полимеров. Материалы, применяемые для имплантации. Физиологически активные водорастворимые полимеры. Структура полиакриламидных гелей (ПААГ), используемых в медицине. Результаты клинического применения ПААГ.

    реферат , добавлен 09.01.2012

    Базальтопластики - полимерные композиционные материалы XXI века. Химический состав базальтовых и стеклянных нитей. Синтез полимерного антиоксиданта различного функционального назначения. Термочувствительные сополимеры. Получение композиционных покрытий.

    краткое изложение , добавлен 05.04.2009

    Кристаллическая структура графита и схема взаимного расположения слоев в гексагональной структуре. Классификация углеграфитовых материалов и их производство из твердых углеродистых материалов (антрацит, графит, кокс) и связующих веществ (пек, смола).

    реферат , добавлен 27.04.2011

    Полиэтилен, пластмассы, поролон – искусственные (синтетические) материалы, созданные человеком с помощью науки химии. Использование пластмасс для создания защитного покрова на металлических электропроводах. Материалы для изготовления защитных костюмов.

Химия в современных технологиях

Елпатова Ольга Ивановна,

Преподаватель химии

Цель работы – проанализировать историю создания ЭВМ и показать, какие химические элементы используются в развитии компьютерных технологий.

На протяжении нескольких последних десятилетий компьютерная технология развивается по пути все большей миниатюризации деталей и все большего удорожания их производства. Микропроцессоры последних поколений содержат огромное число транзисторов (10 млн. и более), имеющих размеры в десятую долю микрона (10 -7 метра). Следующий шаг в сторону микромира приведет к нанометрам (10 -9 метра) и миллиардам транзисторов в одном чипе. Еще чуть-чуть - и мы попадем в диапазон атомных размеров, где все начинают действовать законы квантовой механики.

Ричард Фейнман еще лет двадцать назад заметил, что законы физики не будут препятствовать уменьшению размеров вычисляющих устройств до тех пор, «пока биты, не достигнут размеров атомов, и квантовое поведение не станет доминирующим». Другая проблема, указывающая на то, что современная технология создания компьютеров изживает себя - это проблема приближения к пределу быстродействия. Так, современные компьютерные носители способны вмещать миллионы записей, с которыми уже не справляются существующие алгоритмы поиска.

Это привело к повышению производительности ЭВМ в целом. Отправной точкой всех «технологических прорывов» в компьютерной технике являются открытия в фундаментальных науках, таких как физика и химия.

В вычислительной технике существует периодизация развития электронных вычислительных машин. ЭВМ относят к тому или иному поколению в зависимости от типа основных используемых в ней элементов или от технологии их изготовления.

Анализ истории создания ЭВМ показал, что в развитии компьютерных технологий наметилась тенденция к уменьшению размеров ключевых элементов и увеличению скорости их переключения. За основу мы взяли теорию о пяти поколениях компьютеров вместо шести, т.к. мы считаем, что находимся на рубеже четвертого и пятого поколениях.

Одним из первых химических элементов встречающихся в истории ЭВМ является германий. Германий один из самых важных элементов для технического прогресса, так как наряду с кремнием германий стал важнейшим полупроводниковым материалом.

По внешнему виду германий нетрудно спутать с кремнием. Эти элементы не только конкуренты, претендующие на звание главного полупроводникового материала, но и аналоги. Впрочем, несмотря на сходство многих технических свойств, отличить германиевый слиток от кремниевого довольно просто: германий в два с лишним раза тяжелее кремния.

Формально, полупроводник – это вещество с удельным сопротивлением от тысячных долей до миллионов омов на 1 см.

Замечательна чувствительность германия не только к внешним воздействиям. На свойства германия сильно влияют даже ничтожные количества примесей. Не менее важна химическая природа примесей.

Добавка элемента V группы позволяет получить полупроводник с электронным типом проводимости. Так готовят ГЭС (германий электронный, легированный сурьмой). Добавив же элемент III группы, мы создадим в нем дырочный тип проводимости (чаще всего это ГДГ – германий дырочный, легированный галлием).

Напомним, что «дырки» – это места, освобожденные электронами, перешедшими на другой энергетический уровень. «Квартиру», освобожденную переселенцем, может тут же занять его сосед, но у того тоже была своя квартира. Переселения совершаются одно за другим, и дырка сдвигается.

Сочетание областей с электронной и дырочной проводимостью легло в основу самых важных полупроводниковых приборов – диодов и транзисторов.

Создание диодов легло в основу первого поколения компьютеров на основе электронных ламп в 40-х годах. Это электровакуумные диоды и триоды, представляющие собой стеклянную колбу, в центре которой размещалась вольфрамовая нить накала.

Вольфрам причисляют обычно к редким металлам. Он отличается от всех остальных металлов особой тяжестью, твердостью и тугоплавкостью.

В начале XX в. вольфрамовую нить стали применять в электрических лампочках: она позволяет доводить накал до 2200°C и обладает большой светоотдачей. И в этом качестве вольфрам совершенно незаменим в наши дни. Незаменимость вольфрама в этой области объясняется не только его тугоплавкостью, но и пластичностью. Из одного килограмма вольфрама вытягивается проволока длиной 3,5 км, т.е. этого килограмма достаточно для изготовления нитей накаливания 23 тыс. 60-ваттных лампочек. Именно благодаря этому свойству мировая электротехническая промышленность потребляет всего около 100 т вольфрама в год.

Электронную начинку UNIVAC составляло более 5000 вакуумных ламп. Память на ртутных колбах позволяла хранить информацию объемом до полутора килобайт. Наиболее примечательным элементом в конструкции UNIVAC был специальный накопитель, который позволял записывать информацию и считывать ее с магнитной ленты. Использование электронной лампы в качестве основного элемента ЭВМ создавало множество проблем. Из-за того, что высота стеклянной лампы - 7см, машины были огромных размеров. Каждые 7-8 мин. одна из ламп выходила из строя, а так как в компьютере их было 15 - 20 тысяч, то для поиска и замены поврежденной лампы требовалось очень много времени. Кроме того, они выделяли огромное количество тепла, и для эксплуатации "современного" компьютера того времени требовались специальные системы охлаждения.

Появление первого поколения компьютеров стало возможно благодаря трем техническим новшествам: электронным вакуумным лампам, цифровому кодированию информации и созданию устройств искусственной памяти на электростатических трубках.

Во втором поколении компьютеров вместо электронных ламп использовались транзисторы, изобретённые в 1948 г. Это был точечно-контактный прибор, в котором три металлических "усика" контактировали с бруском из поликристаллического германия. Поликристаллический германий получали вплавлением индия с обеих сторон пластинки ГЭС. Для всех областей нужен германий очень высокой чистоты – физической и химической. Для достижения ее выращивают монокристаллический германий: весь слиток – один кристалл.

Транзисторы были более надёжны, долговечны, обладали большой оперативной памятью.

С изобретением транзистора и использованием новых технологий хранения данных в памяти появилась возможность значительно уменьшить размеры компьютеров, сделать их более быстрыми и надежными, а также значительно увеличить емкость памяти компьютеров.

Подобно тому, как появление транзисторов привело к созданию второго поколения компьютеров, появление интегральных схем ознаменовало собой новый этап в развитии вычислительной техники - рождение машин третьего поколения .

Интегральная схема, которую также называют кристаллом, представляет собой миниатюрную электронную схему, вытравленную на поверхности кремниевого кристалла площадью около 10 мм 2 . До 1965 г. большая часть полупроводниковых приборов делалась на германиевой основе. Но в последующие годы стал развиваться процесс постепенного вытеснения германия самим кремнием . Этот элемент – второй по распространенности на Земле после кислорода. Не идеальный, а просто высокочистый и сверхчистый кремний стал важнейшим полупроводниковым материалом. При температуре, отличной от абсолютного нуля, в нем возникает собственная проводимость, причем носителями электрического тока являются не только свободные электроны, но и так называемые дырки – места, покинутые электронами.

Вводя в сверхчистый кремний те или иные легирующие добавки, в нем создают проводимость того или иного типа. Добавки элементов третьей группы менделеевской таблицы ведут к созданию дырочной проводимости, а пятой – электронной.

Кремниевые полупроводниковые приборы выгодно отличаются от германиевых, прежде всего лучшей работоспособностью при повышенных температурах и меньшими обратными токами. Большим преимуществом кремния оказалась и устойчивость его двуокиси к внешним воздействиям. Именно она позволила создать наиболее прогрессивную планарную технологию производства полупроводниковых приборов, состоящую в том, что кремниевую пластинку нагревают в кислороде или смеси кислорода с водяным паром, и она покрывается защитным слоем SiO 2 .

Вытравив затем в нужных местах «окошки», через них вводят легирующие примеси, здесь же присоединяют контакты, а прибор в целом тем временем защищен от внешних воздействий. Для германия такая технология пока невозможна: устойчивость его двуокиси недостаточна.

Под натиском кремния, арсенида галлия и других полупроводников германий утратил положение главного полупроводникового материала. В 1968 г. в США производилось уже намного больше кремниевых транзисторов, чем германиевых.

Маленькая пластинка из кристаллического материала размерами примерно 1 мм 2 превращается в сложнейший электронный прибор, эквивалентный радиотехническому блоку из 50-100 и более обычных деталей. Он способен усиливать или генерировать сигналы и выполнять многие другие радиотехнические функции.

Первые интегральные схемы (ИС) появились в 1964 году. Появление ИС означало подлинную революцию в вычислительной технике. Ведь она одна способна заменить тысячи транзисторов, каждый из которых в свою очередь уже заменил 40 электронных ламп. Быстродействие ЭВМ третьего поколения возросло в 100 раз, а габариты значительно уменьшились. В это же время появляется полупроводниковая память, которая и по сей день используется в персональных компьютерах в качестве оперативной.

Появилась идея интегральной микросхемы – кремниевого кристалла, на который монтируются миниатюрные транзисторы и другие элементы. В том же году появился первый образец интегральной микросхемы, содержащий пять транзисторных элементов на кристалле германия. Ученые довольно быстро научились размещать на одной интегральной микросхеме сначала десятки, а затем сотни и больше транзисторных элементов. Компьютеры третьего поколения работали со скоростью до одного миллиона операций в секунду.

Начиная с середины 70-х все меньше становится принципиальных новаций в компьютерной науке. Прогресс идет в основном по пути развития того, что уже изобретено и придумано, - прежде всего, за счет повышения мощности и миниатюризации элементной базы и самих компьютеров.

В начале 70-х годов. была предпринята попытка выяснить, можно ли на одном кристалле разместить больше одной интегральной схемы. Развитие микроэлектроники привело к созданию четвертого поколения машин и появлению больших интегральных схем . Появилась возможность размещать на одном-единственном кристалле тысячи интегральных схем.

Это позволило объединить в единственной миниатюрной детали большинство компонентов компьютера - что и сделала в 1971 г. фирма Intel, выпустив первый микропроцессор. Центральный процессор небольшого компьютера оказалось возможным разместить на кристалле, площадью всего в четверть квадратного дюйма (1,61 см 2 ). Началась эпоха микрокомпьютеров.

Интегральные схемы содержали уже тысячи транзисторов. Каково же быстродействие современной микро ЭВМ? Оно в 10 раз превышает быстродействие ЭВМ третьего поколения на интегральных схемах, в 1000 раз - быстродействие ЭВМ второго поколения на транзисторах и в 100000 раз - быстродействие ЭВМ первого поколения на электронных лампах.

Следовательно, нужны компьютеры с более высокими скоростными характеристиками. Поэтому специалисты во всем мире взялись за решение этой проблемы путем создания вычислительной системы будущего. В настоящее время ведутся экспериментальные разработки квантового компьютера, биокомпьютера , нейрокомпьютера , оптического компьютера, вероятностного компьютера наноэлектроники, нанокомпьютера, нанороботов, молекулярно-механических автоматов, высокотемпературных полупроводниковых материалов.


Под технологией в широком значении этого слова понимают научное описание методов и средств производства в какой-либо отрасли промышленности.

Например, методы и средства обработки металлов составляют предмет технологии металлов, методы и средства изготовления машин и аппаратов предмет технологии машиностроения.

Процессы механической технологии основаны преимущественно на механическом воздействии, изменяющем внешний вид или физические свойства обрабатываемых веществ, но не влияющем на их химический состав.

Процессы химической технологии включают химическую переработку сырья, основанную на сложных по своей природе химических и физико-химических явлениях.

Химическая технология - наука о наиболее экономичных и экологически обоснованных методах химической переработки сырых природных материалов в предметы потребления и средства производства.

Великий русский ученый Менделеев так определял различия между химической и механической технологией: «... начинаясь с подражания, всякое механически-фабричное дело может совершенствоваться в своих даже самых основных принципах, если есть только внимательность и желание, но при этом одном, без предварительного знания, прогресс химических заводов немыслим, не существует и существовать, наверно, никогда не будет».

Современная химическая технология

Современная химическая технология, используя достижения естественных и технических наук, изучает и разрабатывает совокупность физических и химических процессов, машин и аппаратов, оптимальные пути осуществления этих процессов и управления ими при промышленном производстве различных веществ, продуктов, материалов.

Развитие науки и промышленности привело к значительному росту числа химических производств. Например, сейчас только на основе нефти производят около 80 тыс. разных химических продуктов.

Рост химического производства, с одной стороны, и развитие химических и технических наук с другой, позволили разработать теоретические основы химико-технологических процессов.

Технология тугоплавких неметаллических и силикатных материалов;

Химическая технология синтетических биологически активных веществ, химико-фармацевтических препаратов и косметических средств;

Химическая технология органических веществ;

Технология и переработка полимеров;

Основные процессы химических производств и химическая кибернетика;

Химическая технология природных энергоносителей и углеродных материалов;

Химическая технология неорганических веществ.

Химическая технология и биотехнология включает в себя совокупность методов, способов и средств получения веществ и создания материалов с помощью физических, физико-химических и биологических процессов.

ХИМИЧЕСКАЯ ТЕХНОЛОГИЯ:

Анализ и прогнозы развития химической технологии;

Новые процессы в химической технологии;

Технология неорганических веществ и материалов;

Нанотехнологии и наноматериалы;

Технология органических веществ;

Каталитические процессы;

Нефтехимия и нефтепереработка;

Технология полимерных и композиционных материалов;

Химико-металлургические процессы глубокой переработки рудного, техногенного и вторичного сырья;

Химия и технология редких, рассеянных и радиоактивных элементов;

Переработка отработанного ядерного топлива, утилизация отходов атомной энергетики;

Экологические проблемы. Создание малоотходных и замкнутых технологических схем;

Процессы и аппараты химической технологии;

Технология лекарственных средств, бытовая химия;

Мониторинг природной и техногенной сферы;

Химическая переработка твердых топлив и природного возобновляемого сырья;

Экономические проблемы химической технологии;

Химическая кибернетика, моделирование и автоматизация химических производств;

Проблемы токсичности, обеспечение безопасности химических производств. Охрана труда;

Аналитический контроль химических производств, качество и сертификация продукции;

Химическая технология высокомолекулярных соединений

РАДИАЦИОННО-ХИМИЧЕСКАЯ ТЕХНОЛОГИЯ (РХТ) - область общей химической технологии, посвященная исследованию процессов, протекающих под действием ионизирующих излучений (ИИ) и разработке методов безопасного и экономически эффективного использования последних в народном хозяйстве, а также созданию соответствующих устройств (аппаратов, установок).

РХТ применяется для получения предметов потребления и средств производства, для придания материалам и готовым изделиям улучшенных или новых эксплуатационных свойств, повышения эффективности сельскохозяйственного производства, решения некоторых проблем экологии и др.



Поделиться