Катодная защита трубопроводов от коррозии принцип действия. Что такое катодная защита трубопроводов и как она действует? Станции катодной защиты

А.И. Хейфец, начальник службы электрохимической защиты,
ОАО «Теплосеть Санкт-Петербурга», г. Санкт-Петербург

Введение

Защита трубопроводов тепловых сетей от коррозии является очень важной задачей, от решения которой во многом зависит надежность работы всей системы централизованного теплоснабжения. В г. Санкт-Петербург превалируют тепловые сети подземной прокладки, которые эксплуатируются в коррозионно-опасных условиях, обусловленных как густой сетью подземных коммуникаций большой протяженности и развитым электрифицированным транспортом, так и насыщенностью почв и грунтов влагой и химическими реагентами. Существует два основных способа защиты металлов от коррозии: пассивный - это нанесение на их поверхность изоляционных покрытий и активный - это использование средств электрохимической защиты.

Немного теории

Металлические сооружения, эксплуатируемые в различных средах (в атмосфере, воде, почве), подвергаются разрушающему воздействию этой среды. Разрушение металла вследствие его взаимодействия с внешней средой называется коррозией. Сутью коррозионного процесса является удаление атомов из металлической решетки, которое может происходить двумя путями, поэтому и различают коррозию просто химическую и электрохимическую.

Коррозия является химической, если после разрыва металлической связи атомы металла непосредственно соединяются химической связью с теми атомами или группами атомов, которые входят в состав окислителей, отнимающих валентные электроны металла. Процесс проходит без участия свободных электронов и не сопровождается появлением электрического тока. Примером может служить образование окалины при взаимодействии материалов на основе железа при высокой температуре с кислородом.

Коррозия является электрохимической, если при выходе из металлической решетки положительно заряженный ион металла, т.е. катион, вступает в связь не с окислителем, а с другими компонентами коррозионной среды, окислителю же передаются электроны, освобождающиеся при образовании катиона. При электрохимической коррозии удаление атомов из металлической решетки осуществляется в результате не одного, как при химической коррозии, а двух независимых, но сопряженных между собой электрохимических процессов: анодного (переход «захваченных» катионов металла в раствор) и катодного (связывание окислителем освободившихся электронов). Окислителями служат ионы водорода, которые есть везде, где присутствует вода, и молекулы кислорода. Электрохимическая коррозия сопровождается появлением электрического тока.

Трубопроводы тепловых сетей являются протяженными объектами и различные их участки оказываются не в равных условиях с точки зрения развития коррозионных процессов. Почвы и грунты по-разному впитывают в себя атмосферные осадки, талые воды, обладают различной воздухопроницаемостью. Удельное электрическое сопротивление грунтов тоже разное; именно его значение (чем ниже, тем опаснее) характеризует коррозионную агрессивность среды. В результате вдоль поверхности трубопроводов образуются участки, где преимущественно осуществляются либо анодные, либо катодные реакции. Электрическая проводимость металла очень высока, электроны практически мгновенно перераспределяются от мест протекания анодной реакции к местам, где протекает катодная (рис. 1). По сути, возникают подобия гальванических элементов, батареек, в которых роль электролита играет грунт, а внешней цепью является подземное металлическое сооружение. Анодные зоны - это положительный электрод («+»), а катодные зоны - это отрицательный электрод («-»). При протекании электрического тока в анодных зонах непрерывно происходит выход атомов из металлической решетки во внешнюю среду, т.е. растворение металла.

Особую опасность для трубопроводов тепловых сетей представляют блуждающие токи, которые возникают вследствие утечки из транспортных электрических цепей части тока в почву или водные растворы, где они попадают на металлические конструкции. В местах выхода тока из этих конструкций вновь в почву или воду возникает анодное растворение металла. Такие зоны особенно часто наблюдаются в районах наземного электрического транспорта. Коррозию под действием блуждающих токов иногда называют электрической коррозией. Такие токи могут достигать величины в несколько ампер. Для представления: ток силой в 1 А, в соответствии с первым законом Фарадея, вызывает в течение года растворение железа в количестве 9,1 кг. Если ток сосредоточен на участке 1 м 2 , то это соответствует уменьшению толщины стенки трубы на 1,17 мм в год, т.е. за 6 лет она уменьшилась бы на 7 мм.

Принцип действия электрохимической защиты (ЭХЗ) наружной поверхности металла от коррозии основан на том, что, сдвигая потенциал металла пропусканием внешнего электрического тока, можно изменить скорость его коррозии. Зависимость между потенциалом и скоростью коррозии нелинейная и неоднозначная.

ЭХЗ, основанная на наложении катодного тока, носит название катодной защиты. В производственных условиях она реализуется в двух вариантах.

1. В первом варианте необходимый сдвиг потенциала обеспечивается подключением защищаемой конструкции к внешнему источнику напряжения в качестве катода, а в качестве анода используются вспомогательные электроды (рис. 2).

Источником служит регулируемый выпрямитель, который преобразует напряжение промышленной частоты в постоянное, а анодные заземлители объединяются в контур, состав и расположение электродов которого определяются расчетом. В процессе эксплуатации масса электродов контура анодного заземления монотонно уменьшается.

Катодная поляризация неизолированной металлической конструкции до величины минимального защитного потенциала требует значительных токов, поэтому обычно катодная защита используется совместно с изоляционными покрытиями, нанесенными на наружную поверхность защищаемого сооружения. Поверхностное покрытие уменьшает необходимый ток на несколько порядков. При катодной защите необходимо контролировать и величину максимального потенциала, т.к. его слишком большое значение может привести к отслаиванию изоляционного покрытия от стенки трубопровода. Нормативными документами (Типовая инструкция по защите трубопроводов тепловых сетей от наружной коррозии РД 153-34.0-20.518-2003) установлено, что минимальный защитный потенциал для тепловых сетей равен 1,1 В, а максимальный 2,5 В в отрицательную сторону по отношению к неполяризующемуся медносульфатному электроду сравнения. Такие значения должны быть обеспечены на всем протяжении защищаемого участка, и это достигается тем вернее, чем лучше металл изолирован от земли.

2. Вторым вариантом катодной защиты является гальваническая (или протекторная) защита (рис. 3). Принцип ее действия основан на том, что разные металлы характеризуются различными значениями стандартных электродных потенциалов. Катодная поляризация защищаемой конструкции достигается за счет ее контакта с более электроотрицательным металлом. Последний выступает в роли анода, и его электрохимическое растворение обеспечивает протекание катодного тока через защищаемый металл. Сам же анод, выполненный из магния, цинка, алюминия и их сплавов, постепенно разрушается. Достоинством протекторной защиты является то, что для нее не требуется внешний источник напряжения, но этот вид защиты может использоваться только на сравнительно небольших по протяженности участках трубопроводов (до 60 м), а также на стальных футлярах.

3. Для защиты трубопроводов тепловых сетей от наружной коррозии под действием блуждающих токов применяют электродренаж (дренаж) - соединение металлическим проводником участка, с которого стекают эти токи, с рельсом трамвайных или железнодорожных путей. При большом расстоянии до рельса, когда такой дренаж трудно реализовать, используют дополнительный чугунный анод, который закапывают в землю и соединяют с защищаемым участком.

В местах, где электролитическое действие блуждающих токов складывается с токами гальванических пар, может произойти резкое увеличение скорости коррозионных процессов. В таких случаях применяются установки усиленного дренажа (рис. 4), которые позволяют не только отводить блуждающие токи от трубопроводов, но и обеспечить на них необходимую величину защитного потенциала. Усиленный дренаж представляет собой обычную катодную станцию, подключенную отрицательным полюсом к защищаемому сооружению, а положительным - не к анодному заземлению, а к рельсам электрифицированного транспорта.

4. Сильное коррозионное воздействие на трубопроводы тепловых сетей могут оказывать установки ЭХЗ владельцев смежных подземных коммуникаций, например газопроводов (рис. 5а). Если трубопроводы оказались в зоне действия катодного тока «чужой» установки, то разрушения в местах выхода этого тока из стальной трубы в грунт будут такими же, как и под действием блуждающих токов. Для защиты необходимо соединить трубопроводы тепловых сетей с отрицательным полюсом источника напряжения (рис. 5б).

Сдвигать потенциал металла для защиты его от коррозии можно не только в сторону отрицательных, но и положительных значений. При этом некоторые металлы переходят в пассивное состояние, а ток растворения металла падает в десятки раз. Такая защита называется анодной, ее преимущество в том, что для поддержания пассивного состояния металла требуются малые токи. Однако, если в электролите есть ионы хлора и серы, коррозия металла может резко возрасти и выйти из строя само анодно-поляризованное оборудование. Анодная защита для тепловых сетей не применяется.

ЭХЗ в ОАО «Теплосеть Санкт-Петербурга» эксплуатируется и развивается как система, т.е. совокупность взаимосвязанных составляющих: стационарных технических средств, инструментального контроля и информационной базы данных.

В соответствии с графиками специалисты службы ЭХЗ в плановом порядке проводят по установленной методике коррозионные измерения на всех участках магистральных и распределительных сетей в местах доступа к подземным трубопроводам (тепловые камеры). После обработки результатов измерений определяются анодные и катодные зоны на трубопроводах, зоны защиты, участки опасного воздействия блуждающих токов. Кроме того, коррозионные измерения проводятся при плановых шурфовках и при устранении дефектов на тепловых сетях, где они дополняются результатом химического анализа грунта. Результаты измерений систематизируются и архивируются, они являются ценной информацией как для правильной организации эксплуатации тепломеханического оборудования, так и для планирования строительства дополнительных средств ЭХЗ.

Более подробные и тщательные коррозионные обследования зон залегания теплотрасс проводятся силами специализированной подрядной организации. Эти обследования проводятся на коррозионно-опасных участках обычно после реконструкции (перекладки) тепловых сетей, т.к. применение современных типов изоляции, конструкций и технологий обеспечивает лучшую, чем ранее, гальваническую развязку металла от бетона и от земли. Это означает, в том числе, и возможное изменение границ анодных и катодных зон, участков воздействия блуждающих токов. Результаты обследований представляются в виде отчетов, содержащих сведения об изменениях значений электродных потенциалов на разных участках поверхности трубопроводов при различных режимах работы (рис. 6) не только своих, но и принадлежащих сторонним организациям средств ЭХЗ. Методами математического моделирования (рис. 7) рассчитываются тип, количество и места расположения необходимых дополнительных средств ЭХЗ для дальнейшего проектирования.

В настоящее время ОАО «Теплосеть Санкт- Петербурга» принадлежат 432 установки ЭХЗ, из них: установок катодной защиты - 204 шт. (в том числе установок катодной защиты, относящихся к категории совместной защиты от наружной коррозии трубопроводов тепловых сетей и проложенных рядом газопроводов, - 20 шт.); установок усиленного дренажа - 8 шт.; установок протекторной защиты - 220 шт. Техническим обслуживанием установок катодной совместной защиты занимается ОАО «Антикор».

В соответствии с требованиями нормативных документов (Защита от коррозии. Проектирование электрохимической защиты подземных сооружений. СТО Газпром 2-3.5-047-2006) установки ЭХЗ не должны оказывать негативного влияния на соседние коммуникации. ОАО «Антикор», занимающееся в Санкт-Петербурге электрохимической защитой газопроводов, при реконструкции и новом строительстве своих установок своевременно уведомляет ОАО «Теплосеть Санкт-Петербурга» о технической возможности подключения участков тепловых сетей к ЭХЗ газопроводов, если это предусмотрено проектом.

В процессе эксплуатации всех, кроме дренажных, установок ЭХЗ непрерывно теряется масса их заземленных электродов, т.к. это составляет физическую сущность электрохимической защиты. Неизбежно наступает момент «смерти» контура анодного заземления или протектора. Обеспечить заданный период эксплуатации между капитальными ремонтами установок ЭХЗ можно и нужно правильным расчетом

необходимого числа и места расположения элементов, выбором качественных материалов, строгим соблюдением технологии монтажа. Возможны случаи отказа электродов из-за локальных точечных повреждений. С 2010 г. при реконструкции и новом строительстве нами применяются ферросилидовые анодные заземлители ЭлЖК-1500 с защитой контактного узла вместо прежних ЭГТ-1450. В течение ряда последних лет в установках ЭХЗ применяются только автоматические преобразователи типа УКЗТА и ПКЗ-АР (рис. 8), позволяющие непрерывно поддерживать заданные значения анодного тока или защитного потенциала на трубопроводе.

Особое значение приобрела практика оснащения установок ЭХЗ телеметрическими регистраторами (рис. 9). Эти устройства, изготовленные в виде встраиваемых блоков, непрерывно дистанционно передают информацию о значениях меняющихся во времени электрических величин на выделенный компьютер (рис. 10). Создаются архивы, позволяющие анализировать работу установок ЭХЗ. Кроме того, в системе телеметрии реализована функция сигнализации о несанкционированном доступе посторонних лиц к установкам.

Стоит отметить, что перед началом строительно-монтажных работ подрядчик извещает о дате начала работ заказчика, проектную организацию, организацию, осуществляющую технический надзор за строительством, и организацию, на обслуживание которой будут передаваться строящиеся защитные установки.

Электрохимической защитой тепловых сетей от наружной коррозии на нашем предприятии занимаются с 1960 г., т.е. более 50 лет. В разные годы специалисты по ЭХЗ входили в состав различных производственных подразделений, а после образования в 2010 г. ОАО «Теплосеть Санкт-Петербурга» была создана отдельная служба ЭХЗ. На сегодняшний день в ее составе 13 чел., которые решают технические и организационные задачи.

К техническим задачам относятся: ежедневные объезды двух бригад электромонтеров по заданным маршрутам установок ЭХЗ с проведением технического обслуживания. Одновременно при этом контролируется, не ведутся ли сторонними организациями без правильного оформления земляные работы в зоне наших установок.

Техническое обслуживание установок ЭХЗ включает:

■ осмотр всех элементов установки с целью выявления внешних дефектов, проверку плотности контактов, исправности монтажа, отсутствия механических повреждений отдельных элементов, отсутствия подгаров и следов перегревов, отсутствия раскопок на трассе дренажных кабелей и анодных заземлений;

■ проверку исправности предохранителей (если они имеются);

■ очистку корпуса дренажного и катодного преобразователя, блока совместной защиты снаружи и внутри;

■ измерение тока и напряжения на выходе преобразователя или между гальваническими анодами (протекторами) и трубами;

■ измерение потенциала трубопровода в точке подключения установки;

■ производство записи в журнале установки о результатах выполненной работы;

■ измерения потенциалов в постоянно закрепленных измерительных пунктах.

Периодически проводится текущий ремонт и контроль эффективности оборудования ЭХЗ. Специалисты службы ЭХЗ ведут технический надзор за производством капитального ремонта, реконструкции и капитального строительства установок ЭХЗ подрядными организациями. Контролируется соответствие выполняемых строительно-монтажных работ проекту.

Текущий ремонт включает:

■ измерение сопротивления изоляции питающих кабелей;

■ ремонт линий питания;

■ ремонт выпрямительного блока;

■ ремонт дренажного кабеля.

Контроль эффективности работы установки ЭХЗ заключается в измерении защитных потенциалов в измерительных пунктах по всей зоне защиты данной установки ЭХЗ. Контроль эффективности ЭХЗ трубопроводов тепловых сетей производят не реже, чем 2 раза в год, а также при изменении параметров работы установок ЭХЗ и при изменении коррозионных условий, связанных с:

■ прокладкой новых подземных сооружений;

■ в связи с проведением ремонтных работ на тепловых сетях;

■ установкой ЭХЗ на смежных подземных коммуникациях.

Специалисты службы ЭХЗ ведут технический надзор за производством капитального ремонта, реконструкции и капитального строительства установок ЭХЗ подрядными организациями. Контролируется соответствие выполняемых строительно-монтажных работ проекту.

К организационным задачам относится, прежде всего, получение разрешения на электроснабжение станций ЭХЗ от сетей ОАО «Ленэнерго». Это многоходовый алгоритм, сопровождаемый оформлением большого количества документации. Кроме электроснабжения, служба ЭХЗ занимается подготовкой адресных программ нового строительства и ремонта, проверкой и согласованием проектов, подготовкой технических заданий.

Установки ЭХЗ от наружной коррозии металлоконструкций используются уже 100 лет. Физико-химический принцип их работы остается неизменным, но для увеличения ресурса их работы, снижения капитальных и эксплуатационных затрат необходимо искать и находить новые технические решения. Перспективным представляется использование протяженных электродов для анодного заземления. Эластомерные электроды укладываются горизонтально в траншею вдоль трубопроводов тепловой сети на глубине

1,5 м и разделяются на несколько участков для повышения ремонтопригодности. Стоимость таких установок меньше, чем при использовании традиционных контуров анодного заземления. В 2011 г. уже построены две установки с горизонтальными электродами.

Оснащение установок ЭХЗ блоками телеметрии будет продолжаться, и в перспективе информация о работе всех установок будет дистанционно передаваться и архивироваться.

В 2011 г. был выполнен проект автоматизированного учета электроэнергии для 59 установок ЭХЗ, а его реализация намечена на 2012 г

Уже начата работа по занесению базы данных об установках ЭХЗ в единую информационно-аналитическую систему ОАО «Теплосеть Санкт- Петербурга». В перспективе это позволит быстрее и достовернее определять приоритеты при составлении программы реконструкции участков тепловых сетей, правильно организовывать земляные работы при устранении дефектов.

Основное назначение ЭХЗ тепловых сетей - это обеспечение эксплуатации трубопроводов без возникновения повреждений в течение всего нормативного срока (25 лет). Для достижения этой цели необходимо относиться к ЭХЗ именно как к системе, не пренебрегая ни одной из ее составляющих, указанных в данной статье. Полезными могут оказаться несколько общих соображений.

1. В коррозионно-опасных зонах нужно вводить в эксплуатацию ЭХЗ как можно быстрее после строительства или реконструкции участка тепловых сетей, т.е. защищать металл «с нуля».

2. На участке трубопроводов, электрически плохо изолированных от земли (разрушение тепловой изоляции, контакт металла с бетонными конструкциями и т.п.), установка ЭХЗ будет мало эффективна, т.к. созданный ею защитный ток не распределится на сотни метров вдоль труб, а стечет в землю в месте «закоротки».

3. При выявленной низкой эффективности существующей установки ЭХЗ (малая разница в значении потенциала металла при включенной и отключенной установке) нужно провести ее реконструкцию с изменением расположения контура анодного заземления (КАЗ) по отношению к защищаемым трубопроводам.

4. При реконструкции и новом строительстве установок ЭХЗ целесообразно использовать самые лучшие марки электродов для КАЗ, т.к. отказ контура - это выход из строя всей установки, а для восстановления КАЗ придется проводить дорогостоящие земляные работы.

5. Координация деятельности в части ЭХЗ с другими владельцами подземных коммуникаций позволит принять меры для защиты трубопроводов тепловых сетей от вредного влияния «чужих» установок ЭХЗ, а также в ряде случаев организовать совместную защиту.

Опыт эксплуатации тепловых сетей ОАО «Теплосеть Санкт-Петербурга» убедительно доказывает, что ЭХЗ была и остается важной составляющей в комплексе мер по повышению надежности теплоснабжения Санкт-Петербурга.

Электрохимическая защита – эффективный способ защиты готовых изделий от электрохимической коррозии . В некоторых случаях невозможно возобновить лакокрасочное покрытие или же защитный оберточный материал, тогда целесообразно использовать электрохимическую защиту. Покрытие подземного трубопровода или же днища морского суда очень трудоемко и дорого возобновлять, иногда просто невозможно. Электрохимическая защита надежно защищает изделие от , предупреждая разрушение подземных трубопроводов, днищ судов, различных резервуаров и т.п.

Применяется электрохимическая защита в тех случаях, когда потенциал свободной коррозии находится в области интенсивного растворения основного металла либо перепассивации. Т.е. когда идет интенсивное разрушение металлоконструкции.

Суть электрохимической защиты

К готовому металлическому изделию извне подключается постоянный ток (источник постоянного тока или протектор). Электрический ток на поверхности защищаемого изделия создает катодную поляризацию электродов микрогальванических пар. Результатом этого является то, что анодные участки на поверхности металла стают катодными. А вследствии воздействия коррозионной среды идет разрушение не металла конструкции, а анода.

В зависимости от того, в какую сторону (положительную или отрицательную) смещается потенциал металла, электрохимическую защиту подразделяют на анодную и катодную.

Катодная защита от коррозии

Катодная электрохимическая защита от коррозии применяется тогда, когда защищаемый металл не склонен к пассивации. Это один из основных видов защиты металлов от коррозии. Суть катодной защиты состоит в приложении к изделию внешнего тока от отрицательного полюса, который поляризует катодные участки коррозионных элементов, приближая значение потенциала к анодным. Положительный полюс источника тока присоединяется к аноду. При этом коррозия защищаемой конструкции почти сводится к нулю. Анод же постепенно разрушается и его необходимо периодически менять.

Существует несколько вариантов катодной защиты: поляризация от внешнего источника электрического тока; уменьшение скорости протекания катодного процесса (например, деаэрация электролита); контакт с металлом, у которого потенциал свободной коррозии в данной среде более электроотрицательный (так называемая, протекторная защита).

Поляризация от внешнего источника электрического тока используется очень часто для защиты сооружений, находящихся в почве, воде (днища судов и т.д.). Кроме того данный вид коррозионной защиты применяется для цинка, олова, алюминия и его сплавов, титана, меди и ее сплавов, свинца, а также высокохромистых, углеродистых, легированных (как низко так и высоколегированных) сталей.

Внешним источником тока служат станции катодной защиты, которые состоят из выпрямителя (преобразователь), токоподвода к защищаемому сооружению, анодных заземлителей, электрода сравнения и анодного кабеля.

Катодная защита применяется как самостоятельный, так и дополнительный вид коррозионной защиты.

Главным критерием, по которому можно судить о эффективности катодной защиты, является защитный потенциал . Защитным называется потенциал, при котором скорость коррозии металла в определенных условиях окружающей среды принимает самое низкое (на сколько это возможно) значение.

В использовании катодной защиты есть свои недостатки. Одним из них является опасность перезащиты . Перезащита наблюдается при большом смещении потенциала защищаемого объекта в отрицательную сторону. При этом выделяется. В результате – разрушение защитных покрытий, водородное охрупчивание металла, коррозионное растрескивание.

Протекторная защита (применение протектора)

Разновидностью катодной защиты является протекторная. При использовании протекторной защиты к защищаемому объекту подсоединяется металл с более электроотрицательным потенциалом. При этом идет разрушение не конструкции, а протектора. Со временем протектор корродирует и его необходимо заменять на новый.

Протекторная защита эффективна в случаях, когда между протектором и окружающей средой небольшое переходное сопротивление.

Каждый протектор имеет свой радиус защитного действия, который определяется максимально возможным расстоянием, на которое можно удалить протектор без потери защитного эффекта. Применяется протекторная защита чаще всего тогда, когда невозможно или трудно и дорого подвести к конструкции ток.

Протекторы используются для защиты сооружений в нейтральных средах (морская или речная вода, воздух, почва и др.).

Для изготовления протекторов используют такие металлы: магний, цинк, железо, алюминий. Чистые металлы не выполняют в полной мере своих защитных функций, поэтому при изготовлении протекторов их дополнительно легируют.

Железные протекторы изготавливаются из углеродистых сталей либо чистого железа.

Цинковые протекторы

Цинковые протекторы содержат около 0,001 – 0,005 % свинца, меди и железа, 0,1 – 0,5 % алюминия и 0,025 – 0,15 % кадмия. Цинковые проекторы применяют для защиты изделий от морской коррозии (в соленой воде). Если цинковый протектор эксплуатировать в слабосоленой, пресной воде либо почвах – он достаточно быстро покрывается толстым слоем оксидов и гидроксидов.

Протектор магниевый

Сплавы для изготовления магниевых протекторов легируют 2 – 5 % цинка и 5 – 7 % алюминия. Количество в сплаве меди, свинца, железа, кремния, никеля не должно превышать десятых и сотых долей процента.

Протектор магниевый используют в слабосоленых, пресных водах, почвах. Протектор применяется с средах, где цинковые и алюминиевые протекторы малоэффективны. Важным аспектом является то, что протекторы из магния должны эксплуатироваться в среде с рН 9,5 – 10,5. Это объясняется высокой скоростью растворения магния и образованием на его поверхности труднорастворимых соединений.

Магниевый протектор опасен, т.к. является причиной водородного охрупчивания и коррозионного растрескивания конструкций.

Алюминиевые протекторы

Алюминиевые протекторы содержат добавки, которые предотвращают образование окислов алюминия. В такие протекторы вводят до 8 % цинка, до 5 % магния и десятые-сотые доли кремния, кадмия, индия, таллия. Алюминиевые протекторы эксплуатируются в прибрежном шельфе и проточной морской воде.

Анодная защита от коррозии

Анодную электрохимическую защиту применяют для конструкций, изготовленных из титана, низколегированных нержавеющих, углеродистых сталей, железистых высоколегированных сплавов, разнородных пассивирующихся металлов. Анодная защита применяется в хорошо электропроводных коррозионных средах.

При анодной защите потенциал защищаемого металла смещается в более положительную сторону до достижения пассивного устойчивого состояния системы. Достоинствами анодной электрохимической защиты является не только очень значительное замедление скорости коррозии, но и тот факт, что в производимый продукт и среду не попадают продукты коррозии.

Анодную защиту можно реализовать несколькими способами: сместив потенциал в положительную сторону при помощи источника внешнего электрического тока или введением в коррозионную среду окислителей (или элементов в сплав), которые повышают эффективность катодного процесса на поверхности металла.

Анодная защита с применением окислителей по защитному механизму схожа с анодной поляризацией.

Если использовать пассивирующие ингибиторы с окисляющими свойствами, то защищаемая поверхность переходит в пассивное состояние под действием возникшего тока. К ним относятся бихроматы, нитраты и др. Но они достаточно сильно загрязняют окружающую технологическую среду.

При введении в сплав добавок (в основном легирование благородным металлом) реакция восстановления деполяризаторов, протекающая на катоде, проходит с меньшим перенапряжением, чем на защищаемом металле.

Если через защищаемую конструкцию пропустить электрический ток, происходит смещение потенциала в положительную сторону.

Установка для анодной электрохимической защиты от коррозии состоит из источника внешнего тока, электрода сравнения, катода и самого защищаемого объекта.

Для того, чтоб узнать, возможно ли для определенного объекта применить анодную электрохимическую защиту, снимают анодные поляризационные кривые, при помощи которых можно определить потенциал коррозии исследуемой конструкции в определенной коррозионной среде, область устойчивой пассивности и плотность тока в этой области.

Для изготовления катодов используются металлы малорастворимые, такие, как высоколегированные нержавеющие стали, тантал, никель, свинец, платина.

Чтобы анодная электрохимическая защита в определенной среде была эффективна, необходимо использовать легкопассивируемые металлы и сплавы, электрод сравнения и катод должны все время находится в растворе, качественно выполнены соединительные элементы.

Для каждого случая анодной защиты схема расположения катодов проектируется индивидуально.

Для того, чтоб анодная защита была эффективной для определенного объекта, необходимо, чтоб он отвечал некоторым требованием:

Все сварные швы должны быть выполнены качественно;

В технологической среде материал, из которого изготовлен защищаемый объект, должен переходить в пассивное состояние;

Количество воздушных карманов и щелей должно быть минимальным;

На конструкции не должно присутствовать заклепочных соединений;

В защищаемом устройстве электрод сравнения и катод должны всегда находиться в растворе.

Для реализации анодной защиты в химической промышленности часто используют теплообменники и установки, имеющие цилиндрическую форму.

Электрохимическая анодная защита нержавеющих сталей применима для производственных хранилищ серной кислоты, растворов на основе аммиака, минеральных удобрений, а также всевозможных сборников, цистерн, мерников.

Анодная защита может также применяться для предотвращения коррозионного разрушения ванн химического никелирования, теплообменных установок в производстве искусственного волокна и серной кислоты.

Метод электрохимической защиты (ЭХЗ) от коррозии уже многие годы применяется инженерами для продления срока службы различных металлических устройств и сооружений. Однако так повелось, что наиболее широко известны технические решения по использованию ЭХЗ для противокоррозионной защиты больших металлоемких конструкций и сооружений, таких как подземные трубопроводы в нефтегазовой промышленности и в сфере ЖКХ или большие стальные резервуары, хотя принцип работы ЭХЗ универсален, и может быть успешно использован практически везде, где есть контакт металла и агрессивного электролита. В этой статье мы бы хотели дать, безусловно, очень краткий обзор других возможностей применения электрохимзащиты вокруг нас - в индустриальной, общественной и даже приватной сфере жизни современного человека.

Электрохимическая защита основана на управлении токами электрохимической коррозии, всегда возникающими при контакте любого металлического сооружения и электролита. С помощью ЭХЗ анодная разрушающаяся зона переносится с защищаемого объекта либо на специальное анодное заземление (при катодной защите), либо на отдельное изделие из более активного металла (при протекторной защите). Более подробно о физико-химических принципах катодной и протекторной защиты от коррозии можно прочитать . Главное, что следует понимать при принятии решения о применении ЭХЗ - это то, что необходим обязательный контакт защищаемого объекта/системы объектов и внешнего анода (анодного заземления или протектора), как посредством проводника первого рода (металлического кабеля или прямого металлического контакта), так и посредством проводника второго рода (электролита). Электрическая цепь "сооружение - кабель - анод - электролит" обязательно должна замкнуться, иначе защитного тока в системе просто не возникнет. Простой пример - трубопровод или свая, выходящая из земли на поверхность. ЭХЗ будет работать только на подземной части. Однако есть несколько примеров, когда, на первый взгляд, это правило не работает. Например, постоянный контакт сооружения и электролита не обеспечивается в зонах переменного смачивания, таких как приливно-отливная зона свай на морских пирсах и причалах, зона волнового смачивания аналогичных сооружений пресноводных водоемов и т.д. В этих случаях приходится применять довольно хитрые схемы ЭХЗ, работающие только в моменты увлажнения коррозионно-опасных зон. Но как, например, организовать ЭХЗ от атмосферной коррозии металлического сооружения во влажном морском или промышленном воздухе? Оказывается и это возможно! Но начнем мы с более простых случаев.

Простой и очевидный пример объекта, подвергающегося электрохимической коррозии, которую можно замедлить с помощью ЭХЗ - это закопанное в землю или стоящее на земле любое металлическое сооружение: свая, резервуар, трубопровод любого назначения. Конечно, применять ЭХЗ везде и всюду нет никакой необходимости, однако если объект находится в грунте высокой коррозионной агрессивности (высокая влажность или засоленность - явные признаки такого грунта!), либо это промышленно значимый и плохо ремонтопригодный объект - ЭХЗ явно не будет лишней. Проект такой системы ЭХЗ не очень сложен. Например, если нужно защитить свайный фундамент, то достаточно станции катодной защиты малой мощности (может хватить и аккумулятора) и несколько правильно расположенных точечных анодов, или несколько небольших отрезков протяженного анода. Только нужно не забыть, что если сваи сделаны из труб, то они могут корродировать и изнутри, там, где ЭХЗ работать не будет. Одиночный, полностью закопанный резервуар также прекрасно защищается точечными анодами по периметру сооружения, а днище резервуара, стоящего на грунте - одним точечным анодом или изогнутым отрезком протяженного анода. Если есть возможность менять анодные заземления и сопротивление грунта мало, то вместо точечных анодов можно установить протекторные установки, срок эффективной работы которых обычно составляет 5-7 лет.

Теперь перейдем к не очень распространенному, но очень продуктивному способу электрохимической защиты от коррозии внутренней поверхности трубопроводов и резервуаров (сосудов) любой емкости и назначения, имеющих контакт с агрессивным водным электролитом (промышленными сточными водами или просто водой с высоким содержанием минеральных солей и кислорода). В этом случае применение ЭХЗ позволяет продлить срок безремонтной эксплуатации объекта в несколько раз. Более простой случай - внутренняя ЭХЗ резервуара, когда во внутреннем пространстве резервуара размещаются протекторы или анодные заземления. Эффективность ЭХЗ существенно повысится, если внутренняя поверхность резервуара будет дополнительно защищена изоляционным покрытием с хорошими диэлектрическими свойствами. Более сложное техническое решение применяется для внутренней электрохимической защиты трубопровода. В этом случае наиболее эффективно ввести во внутреннюю полость трубопровода протяженный гибкий анод (ПГА) из токопроводящей резины. Длина такого анода обычно равна протяженности защищаемого участка трубопровода. Определенную техническую сложность вызывает укладка такого анода в уже эксплуатируемый трубопровод, хотя это также выполнимо на практике. Иногда для защиты участков ограниченной протяженности (5-30 м) достаточно установки во внутреннюю полость единичного точечного анода или протектора.

Внутренняя ЭХЗ трубопровода с применением протекторов

Такие системы внутренней электрохимзащиты чрезвычайно эффективны, даже когда ничего больше не помогает в принципе. Например, срок службы трубопроводов и различных очистительных установок - очень коррозионно-агрессивных сточных вод промышленных предприятий - продлевается за счет внутренней ЭХЗ в 5-20 раз!

Следующий интересный случай применения систем ЭХЗ - это причальные сооружения, основания нефтегазовых платформ, опоры мостов или любые другие металлические конструкции в морской воде. Кстати, воды некоторых пресных водоемов в нашей "экологически чистой" стране, особенно вблизи крупных городов и промышленных предприятий, по коррозионной агрессивности приближаются к морской воде, поэтому все излагаемое ниже распространяется и на них с небольшими оговорками.

Коррозия сваи в зоне переменного смачивания и забрызгивания

Итак, металлические конструкции в морской воде подвергаются активной электрохимической коррозии, которая не может быть остановлена обычной покраской. По механизму коррозионного процесса на таких объектах обычно выделяют три основных зоны:

  • зона переменного смачивания и забрызгивания;
  • зона полного погружения в воду;
  • зона погружения сваи в грунт.

Наибольшую сложность при реализации систем электрохимической защиты представляет зона переменного смачивания, где нет постоянной электрической цепи "сооружение - электролит - анод". Для этих зон необходимы анодные заземления (протекторы) сетчатой или браслетной формы, обеспечивающие раздельную защиту локально увлажненных участков металлической конструкции. В самых сложных случаях имеет смысл обеспечить принудительное постоянное увлажнение зоны переменного смачивания конструкции, для постоянной работы средств ЭХЗ.

Электрохимзащита зоны полного смачивания металлических свай в водной среде может быть реализована в зависимости от конструкции разными способами, среди которых имеет смысл выделить следующие:

  • размещение нескольких подвесных точечных анодов, каждый из которых защищает ближайшие, окружающие его, сваи;
  • на более глубоких участках возможно использование протяженных гибких анодов, которые крепятся к тросам, закрепляемым концами на металлическом сооружении и дне водоема;
  • если нет возможности подвести электричество к защищаемому сооружению, тогда приемлемым методом электрохимической защиты будет использование больших глубинных протекторов с длительными расчетными сроками эксплуатации.

Магниевый протектор для электрохимзащиты морских сооружений

Теперь вернемся к анонсированной ЭХЗ от атмосферной коррозии металлического сооружения во влажном морском или промышленном воздухе. По своему механизму этот случай чем-то напоминает коррозию в зоне переменного смачивания - также большое количество локально-увлажненных участков, только еще более маленьких. В этом случае единственный способ обеспечить электрохимическую защиту всей поверхности защищаемого изделия - это обеспечить свою локальную систему ЭХЗ на каждом увлажненном участке. Эта цель достигается путем нанесения на поверхность изделия специального покрытия, содержащего частицы металла, обладающего защитными протекторными свойствами по отношению к стали. Обычно этим металлом является цинк. Таким образом, на каждом участке поверхности обеспечивается своя маленькая установка протекторной защиты, которая активируется при увлажнении.

В этой статье мы рассказали только о нескольких основных случаях применения электрохимической защиты разнообразных металлических конструкций. На самом деле можно привести гораздо больше таких примеров - ЭХЗ может использоваться повсеместно: кузова автомобилей, корпуса морских судов, бытовые нагреватели воды, морские трубопроводы и т.д. Иногда даже приходится обеспечивать электрохимзащиту железобетонных конструкций, но это настолько объемная тема, что требует отдельного обзора. Поэтому можно смело говорить, что пока наш век металла не сменился веком композиционных материалов, именно электрохимическая защита будет одной из наиболее важных и востребованных человечеством технологий.

Коррозия - это химическая и электрохимическая реакция металла с окружающей средой, вызывающая его повреждение. Она протекает с разной скоростью, которую можно уменьшить. С практической точки зрения интерес представляет антикоррозионная катодная защита металлических сооружений, контактирующих с землей, с водой и с транспортируемыми средами. Особенно повреждаются наружные поверхности труб от влияния грунта и блуждающих токов.

Внутри коррозия зависит от свойств среды. Если это газ, он должен быть тщательно очищен от влаги и агрессивных веществ: сероводорода, кислорода и др.

Принцип работы

Объектами процесса электрохимической коррозии являются среда, металл и границы раздела между ними. Среда, которой обычно является влажный грунт или вода, обладает хорошей электропроводностью. На границе раздела между ней и металлической конструкцией происходит электрохимическая реакция. Если ток положительный (анодный электрод), ионы железа переходят в окружающий раствор, что приводит к потере массы металла. Реакция вызывает коррозию. При отрицательном токе (катодный электрод) этих потерь нет, поскольку в раствор переходят электроны. Способ используется в гальванотехнике для нанесения на сталь покрытий из цветных металлов.

Катодная защита от коррозии осуществляется, когда к объекту из железа подводят отрицательный потенциал.

Для этого в грунте размещают анодный электрод и подключают к нему положительный потенциал от источника питания. Минус подается на защищаемый объект. Катодно-анодная защита приводит к активному разрушению от коррозии только анодного электрода. Поэтому его следует периодически менять.

Негативное действие электрохимической коррозии

Коррозия конструкций может происходить от действия блуждающих токов, попадающих из других систем. Они полезны для целевых объектов, но наносят существенный вред близкорасположенным сооружениям. Блуждающие токи могут распространяться от рельсов электрифицированного транспорта. Они проходят по направлению к подстанции и попадают на трубопроводы. При выходе из них образуются анодные участки, вызывающие интенсивную коррозию. Для защиты применяют электродренаж - специальный отвод токов от трубопровода к их источнику. Здесь также возможна Для этого необходимо знать величину блуждающих токов, которую измеряют специальными приборами.

По результатам электрических измерений выбирается способ защиты газопровода. Универсальным средством является пассивный способ от контакта с грунтом с помощью изолирующих покрытий. Катодная защита газопровода относится к активному способу.

Защита трубопроводов

Конструкции в земле защищают от коррозии, если подключить к ним минус источника постоянного тока, а плюс - к анодным электродам, закопанным рядом в грунт. Ток пойдет к конструкции, защищая ее от коррозии. Таким образом производится катодная защита трубопроводов, резервуаров или трубопроводов, находящихся в грунте.

Анодный электрод будет разрушаться, и его следует периодически менять. Для бака, заполненного водой, электроды размещают внутри. При этом жидкость будет электролитом, через которую ток пойдет от анодов к поверхности емкости. Электроды хорошо контролируются, и их легко заменить. В грунте это делать сложней.

Источник питания

Возле нефте- и газопроводов, в сетях отопления и водоснабжения, для которых необходима катодная защита, устанавливают станции, от которых подается напряжение на объекты. Если они размещаются на открытом воздухе, степень их защиты должна быть не ниже IP34. Для сухих помещений подходит любая.

Станции катодной защиты газопроводов и других крупных сооружений имеют мощность от 1 до 10 кВт.

Их энергетические параметры прежде всего зависят от следующих факторов:

  • сопротивление между почвой и анодом;
  • электропроводность грунта;
  • длина защитной зоны;
  • изолирующее действие покрытия.

Традиционно преобразователь катодной защиты представляет собой трансформаторную установку. Сейчас на смену ей приходит инверторная, обладающая меньшими габаритами, лучшей стабильностью тока и большей экономичностью. На важных участках устанавливают контроллеры, обладающие функциями регулирования тока и напряжения, выравнивания защитных потенциалов и др.

Оборудование представлено на рынке в различных вариантах. Для конкретных нужд применяется обеспечивающее лучшие условия эксплуатации.

Параметры источника тока

Для защиты от коррозии для железа защитный потенциал составляет 0,44 В. На практике он должен быть больше из-за влияния включений и состояния поверхности металла. Максимальная величина составляет 1 В. При наличии покрытий на металле ток между электродами составляет 0,05 мА/м 2 . Если изоляция нарушится, он возрастает до 10 мА/м 2 .

Катодная защита эффективна в комплексе с другими способами, поскольку меньше расходуется электроэнергии. Если на поверхности конструкции есть лакокрасочное покрытие, электрохимическим способом защищаются только места, где оно нарушено.

Особенности катодной защиты

  1. Источниками питания служат станции или мобильные генераторы.
  2. Расположение анодных заземлителей зависит от специфики трубопроводов. Способ расстановки может быть распределенным или сосредоточенным, а также располагаться на разной глубине.
  3. Материал анода выбирается с низкой растворимостью, чтобы его хватило на 15 лет.
  4. Потенциал защитного поля для каждого трубопровода рассчитывается. Он не регламентируется, если на конструкциях отсутствуют защитные покрытия.

Стандартные требования "Газпрома" к катодной защите

  • Действие в течение всего срока эксплуатации средств защиты.
  • Защита от атмосферных перенапряжений.
  • Размещение станции в блок-боксах или в отдельно стоящей в антивандальном исполнении.
  • Анодное заземление выбирается на участках с минимальным электрическим сопротивлением грунта.
  • Характеристики преобразователя выбираются с учетом старения защитного покрытия трубопровода.

Протекторная защита

Способ представляет собой вид катодной защиты с подключением электродов из более электроотрицательного металла через электропроводную среду. Отличие заключается в отсутствии источника энергии. Протектор берет коррозию на себя, растворяясь в электропроводной окружающей среде.

Через несколько лет анод следует заменить, поскольку он вырабатывается.

Эффект от анода увеличивается со снижением у него переходного сопротивления со средой. Со временем он может покрываться коррозионным слоем. Это приводит к нарушению электрического контакта. Если поместить анод в смесь солей, обеспечивающую растворение продуктов коррозии, эффективность повышается.

Влияние протектора ограничено. Радиус действия определяется электрическим сопротивлением среды и разностью потенциалов между

Протекторная защита применяется при отсутствии источников энергии или когда их использование экономически нецелесообразно. Она также невыгодна при применении в кислых средах из-за высокой скорости растворения анодов. Протекторы устанавливают в воде, в грунте или в нейтральной среде. Аноды из чистых металлов обычно не делают. Растворение цинка происходит неравномерно, магний корродирует слишком быстро, а на алюминии образуется прочная пленка окислов.

Материалы протекторов

Чтобы протекторы обладали необходимыми эксплуатационными свойствами, их изготавливают из сплавов со следующими легирующими добавками.

  • Zn + 0,025-0,15 % Cd+ 0,1-0,5 % Al - защита оборудования, находящегося в морской воде.
  • Al + 8 % Zn +5 % Mg + Cd, In, Gl, Hg, Tl, Mn, Si (доли процента) - эксплуатация сооружений в проточной морской воде.
  • Mg + 5-7 % Al +2-5 % Zn - защита небольших конструкций в грунте или в воде с низкой концентрацией солей.

Неправильное применение некоторых видов протекторов приводит к негативным последствиям. Аноды из магния могут быть причиной растрескивания оборудования из-за развития водородного охрупчивания.

Совместная протекторная катодная защита с антикоррозионными покрытиями повышает ее эффективность.

Распределение защитного тока улучшается, а анодов требуется значительно меньше. Один магниевый анод защищает покрытый битумом трубопровод на длину 8 км, а без покрытия - всего на 30 м.

Защита кузовов автомобилей от коррозии

При нарушении покрытия толщина кузова автомобиля может уменьшиться за 5 лет до 1 мм, т. е. проржаветь насквозь. Восстановление защитного слоя важно, но кроме него есть способ полного прекращения процесса коррозии с помощью катодно-протекторной защиты. Если превратить кузов в катод, коррозия металла прекращается. Анодами могут быть любые токопроводящие поверхности, расположенные рядом: металлические пластины, контур заземления, корпус гаража, влажное дорожное покрытие. При этом эффективность защиты возрастает с ростом площади анодов. Если анодом является дорожное покрытие, для контакта с ним применяется "хвост" из металлизованной резины. Его помещают напротив колес, чтобы лучше попадали брызги. "Хвост" изолируется от корпуса.

К аноду подключается плюс аккумуляторной батареи через резистор 1 кОм и последовательно соединенный с ним светодиод. При замыкании цепи через анод, когда минус соединен с кузовом, в нормальном режиме светодиод еле заметно светится. Если он ярко горит, значит, в цепи произошло короткое замыкание. Причину надо найти и устранить.

Для защиты последовательно в цепи нужно установить предохранитель.

При нахождении автомобиля в гараже его подключают к заземляющему аноду. Во время движения подключение происходит через "хвост".

Заключение

Катодная защита является способом повышения эксплуатационной надежности подземных трубопроводов и других сооружений. При этом следует учитывать ее негативное воздействие на соседние трубопроводы от влияния блуждающих токов.

Коррозия оказывает пагубное влияние на техническое состояние подземных трубопроводов, под ее воздействием нарушается целостность газопровода, появляются трещины. Для защиты от такого процесса применяют электрохимзащиту газопровода.

Коррозия подземных трубопроводов и средства защиты от нее

На состояние стальных трубопроводов оказывает влияние влажность почвы, ее структура и химический состав. Температура сообщаемого по трубам газа, блуждающие в земле токи, вызванные электрифицированным транспортом и климатические условия в целом.

Виды коррозии:

  • Поверхностная. Распространяется сплошным слоем по поверхности изделия. Представляет наименьшую опасность для газопровода.
  • Местная. Проявляется в виде язв, щелей, пятен. Наиболее опасный вид коррозии.
  • Усталостное коррозионное разрушение. Процесс постепенного накопления повреждений.

Методы электрохимзащиты от коррозии:

  • пассивный метод;
  • активный метод.

Суть пассивного метода электрохимзащиты заключается в нанесении на поверхность газопровода специального защитного слоя, препятствующего вредному воздействию окружающей среды. Таким покрытием может быть:

  • битум;
  • полимерная лента;
  • каменноугольный пек;
  • эпоксидные смолы.

На практике редко получается нанести электрохимическое покрытие равномерно на газопровод. В местах зазоров с течением времени металл все же повреждается.

Активный метод электрохимзащиты или метод катодной поляризации заключается в создании на поверхности трубопровода отрицательного потенциала, предотвращающего утечку электричества, тем самым предупреждая появление коррозии.

Принцип действия электрохимзащиты

Чтобы защитить газопровод от коррозии, нужно создать катодную реакцию и исключить анодную. Для этого на защищаемом трубопроводе принудительно создается отрицательный потенциал.

В грунте размещают анодные электроды, подключают отрицательный полюс внешнего источника тока непосредственно к катоду – защищаемому объекту. Для замыкания электрической цепи, положительный полюс источника тока соединяется с анодом – дополнительным электродом, установленным в общей среде с защищаемым трубопроводом.

Анод в данной электрической цепи выполняет функцию заземления. За счет того, что анод имеет более положительный потенциал, чем металлический объект, происходит его анодное растворение.

Процесс коррозии подавляется под воздействием отрицательно заряженного поля защищаемого объекта. При катодной защите от коррозии, процессу порчи будет подвергается непосредственно анодный электрод.

Для увеличения срока эксплуатации анодов, их изготавливают из инертных материалов, устойчивых к растворению и другим воздействиям внешних факторов.

Станция электрохимзащиты – это устройство, которое служит источником внешнего тока в системе катодной защиты. Данная установка подключается к сети, 220 Вт и производит электричество с установленными выходными значениями.

Станция устанавливается на земле рядом с газопроводом. Она должна иметь степень защиты IP34 и выше, так как работает на открытом воздухе.

Станции катодной защиты могут иметь различные технические параметры и функциональные особенности.

Типы станций катодной защиты:

  • трансформаторные;
  • инверторные.

Трансформаторные станции электрохимзащиты постепенно отходят в прошлое. Они представляют собой конструкцию из трансформатора, работающего с частотой 50 Гц и тиристорного выпрямителя. Минусом таких устройств является несинусоидальная форма генерируемой энергии. Вследствие чего, на выходе происходит сильное пульсирование тока и снижается его мощность.

Инверторная станция электрохимзащиты имеет преимущество у трансформаторной. Ее принцип основан на работе высокочастотных импульсных преобразователей. Особенностью инверторных устройств является зависимость размера трансформаторного блока от частоты преобразования тока. При более высокой частоте сигнала требуется меньше кабеля, снижаются тепловые потери. В инверторных станциях, благодаря сглаживающим фильтрам, уровень пульсации производимого тока имеет меньшую амплитуду.

Электрическая цепь, которая приводит в работу станцию катодной защиты, выглядит так: анодное заземление – грунт – изоляция объекта защиты.

При установке станции защиты от коррозии учитываются следующие параметры:

  • положение анодного заземления (анод-земля);
  • сопротивление грунта;
  • электропроводимость изоляции объекта.

Установки дренажной защиты для газопровода

При дренажном способе электрохимзащиты источник тока не требуется, газопровод с помощью блуждающих в земле токов сообщается с тяговыми рельсами железнодорожного транспорта. Осуществляется электрическая взаимосвязь благодаря разности потенциалов железнодорожных рельсов и газопровода.

Посредством дренажного тока создается смещение электрического поля находящегося в земле газопровода. Защитную роль в данной конструкции играют плавкие предохранители, а также автоматические выключатели максимальной нагрузки с возвратом, которые настраивают работу дренажной цепи после спада высокого напряжения.

Система поляризованных электродренажей осуществляется с помощью соединений вентильных блоков. Регулирование напряжения при такой установке осуществляется переключением активных резисторов. Если метод дал сбой, применяют более мощные электродренажи в виде электрохимзащиты, где анодным заземлителем служит железнодорожная рельса.

Установки гальванической электрохимзащиты

Использование протекторных установок гальванической защиты трубопровода оправданно, если вблизи объекта отсутствует источник напряжения – ЛЭП, или участок газопровода недостаточно внушителен по размерам.

Гальваническое оборудование служит для защиты от коррозии:

  • подземных металлических сооружений, не подсоединенных электрической цепью к внешним источникам тока;
  • отдельных незащищенных частей газопроводов;
  • частей газопроводов, которые изолированы от источника тока;
  • строящихся трубопроводов, временно не подключенных к станциям защиты от коррозии;
  • прочих подземных металлических сооружений (сваи, патроны, резервуары, опоры и др.).

Гальваническая защита сработает наилучшим образом в почвах с удельным электрическим сопротивлением, находящимся в пределах 50 Ом.

Установки с протяженными или распределенными анодами

При использовании трансформаторной станции защиты от коррозии ток распределяется по синусоиде. Это неблагоприятным образом сказывается на защитном электрическом поле. Происходит либо избыточное напряжение в месте защиты, которое влечет за собой высокий расход электроэнергии, либо неконтролируемая утечка тока, что делает электрохимзащиту газопровода неэффективной.

Практика использования протяженных или распределенных анодов помогает обойти проблему неравномерного распределения электричества. Включение распределенных анодов в схему электрохимзащиты газопровода способствует увеличению зоны защиты от коррозии и сглаживанию линии напряжения. Аноды при такой схеме размещаются в земле, на протяжении всего газопровода.

Регулировочное сопротивление или специальное оборудование обеспечивает изменение тока в необходимых пределах, изменяется напряжение анодного заземления, при помощи этого регулируется защитный потенциал объекта.

Если используется сразу несколько заземлителей, напряжение защитного объекта можно изменять, меняя количество активных анодов.

ЭХЗ трубопровода посредством протекторов основана на разности потенциалов протектора и газопровода, находящегося в земле. Почва в данном случае представляет собой электролит; металл восстанавливается, а тело протектора разрушается.

Видео: Защита от блуждающих токов



Поделиться