О методике определения коррозионного износа стальных конструкций. Температурного режима на коррозионное

480 руб. | 150 грн. | 7,5 долл. ", MOUSEOFF, FGCOLOR, "#FFFFCC",BGCOLOR, "#393939");" onMouseOut="return nd();"> Диссертация - 480 руб., доставка 10 минут , круглосуточно, без выходных и праздников

Аскаров Герман Робертович. Оценка влияния нестабильного температурного режима на коррозионное состояние газопроводов большого диаметра: диссертация... кандидата технических наук: 25.00.19 / Аскаров Герман Робертович;[Место защиты: Уфимский государственный нефтяной технический университет].- Уфа, 2014.- 146 с.

Введение

1. Современные представления о температурном влиянии на коррозионное состояние газопровода 8

1.1 Краткая характеристика коррозионных процессов в трубопроводном транспорте 8

1.1.1 Характерные коррозионные дефекты на стальной трубе 10

1.2 Нарушение защитных свойств изоляционного покрытия 11

1.3 Коррозионная агрессивность грунтов 15

1.4 Причины формирования коррозионных элементов на наружной поверхности газопровода 19

1.4.1 Условия формирования макро-коррозионных элементов на наружной поверхности газопровода 19

1.4.2 Изменение электрического сопротивления грунта, прилегающего к трубопроводу, при движении влаги в коррозионно-активном слое грунта 23

1.5 Влияние температуры и колебаний температуры на коррозионное состояние газопровода 31

1.6 Диагностика газопроводов с использованием внутритрубных снарядов. 32

1.7 Модели для прогнозирования коррозионных процессов 34 Выводы к главе 1 40

2. Оценка импульсного воздействия влажности и температуры на коррозионную активность грунтов, окружающих газопровод 42

2.1 Физическое моделирование и выбор управляющих параметров. 42

2.2 Краткое описание экспериментальной установки. 45

2.3 Результаты опытов и эффект повышения коррозионной активности грунтов при импульсном температурном воздействии 48

2.4 Исследование влияния частоты колебаний температуры и тепловых параметров на коррозионную активность грунтов 58

2.5 Зависимость скорости коррозии от средней температуры при нестабильном теплообмене 67

Выводы к главе 2 70

3. Прогноз коррозионного состояния газопровода на основе данных внутритрубной дефектоскопии 71

3.1 Критерии оценки коррозионной опасности. 71

3.2 Анализ коррозионного состояния участка газопровода по данным внутритрубной дефектоскопии 74

3.2.1 Характеристика участка газопровода 74

3.2.2 Анализ результатов ВТД. 75

3.3 Образование и скорость развития коррозионных очагов на трубопроводах с пленочной изоляцией. 80

3.4 Коррозионный прогноз дефектности труб большого диаметра. 85

Выводы к главе.3 . 100

4. Разработка метода ранжирования участков газопроводов по степени опасности для вывода в ремонт 102

4.1. Методика ранжирования участков газопроводов по степени опасности 101

4.1.1 ВТД газопроводов при ранжировании по степени опасности 101

4.1.2 Уточняющие интегральные показатели для определения выводимых в ремонт участков газопроводов. 103

4.2 Комплексная диагностика изоляционного покрытия и средств ЭХЗ 104

4.2.1 Факторы опасности коррозионного повреждения трубопроводов. 105

4.2.2 Пример расчета комплексного показателя коррозионной активности 106

4.3 Учет колебаний температуры на газопроводах больших диаметров 107

4.4 Суммарный интегральный показатель. 109

4.4.1 Пример расчета суммарного интегрального показателя. 110

4.5 Эффективность разработки 113

Выводы к главе 4 . 115

Литература 117

Введение к работе

Актуальность работы

Общая протяжённость эксплуатируемых в системе ОАО «Газпром» подземных магистральных газопроводов составляет около 164,7 тыс. км. Основным конструкционным материалом для сооружения газопроводов в настоящее время является сталь, которая обладает хорошими прочностными свойствами, но низкой коррозионной стойкостью в условиях окружающей среды – грунта, который при наличии влаги в поровом пространстве является коррозионно-активной средой.

После 30-ти и более лет эксплуатации магистральных газопроводов изоляционное покрытие стареет и перестает выполнять защитные функции, вследствие чего коррозионное состояние подземных газопроводов существенно ухудшается.

Для определения коррозионного состояния магистральных газопроводов в настоящее время используется внутритрубная дефектоскопия (ВТД), которая с достаточной точностью определяет местоположение и характер коррозионных повреждений, что позволяет отслеживать и прогнозировать их образование и развитие.

Значительную роль в развитии коррозионных процессов играет наличие грунтовых вод (почвенного электролита), причем следует отметить, что скорость коррозии в большей степени возрастает не в постоянно обводненном или сухом грунте, а в грунте с периодическим увлажнением.

Предшествующими исследованиями установлена связь между импульсным изменением температуры газопровода и колебанием влажности в коррозионно-активном слое грунта. Однако не были определены количественные параметры импульсного температурного воздействия на активизацию коррозионных процессов.

Исследование коррозионной агрессивности грунтов на участках пролегания магистральных газопроводов при импульсном тепловом воздействии и прогноз коррозионного состояния трубопроводов являются актуальными для газотранспортной отрасли.

Цель работы

Разработка и совершенствование методов определения коррозионного состояния участков магистральных газопроводов для своевременного вывода их в ремонт.

Основные задачи :

1 Определение изменения удельного электрического сопротивления грунта вокруг магистрального газопровода и анализ особенностей коррозионных процессов в трубопроводном транспорте.

2 Исследование в лабораторных условиях влияния импульсного теплового воздействия перекачиваемого газа и влажности на коррозионную активность грунта, окружающего подземный газопровод.

3 Исследование образования и развития коррозионных дефектов на магистральном газопроводе и прогноз его коррозионного состояния по данным внутритрубной дефектоскопии.

4 Разработка методики ранжирования участков магистральных газопроводов на основе прогноза их коррозионного состояния для вывода в ремонт.

Научная новизна

1 Определено изменение и построены эпюры удельного электрического сопротивления грунта в зависимости от влажности по периметру подземного газопровода большого диаметра.

2 Экспериментально доказан факт активизации коррозионных процессов при импульсном изменении температуры перекачиваемого газа по сравнению со стабильным температурным воздействием, а также определен диапазон температур, в котором при нестабильном (импульсном) температурном воздействии развивается максимальная скорость коррозии.

3 Определена функциональная зависимость для прогноза образования и развития коррозионных дефектов на магистральных газопроводах.

Практическая ценность работы

На основании проведенных исследований разработан стандарт предприятия РД 3-М-00154358-39-821-08 «Методика ранжирования газопроводов ООО «Газпром трансгаз Уфа» по результатам внутритрубной дефектоскопии для вывода их в ремонт», согласно которому проводится ранжирование участков магистральных газопроводов между крановыми узлами с целью определения последовательности вывода их в ремонт.

Методы исследований

Поставленные в работе задачи решались с использованием теории подобия путем моделирования условий теполомассообмена подземного газопровода с окружающим грунтом.

Результаты диагностических работ обрабатывались по методу наименьших квадратов с проведением корреляционного анализа. Расчеты проводились с использованием пакета прикладных программ «StatGrapfics Plus 5.1».

На защиту выносятся :

Результаты исследований изменения удельного электрического сопротивления грунта в зависимости от влажности по периметру магистрального газопровода;

Результаты лабораторных исследований импульсного теплового воздействия на активизацию коррозионных процессов на стальном трубопроводе;

Метод ранжирования участков магистральных газопроводов для вывода их в ремонт.

Публикации

Основные результаты диссертационной работы опубликованы в 30 научных трудах, из них четыре статьи в ведущих рецензируемых научных журналах, рекомендованных ВАК Министерства образования и науки РФ.

Структура и объем работы

Условия формирования макро-коррозионных элементов на наружной поверхности газопровода

Коррозионные разрушения металла происходят на наружной поверхности газопровода в местах нарушения изоляционного покрытия, несмотря на наличие катодной защиты газопровода. Часто эти явления наблюдаются на начальных участках газопроводов (10-20 км после выхода с компрессорной станции), с пересеченной местностью, приуроченых к оврагам, балкам, местам с периодическим увлажнением.

Анализ и обобщение многочисленных материалов показывает, что на активацию коррозионных процессов влияет поведение грунтовых вод под тепловым воздействием газопровода, которое усиливается по мере совместного влияния (или совпадения) как минимум трех факторов:

Импульсного изменения температуры газопровода;

Нарушения изоляционного покрытия газопровода;

Большой диаметр трубопровода.

1. Принципиальное отличие начального участка от конечного (при отсутствии или стабильности отборов газа по трассе) в том, что именно на начальном участке газопровода максимально ощущаются колебания или импульсное изменение температуры газа. Эти колебания происходят как из-за неравномерности газопотребления, так и по причине несовершенства системы воздушного охлаждения газа, подаваемого в газопровод. При использовании аппаратов воздушного охлаждения погодные колебания температуры воздуха вызывают аналогичные колебания температуры газа и как по волноводу передаются непосредственно на начальный участок газопровода (особенно это явление проявляется на первых 20…30 км газопровода).

В опытах Исмагилова И.Г. было зарегистрировано, что температурная волна в 5 0С, искусственно созданная отключением АВО газа на КС Полянская, прошла до следующей станции КС Москово со снижением амплитуды до 2 0С. На нефтепроводах, где скорости движения потоков на порядок меньше, в силу инерционности продукта перекачки, такого явления не наблюдается.

2. При нарушении изоляционного покрытие происходит формирование макрокоррозионных элементов на наружной поверхности трубопровода. Как правило, это происходит на участках с резким изменением параметров окружающей среды: омического сопротивления грунтов и коррозионных сред (рисунок 1.3 и рисунок 1.4).

3. Эффект «большого диаметра». Геометрические параметры горячего трубопровода таковы, что и температура, и влажность грунта, а следовательно и прочие характеристики: омическое сопротивление грунта, свойства грунтовых электролитов, поляризационные потенциалы и т. д. – меняются по периметру. Влажность по периметру меняется в пределах от 0,3 % до 40 % и до полного насыщения. Удельное сопротивление грунта при этом изменяется в 10 …100 раз.

Рисунок 1.4 – Модель макрокоррозионных элементов Исследования показали, что температура перекачиваемого газа влияет на катодную поляризацию трубной стали в карбонатных растворах. Зависимость потенциалов максимума анодного тока от температуры линейна. Увеличение температуры ведет к возрастанию тока растворения и смещает интервал потенциалов анодного тока в отрицательную область. Увеличение температуры приводит не только к изменению скорости электрохимических процессов, но и изменяет значения рН раствора.

С ростом температуры карбонатного раствора потенциал максимума анодного тока, связанного с образованием оксида, при возрастании температуры на 10 С смещается в сторону отрицательных значений потенциала на 25 мВ . Вследствие неоднородности грунта, изменения его влажности и аэрации, неравномерного уплотнения, оглеения и др. эффектов, а также дефектов самого металла, возникает большое количество макрокоррозионных элементов. При этом коррозионному разрушению в большей степени подвергаются анодные участки, имеющие более положительный потенциал, по сравнению с катодными, чему способствует импульсное тепловое воздействие газопровода на миграционные процессы в грунтовом электролите.

Колебательные процессы температуры и влажности в грунте провоцирует общую коррозию. Макрокоррозионные элементы, локализованные на поверхности, развиваются по сценарию КРН или очагами язвенной коррозии. На общность электрохимического процесса, приводящего к образованию коррозионных язв и трещин, указывается в .

Именно неравновесные термодинамические процессы происходят более интенсивно и с максимальным эффектом проявления основных признаков. При импульсном температурном воздействии на грунт, почти синхронно, меняются параметры, определяющие его коррозионную активность. Так как этот процесс происходит на протяжении всего времени эксплуатации газопровода под сильным воздействием доминирующих параметров, то место локализации макроэлемента становится вполне определенным, зафиксированным по отношению к геометрическим отметкам.

Как показано в непрерывное колебательное движение грунтовой влаги, которое можно объяснить с позиций термокапиллярно-пленочного механизма движения происходит на протяжении всего времени эксплуатации газопровода.

Таким образом, даже при наличии катодной защиты газопровода, в местах повреждения изоляционного покрытия газопровода большого диаметра вследствие неравномерности распределения влажности грунта по периметру трубы неизбежно возникают макрокоррозионные элементы, провоцирующие почвенную коррозию металла трубы.

Одним из важных условий протекания коррозионных процессов является наличие в почвенном электролите диссоциированных ионов.

Ранее не принимаемый к рассмотрению фактор, определяющий протекание неравновесных процессов, импульсное температурное воздействие газа на стенку трубопровода и импульсное изменение влажности грунта, прилегающего к трубопроводу.

Результаты опытов и эффект повышения коррозионной активности грунтов при импульсном температурном воздействии

График кинетической кривой активности коррозионных процессов во времени. основываясь на физических представлениях процесса (рисунок 1.9) и используя закономерности кинетической кривой, экстраполировать результаты внутритрубной дефектоскопии по выявленным в различные периоды эксплуатации максимальным и средним дефектам. Но это вряд ли позволит прогнозировать динамику количественного роста коррозионных дефектов.

Представленные модели, описывают коррозионные процессы в рамках конкретных ситуаций, при соблюдении определенных условий, химической среды, температуры, сталей различных марок, давления и т.п. Особый интерес представляют модели, описывающие коррозионные процессы аналогичных систем (магистральных трубопроводов) с изоляционным покрытием, работающих в схожих условиях с газопроводами и регистрация результатов также на базе внутритрубной диагностики. Например, в методике проведения факторного анализа на магистральных нефтепроводах, независимо от диаметра и вида изоляционного покрытия авторами предлагается модель: где L-коэффициент затухания коррозионного процесса; Н – глубина коррозионного повреждения, мм; Но – толщина стенки трубы, мм; t – время эксплуатации, год.

Из приведенной формулы 1.6 видно, что авторами принято утверждение, что в начале эксплуатации трубопроводов коррозия имеет наиболее интенсивный рост, а затем носит затухающий характер вследствие пассивации. Вывод и обоснование формулы (1.6) приводятся в работе .

Утверждение, что коррозионные процессы стартуют с началом эксплуатации трубопровода, является довольно спорным, т.к. новое изоляционное покрытие обеспечивает защиту значительно надежней, чем со временем, когда изоляция стареет и теряет свои защитные свойства.

Несмотря на обилие исследований, ни одна из моделей, предложенных для прогнозирования коррозионных процессов, не позволяет в полной мере учитывать влияние температуры на скорость коррозии, т.к. не учитывают ее импульсное изменение в процессе эксплуатации.

Это утверждение позволяет сформулировать цель исследований: экспериментально доказать, что нестабильный температурный режим газопровода является первопричиной активации коррозионных процессов на наружной поверхности газопровода.

1. Проведен анализ литературных источников с целью раскрытия влияния температуры газа на коррозионное состояние газопровода:

1.1. Рассмотрены особенности коррозионных процессов в трубопроводном транспорте;

1.2.Определена роль коррозионной активности грунтов при утере изоляционным покрытием защитных свойств. 1.3. Изучена техническая возможность внутритрубной дефектоскопии по оценке дефектности трубопроводов.

1.4. Рассмотрены модели других исследователей по прогнозированию коррозионных процессов.

2. Исследованы причины формирования макрокоррозионных элементов на наружной поверхности трубопровода.

3. Доказано, что при движении влаги в коррозионно- активном слое грунта происходит изменение электрического сопротивления грунта, прилегающего к трубопроводу.

Анализ коррозионного состояния участка газопровода по данным внутритрубной дефектоскопии

На то, что периодическое увлажнение грунта ускоряет коррозионные процессы, указывает практика эксплуатации магистральных газопроводов.

Изучая это явление, Исмагилов И.Г. доказал, что магистральный газопровод большого диаметра является мощным источником тепла, оказывающим импульсное температурное воздействие на грунт и вызывающий колебательные движения влаги в коррозионно – активном слое грунта .

Однако, высказанное им предположение, что импульсное температурное воздействие усиливает коррозионную активность слоя грунта, прилегающего к трубопроводу, нуждается в экспериментальном подтверждении.

Поэтому целью исследования является постановка эксперимента для изучения и оценки коррозионной активности грунтов при импульсном температурном воздействии.

Задачи исследования коррозионных процессов обычно решаются экспериментальным путем. Существуют различные методы оценки влияния коррозии, в т. ч. и ускоренных коррозионных испытаний .

Таким образом, необходимо смоделировать условия тепломассообмена с окружающим грунтом, характерные для участка газопровода, пересекающего овраг, по дну которого протекает ручей и определить в какой степени изменяется коррозионная активность грунта при импульсном воздействии температуры и влажности.

Наиболее точно исследовать воздействие каждого фактора (импульсной температуры и влажности) возможно в лабораторных условиях, где фиксировано и с высокой точностью регулируется параметры процесса коррозии. Импульсный температурный режим газопровода при квазистационарном теплообмене моделировался для газопроводов, проходящих по территории Башкортостана и сходных с ним регионов. Согласно теории подобия, при равенстве чисел подобия, характеризующих процесс теплообмена, с соблюдением геометрического подобия, процессы теплообмена можно считать подобными .

Грунт, использованный в эксперименте, взят с трассы газопровода «Уренгой – Петровск» участка Поляна – Москово с позиций 3 часа, 12 часов и 6 часов по периметру газопровода. Теплофизические свойства грунта, использованного в лабораторных исследованиях, одинаковые с натурными, т.к. образцы грунтов отобраны с коррозионно-активного участка действующего газопровода. Для одинаковых грунтов автоматически выполнилось равенство чисел Лыкова Lu и Ковнера Кв для натуры и модели:

При соблюдении равенства температурных напоров, идентичности грунтов и одинаковом уровне их влажности выполнялось равенство чисел Коссовича Ко и Постнова Pn.

Таким образом, задача моделирования условий тепломассообмена, в данном случае, сводилась к такому подбору параметров установки, чтобы обеспечивалось равенство чисел Фурье Fo и Кирпичева Ki для натуры и модели.

При соответствии чисел Фурье Fo = ax/R годовому периоду эксплуатации трубопровода диаметром 1,42 м, при равенстве коэффициентов температуропроводности а = а, на основании (2.5) получаем для модели:

Так, при диаметре опытной трубы 20 мм годовой период на установке должен «проходить» за 1,7 ч.

Условия теплообмена моделировались критерием Кирпичева

При глубине заложения газопровода до оси трубы Н0 = 1,7 м и Н0/Rтр = 2,36 (относительная глубина заложения газопровода на участке Поляна – Москово), на основании равенства (2.6), получаем для модели:

Для моделирования «ручья» необходимо выдержать равенство чисел Рейнольдса для натуры и модели:

Так как жидкость одна и та же, вода - то на основании (2.12) и с учетом геометрического подобия, получаем равенство:

Соответствующие расчеты с учетом (2.13) показывают, что подача воды, имитирующей ручей на данной установке, должна быть капельной.

Так как в процессе эксперимента необходимо менять температуру стенки трубы в пределах реального ее изменения 30...40С , и регулировать, поддерживая импульсный режим, то в качестве управляющего параметра была выбрана температура tтр наружной поверхности стальной трубки - образца Ст. 3.

Для определения относительной коррозионной активности грунта при импульсном температурном воздействии, по сравнению со стабильным температурным воздействием, был выбран ускоренный метод испытания , на основании которого коррозионная активность грунтов определяется по потере массы стальных образцов.

Уточняющие интегральные показатели для определения выводимых в ремонт участков газопроводов

С целью проведения анализа коррозионного состояния и изучения динамики роста коррозионных дефектов на действующем магистральном газопроводе диаметром 1420 мм, рассмотрены результаты диагностики его технического состояния. Одним из ключевых направлений диагностики является ВТД, которая в настоящее время является наиболее оперативным и информативным методом диагностики магистральных газопроводов.

В таблице 3.1 приводятся общие критерии выделения участков магистральных газопроводов высокой, повышенной и умеренной коррозионной опасности по глубине коррозии. Согласно к участкам с высокой коррозионной опасностью (ВКО) относят участки со скоростью коррозии более 0,3 мм/год и глубиной более 15% от толщины стенки трубы.

Критерии оценки по глубине коррозионных поражений (в процентах от толщины стенки) применяют к трубопроводам с периодом эксплуатации, приближающимся к 30% амортизационного срока службы (11 лет и более).

Необходимым и достаточным условием для отнесения любого участка магистральных газопроводов к одной из трех степеней коррозионной опасности является соответствие хотя бы одному из трех указанных критериев.

Согласно к зонам повышенной коррозионной опасности относятся участки магистральных трубопроводов диаметром свыше 1000 мм на которых следует применять усиленный тип защитных покрытий,.

По результатам пропуска снарядов-дефектоскопов оценивают интегральный показатель коррозионного состояния участков магистральных газопроводов по плотности коррозионных дефектов sкд.

Интегральный показатель плотности коррозионных дефектов не учитывает неравномерность их распределения по длине газопровода и может применяться только для предварительной оценки коррозионного состояния магистральных газопроводов с обязательным указанием суммарной протяженности участков (в км), по которым он рассчитывается.

Поэтому, после определения интегрального показателя коррозионного состояния магистрального газопровода выполняется дифференцированный анализ участков магистрального газопровода по глубине и интенсивности коррозионных повреждений:

Оценивается характер распределения коррозионных дефектов по длине газопровода;

Выделяются участки ВКО и ПКО (коррозионной опасности);

Определяются показатели интенсивности коррозионных повреждений в пределах участков ВКО и ПКО;

Для всего контролируемого участка газопровода (от камеры запуска до камеры приема снаряда-дефектоскопа) рассчитывается коэффициент неравномерности плотности коррозионных повреждений bн, который равен

отношению суммарной длины неповрежденных коррозией участков к суммарной длине участков, имеющих повреждения (каверны и трещины), зарегистрированные внутритрубным дефектоскопом:

Более точно отражает степень коррозионной опасности (охвата) коэффициент дефектности труб Кд.

Так как размеры труб известны, то определены и линейные параметры дефектных участков. При известном количестве дефектных труб появляется возможность планировать их замену при капитальном ремонте (переизоляции) участка. В нефтепроводном транспорте, например, в АК «ТРАНСНЕФТЬ» для определения коррозионного состояния участков трубопроводов используют «Методику проведения факторного анализа коррозионных повреждений магистральных нефтепроводов по данным внутритрубной диагностики и выработки рекомендаций по ее предотвращению», которая также базируется на положении об изменении скорости развития коррозионных повреждений во времени . В основу факторного анализа положен метод разделения системы магистральных нефтепроводов на участки (кластеры), для которых сохраняется постоянство основных факторов, определяющих развитие коррозионных повреждений, а кинетика развития коррозионных повреждений во времени описывается регрессионными уравнениями – характеристическими зависимостями. По полученным характеристическим зависимостям осуществляется прогноз глубины коррозионных повреждений для случая однократного и повторного обследования внутритрубными приборами участка трубопровода.

Для анализа коррозионного состояния были рассмотрены параллельные участки (1843 – 1914 км) газопроводов Уренгой-Петровск и Уренгой-Новопсков, находящиеся на выходе с КС «Полянская», «горячий участок», подверженные активному и длительному коррозионному воздействию.

Это потенциально наиболее опасный участок в масштабах ООО «Газпром трансгаз Уфа», где с 1998 по 2003 годы на участке произошли 6 аварий по причине КРН (5 аварий на газопроводе Уренгой-Петровск, 1 авария на газопроводе Уренгой-Новопсков). После четырех аварий 1998 года, было проведено обследование в протяженных шурфах двенадцати участков газопровода Уренгой-Петровск (1844-1857 км), расположенных в оврагах и балках. При обследовании было выявлено 744 очага КРН, в том числе глубиной до 7,5 мм. С целью устранения очагов КРН было заменено 700 м трубопроводов . Аналогичная работа была проведена в 2000 году на газопроводе Уренгой-Новопсков, при этом было выявлено 204 очага КРН .

Участки со стресс-коррозионными дефектами не классифицируются в нормативной литературе на критерии высокой или повышенной категории коррозионной опасности . Но, с учетом вышеизложенного, участок в коридоре газопроводов 1843-1914 км по составу грунтов, может быть отнесен к коррозионно-активному.

Несмотря на принятые меры, в 2003 года на газопроводе Уренгой-Петровск, на рассматриваемом участке, произошли еще 2 аварии по причине КРН. С 2003 года диагностику технического состояния в газотранспортной отрасли стали проводить снарядами нового поколения НПО «Спецнефтегаз», которые при первой внутритрубной дефектоскопия выявили 22 участка с дефектами КРН, при этом максимальная глубина отдельных трещин достигала половины толщины стенки трубы. Согласно «Правилам эксплуатации магистральных газопроводов» внутритрубную дефектоскопию рекомендуется проводить в среднем один раз в 5 лет. Однако, учитывая особые обстоятельства (аварии по причине КРН, значительное количество выявленных участков с дефектами КРН), ООО «Газпром трансгаз Уфа» с целью отслеживания и предупреждения развития стресс -коррозионных дефектов, в короткий период с 2003г. по 2005 г. провело второй пропуск внутритрубного дефектоскопа .

Диагностика - это часто встречающееся слово в современном мире. Оно так крепко вжилось в наш ежедневный словарный круговорот, что мы и не обращаем на него никакого особого внимания. Сломалась стиральная машина - диагностика, обслуживание в сервисе любимого авто - диагностика, поход к врачу - диагностика. Эрудированный человек скажет: диагностика с греческого - «способность распознавать». Так что же нам, собственно, необходимо распознать в техническом состоянии металлического объекта, подвергающегося коррозии и в системах электрохимической (в основном катодной) защиты при их наличии на объекте? Об этом мы кратко и расскажем в данном обзоре.

В первую очередь договоримся о терминах. Когда употребляется термин коррозионная диагностика (обследование) в 90 % случаев идет речь о наружной поверхности рассматриваемого объекта. Диагностика выполняется, например, на наружной поверхности подземных трубопроводов, резервуаров, других металлоконструкций, подверженных почвенной коррозии или коррозии блуждающими токами, наружной поверхности причальных сооружений, корродирующих под влиянием соленой и пресной воды и т.д. Если мы говорим об анализе коррозионных процессов на внутренней поверхности тех же трубопроводов или резервуаров, то вместо терминов «диагностика» или «обследование» обычно применяется термин «мониторинг». Разные термины подразумевают разные принципы обеспечения коррозионной безопасности - исследование коррозионного состояния наружной поверхности обычно проводится дискретно, 1 раз в 3-5 лет, а мониторинг коррозионных процессов внутри исследуемого объекта осуществляется или непрерывно, или с небольшим интервалом (1 раз в месяц).

Так с чего же начать при диагностике коррозионного состояния рассматриваемого объекта? С оценки потенциальной опасности и текущего положения вещей. Если объект, например, подводный, то на первом этапе потенциально возможно провести визуальный контроль наличия коррозионных дефектов и следов коррозии, и при их наличии оценить текущую и прогнозируемую опасность. В местах, где визуальный контроль невозможен, оценка потенциальной опасности проводится по косвенным признакам. Рассмотрим ниже основные диагностируемые параметры потенциальной коррозионной опасности и их влияние на процесс коррозионного разрушения:


Помимо указанных выше основных факторов, при проведении диагностики коррозионного состояния, в зависимости от характеристик объекта, изучают большое количество дополнительных параметров, таких как: водородный показатель (pH) грунта или воды (особенно при потенциальной опасности коррозионного растрескивания под напряжением), наличие коррозионно-опасных микроорганизмов, содержание солей в грунте или воде, возможность аэрации и увлажнения объекта и т.д. Все эти факторы могут при определенных условиях резко увеличивать скорость коррозионного разрушения объекта обследования.

После изучения параметров потенциальной коррозионной опасности часто проводят прямые измерения глубины коррозионных повреждений на объекте. Для этих целей используется весь спектр методов неразрушающего контроля - визуальный и измерительный контроль, ультразвуковые методы, магнитометрический контроль и т.д. Места контроля выбираются исходя из их потенциальной опасности по результатам выполненной оценки на первом этапе. Для подземных объектов для обеспечения доступа непосредственно к объекту выполняют шурфование.

На финальном этапе могут быть выполнены лабораторные исследования, например оценка скорости коррозии в лабораторных условиях или металлографические исследования состава и структуры металла в местах коррозионных дефектов.

Если диагностика выполняется на объекте, который уже оснащен системами противокоррозионной электрохимической защиты, то помимо исследования коррозионного состояния самого объекта выполняется диагностика исправности и качества работы существующей системы ЭХЗ, т.е. ее работоспособность в целом и значения выходных и контролируемых параметров в частности. Опишем наиболее важные параметры системы ЭХЗ, которые необходимо контролировать при проведении комплексного обследования систем ЭХЗ.

  1. Катодный потенциал . Главный параметр работоспособности систем катодной и протекторной защиты. Определяет степень защищённости объекта от коррозии средствами ЭХЗ. Нормативные значения задаются основополагающими нормативными документами по противокоррозионной защите: ГОСТ 9.602-2005 и ГОСТ Р 51164-98. Измеряется как на стационарных пунктах (КИП и КДП), так и по трассе методом выносного электрода.
  2. Состояние средств ЭХЗ: станций катодной, протекторной и дренажной защиты, анодных заземлений, КИП, изолирующих фланцев, кабельных линий и т.д. Все характеристики обследуемого оборудования должны быть в рамках значений, заданных в проекте. Дополнительно следует выполнить прогноз работоспособности оборудования на период до следующего обследования. Например, станции катодной защиты должны иметь запас по току для возможности регулирования защитного потенциала объекта при неминуемом старении изоляционного покрытия. Если запаса по току нет, следует запланировать замену станции катодной защиты на более мощную и/или ремонт анодного заземления.
  3. Влияние системы ЭХЗ на сторонние объекты . В случае ошибок проектирования систем ЭХЗ возможно их вредное влияние на сторонние металлические сооружения. Особенно часто это бывает на трубопроводах месторождений нефти и газа, промышленных площадках, объектах внутри плотной городской застройки. Механизм такого влияния подробно описан . Оценка такого влияния обязательно должна проводиться в рамках диагностики систем ЭХЗ.

По результатам обследования должен быть подготовлен технический отчет, который должен содержать все числовые данные произведенных замеров, графики защитных потенциалов и так называемые трассовки, описание выявленных недостатков и дефектов, подробные фотоматериалы и т.д. Также в отчете должен быть сделан вывод по коррозионной опасности объекта с локализацией мест повышенного риска и разработаны технические решения по противокоррозионной защите.

Итак, по выполнении всех этапов диагностики заказчик получает отчет, в котором содержится подробная информация по коррозионному состоянию объекта и состоянию системы ЭХЗ. Но добытая диагностическими бригадами (порой с большим трудом, учитывая особенности местности и климата) информация просто пропадет, станет неактуальной, если в течение определенного времени ее не отработать, т.е. своевременно не устранить дефекты, которые были выявлены в ходе обследования, или не оборудовать объект обследования дополнительными средствами противокоррозионной защиты. Коррозионная ситуация на объекте постоянно меняется и если сразу не отработать полученную диагностическую информацию она может сильно устареть. Поэтому если владелец заботится о коррозионной безопасности своих объектов, то их система противокоррозионной защиты регулярно модернизируется по результатам так же регулярно выполняемых диагностических обследований, и риск коррозионного отказа на таких объектах минимален.

Тэги: блуждающие токи, диагностика коррозии, диагностика коррозионного состояния, изоляционное покрытие, индукционное влияние, источники переменного тока, коррозионная опасность, коррозионно-опасные микроорганизмы, коррозионное обследование, коррозионное растрескивание под напряжением, коррозионное состояние, сопротивление электролита, состояние изоляционного покрытия, электрохимическая защита, электрохимический потенциал, ЭХЗ

ОТКРЫТОЕ АКЦИОНЕРНОЕ ОБЩЕСТВО
АКЦИОНЕРНАЯ КОМПАНИЯ
ПО ТРАНСПОРТУ НЕФТИ «ТРАНСНЕФТЬ»
ОАО «АК «ТРАНСНЕФТЬ»

ТЕХНОЛОГИЧЕСКИЕ
РЕГЛАМЕНТЫ

ПРАВИЛА ПРОВЕДЕНИЯ ОБСЛЕДОВАНИЙ
КОРРОЗИОННОГО СОСТОЯНИЯ
МАГИСТРАЛЬНЫХ НЕФТЕПРОВОДОВ

Москва 2003

Регламенты, разработанные и утвержденные ОАО «АК «Транснефть», устанавливают общеотраслевые обязательные для исполнения требования по организации и выполнению работ в области магистрального нефтепроводного транспорта, а также обязательные требования к оформлению результатов этих работ.

Регламенты (стандарты предприятия) разрабатываются в системе ОАО «АК «Транснефть» для обеспечения надежности, промышленной и экологическом безопасности магистральных нефтепроводов, регламентации и установления единообразия взаимодействия подразделений Компании и ОАО МН при ведении работ по основной производственной деятельности как между собой, так и с подрядчиками, органами государственного надзора, а также унификации применения и обязательного исполнения требований соответствующих федеральных и отраслевых стандартов, правил и иных нормативных документов.

ПРАВИЛА ПРОВЕДЕНИЯ ОБСЛЕДОВАНИЙ
КОРРОЗИОННОГО СОСТОЯНИЯ
МАГИСТРАЛЬНЫХ НЕФТЕПРОВОДОВ

1. ОБЛАСТЬ ПРИМЕНЕНИЯ ПРАВИЛ

1.1. Правила обследования распространяются на магистральные нефтепроводы подземной прокладки, имеющие систему активной защиты от коррозии и тип изоляционного покрытия, соответствующий .

1.2. При разработке правил использованы нормативные документы:

Сооружения стальные магистральные. Общие требования к защите от коррозии.

Трубопроводы стальные магистральные. Общие требования к защите от коррозии.

РД 153-39.4-039-99 «Нормы проектирования ЭХЗ магистральных трубопроводов и площадок магистральных нефтепроводов».

2. ЗАДАЧИ ОБСЛЕДОВАНИЯ

Основными задачами обследования являются:

2.1. Оценка коррозионного состояния нефтепроводов.

2.2. Оценка состояния противокоррозионной защиты.

2.3. Своевременное обнаружение и устранение коррозионных повреждений.

2.4. Разработка и проведение мероприятий по повышению эффективности защиты, оптимизации работы средств ЭХЗ.

3. ОРГАНИЗАЦИЯ РАБОТ ПО ПРОТИВОКОРРОЗИОННОМУ ОБСЛЕДОВАНИЮ

3.1. Комплексное противокоррозионное обследование должно проводиться производственными лабораториями ЭХЗ при ОАО МН или специализированными организациями, имеющими разрешение (лицензию) Госгортехнадзора на проведение данных работ.

3.2. Обследование должно проводиться:

Не позднее чем через 6 месяцев после ввода в эксплуатацию системы электрохимической защиты вновь построенных нефтепроводов с обязательной выдачей сертификата соответствия качества противокоррозионной защиты государственным стандартам;

Не реже 1 раза в 5 лет для нефтепроводов, проложенных на участках с высокой коррозионной опасностью по ;

Не реже 1 раза в 10 лет на остальных участках.

Внеочередное обследование при обнаружении в процессе эксплуатации вредного влияния от систем ЭХЗ вновь построенных близлежащих и пересекающих подземных коммуникаций и от электрифицированных железных дорог.

3.3. В соответствии с периодичностью обследования по п. в ОАО МН должна быть разработана программа противокоррозионного обследования на ближайшие 10 лет.

3.4. Ежегодно до 1 января следующего года Программа должна корректироваться с учетом выполненных в текущем году работ по обследованию.

3.5. Обследование должно проводиться с использованием полевых лабораторий ЭХЗ и современного измерительного оборудования, как отечественного, так и импортного.

3.6. Методика обследования должна соответствовать РД «Инструкция по комплексному обследованию коррозионного состояния магистральных нефтепроводов».

3.7. Договоры на обследование со сторонними организациями должны быть заключены до 1 апреля текущего года.

3.8. Обязательным приложением к договору является «Программа коррозионного обследования нефтепровода», составленная на основании «Инструкции по комплексному обследованию коррози онного состояния МН», с учетом особенностей коррозионного состояния и коррозионных факторов обследуемого участка.

3.9. Окончательный срок выдачи результатов по коррозионному обследованию сторонней организацией должен быть не позднее 1 апреля следующего года. Информационный отчет с предварительными, наиболее важными результатами должен быть выдан до 1 ноября текущего года для своевременного включения в план следующего года мероприятий, требующих капитальных затрат.

4. СОСТАВ КОМПЛЕКСНОГО ОБСЛЕДОВАНИЯ

4.1. Анализ коррозионной опасности по трассе нефтепроводов проводится на основе данных коррозионной опасности грунтов, в том числе и микробиологической, наличию и характеру блуждающих токов, наличию участков, длительное время находившихся без защиты.

4.2. Сбор и анализ статистических данных об условиях эксплуатации противокоррозионной защиты обследуемого участка нефтепровода за весь предшествующий комплексному обследованию период: технологических характеристик средств ЭХЗ, сведений о работе средств электрохимической защиты за прошедший период эксплуатации, сведений по состоянию изоляции.

4.3. Проведение комплекса электрометрических работ:

По локализации дефектов и оценке переходного сопротивления изоляционного покрытия методом градиента потенциала, методом выносного электрода и другими методами;

По измерению защитного потенциала по протяженности, а в зонах блуждающих токов - по протяженности и по времени;

По измерению коррозионных характеристик почвы - удельного сопротивления грунта, поляризационных характеристик почвы.

4.4. Определение коррозионно-опасных мест на основе обработки и анализа данных обследования.

4.5. Вскрытие нефтепровода в коррозионно-опасных местах в процессе обследования с составлением актов шурфовки, устранение дефектов изоляции и коррозионных повреждений силами эксплуатационных служб.

4.6. Решение расчетно-аналитических задач по обеспечению коррозионной безопасности нефтепровода:

4.6.1. Оценка состояния изоляции, в том числе:

Прогнозирование изменения ее физико-химических свойств во времени;

Оценка остаточного ресурса изоляции;

Определение оптимального срока и очередности ремонта изоляции участков.

4.6.2. Определение технического состояния средств ЭХЗ:

Соответствие параметров установок нормативным документам;

Техническое состояние элементов установок ЭХЗ;

Прогнозирование изменения параметров установок ЭХЗ во времени;

Выработка мероприятий по оптимизации работы и срокам проведения ремонта средств ЭХЗ.

4.6.3. Оценка коррозионного состояния нефтепровода.

4.7. Составление отчета по проведенному обследованию с выдачей рекомендаций по совершенствованию комплексной защиты нефтепроводов.

4.8. При необходимости разработка проекта ремонта и реконструкции средств ЭХЗ на основе рекомендаций обследования.

4.9. Результаты обследования должны быть представлены на бумажных и магнитных носителях.

4.10. Служба ЭХЗ ОАО МН после получения отчета должна использовать результаты обследования для пополнения эксплуатационной и архивной базы данных о состоянии противокоррозионной защиты.

5. ОСНОВНЫЕ ПОЛОЖЕНИЯ МЕТОДИКИ ОБСЛЕДОВАНИЯ

5.1. Анализ коррозионной опасности по трассе нефтепровода

5.1.2. Оценку коррозионной опасности по трассе нефтепровода производят с целью выделения участков, требующих первоочередного обследования с расширенным перечнем электрометрических работ.

5.1.3. Оценка коррозионной опасности не производится в том случае, когда коррозионно-опасные участки установлены ранее.

5.1.4. Измерение удельного электрического сопротивления грунта производится по четырехэлектродной схеме Веннера.

5.1.5. Коррозионную опасность от биологической коррозии определяют с помощью микробиологического анализа грунтов по существующим методикам.

5.1.6. Коррозионную опасность от блуждающих токов рассчитывают по формулам с учетом расстояния между электрифицированной ж/д и нефтепроводом, расстояния между тяговыми подстанциями и рода тока ж/д (постоянный, переменный).

5.1.7. Общая коррозионная опасность рассчитывается с учетом величин, указанных в пп. - . По результатам оценки коррозионной опасности определяют очередность и объем обследования участков нефтепроводов.

5.2. Анализ данных по условиям эксплуатации противокоррозионной защиты за предыдущий период.

5.2.1. Цель анализа:

Определение опасных в коррозионном отношении участков нефтепровода;

Интегральная оценка сопротивления изоляции по участкам за весь период эксплуатации.

5.2.2. Для анализа необходимо обобщить данные:

По результатам осмотра нефтепровода в шурфах по представленным актам шурфовки;

По внутритрубной дефектоскопии;

По коррозионным отказам нефтепроводов;

По проводившимся ранее замерам защитного потенциала и режимам работы установок ЭХЗ.

5.2.3. Участки, имевшие коррозионные поражения, подлежат детальному изучению. Все коррозионные поражения следует сопоставить с оценкой коррозионной опасности, определенной на первом этапе обследования.

5.2.4. Ретроспективная оценка состояния изоляции производится по сопротивлению изоляции, рассчитанному по эксплуатационным данным установок ЭХЗ и распределению разности потенциалов вдоль трубопровода.

5.3. Проведение электрометрических работ

5.3.1. Поиск дефектных мест в изоляции производят одним из следующих методов:

Выносного электрода;

Градиента напряжения постоянного тока;

Продольного градиента;

Поперечного градиента.

5.3.2. Измерение защитного потенциала по протяженности определяют по поляризационному потенциалу.

5.3.3. Поляризационный потенциал измеряют по методикам в соответствии с и НТД.

5.3.4. Сплошные измерения защитного потенциала могут быть выполнены следующим образом:

Методом выносного электрода;

Методом интенсивных измерений с использованием отключения средств ЭХЗ.

5.3.5. На основании замеров составляется график распределения защитного потенциала вдоль нефтепровода.

5.4. Решение расчетных задач по обеспечению коррозионной безопасности

5.4.1. При оценке текущего состояния изоляции и прогнозировании изменения ее параметров решают следующие задачи:

Дают интегральную оценку по сопротивлению ее постоянному току;

Определяют физико-химические свойства изоляции;

Рассчитывают остаточный ресурс изоляции;

Определяют оптимальный срок переизоляции нефтепровода.

5.4.2. Определение параметров средств ЭХЗ и прогнозирование изменения ее параметров во времени.

Расчеты производятся на основании исходных данных:

Электрических параметров катодных и протекторных установок;

Паспортных характеристик средств ЭХЗ;

Конструктивных и электрических параметров анодных заземлений;

Данных периодического контроля установок ЭХЗ.

5.4.3. Оценка остаточного ресурса элементов установок ЭХЗ производится:

Для установок катодной защиты:

Анодного заземления;

Катодного преобразователя;

Дренажной линии;

Защитного заземления.

Для установок дренажной защиты:

Дренажа;

Дренажной линии;

Для протекторных установок - протекторов.

5.4.4. Комплексная оценка состояния ЭХЗ нефтепровода осуществляется в соответствии с по следующим критериям:

Общая защищенность;

Защищенность трубопровода по протяженности;

Защищенность трубопровода по времени.

5.5. Оценка коррозионного состояния нефтепровода производится с целью выявления наиболее опасных в коррозионном отношении участков нефтепроводов

5.5.1. Оценка производится путем обобщения всех данных обследования и данных по наличию коррозионных повреждений. Сводные данные по коррозионному состоянию заносятся в форму, определяемую НТД по противокоррозионному обследованию.

5.5.2. Коррозионную опасность определяют по сумме баллов, которыми оцениваются влияние различных коррозионных факторов.

5.6.2. На основании анализа данных о состоянии изоляционного покрытия и расчетов остаточного ресурса изоляции должны быть выделены участки и сроки ремонта изоляции.

5.6.3. На основании данных о работе средств ЭХЗ и технико-экономических расчетов по остаточному ресурсу и оптимизации должны быть определены мероприятия по совершенствованию системы ЭХЗ для обеспечения требуемой защиты по протяженности и по времени.

Б . В . Кошкин , В . Н . Щербаков , В . Ю . Васильев , ГОУВПО «Московский государственный Институт Стали и Сплавов (технологический университет ) » ,

ГУП «Мосгортепло»

Электрохимические методы оценки, мониторинга, диагностики, прогнозирования коррозионного поведения и определения скоростей коррозии, достаточно давно и хорошо разработанные в теоретическом плане , и широко применяемые в лабораторных условиях, начали применяться для оценки коррозионного состояния в эксплуатационных условиях лишь в последние 5-10 лет.

Отличительной особенностью электрохимических методов оценки является возможность определения коррозионного состояния (в том числе и непрерывно) в реальном времени при одновременном отклике материала и коррозионноактивной среды.

Наиболее широкое применение для оценки коррозионного состояния в эксплуатационных условиях имеют методы поляризационного сопротивления (гальвано- и потенциостатический), резистометрический и импедансный. Практическое применение получили два первых. Гальваностатический метод измерения используется в портативных переносных приборах, потенциостатический - преимущественно при лабораторных исследованиях вследствие более сложного и дорогого оборудования.

Метод поляризационного сопротивления основан на измерении скорости коррозии посредством определения тока коррозии.

Существующие зарубежные приборы для измерения скоростей коррозии основаны в основном на принципе поляризационного сопротивления и с достаточной степенью точности могут определять скорость коррозии лишь в условиях полного погружения измеряемого объекта в коррозионно-активную среду, т.е. практически определяется коррозионная активность среды. Такая схема измерений реализуется в зарубежных приборах для оценки скорости коррозии (приборы фирм ACM, Ronbaks, Voltalab, Magna и др.). Приборы достаточно дороги и не адаптированы к российским условиям. Отечественные коррозиметры определяют агрессивность среды вне зависимости от реальных сталей, из которых изготовлены трубопроводы, в связи с чем не могут определять коррозионную стойкость трубопроводов в эксплуатационных условиях.

В связи с этим в МИСиС был разработан коррозиметр, предназначенный для определения скоростей коррозии трубопроводов тепловых сетей из реально эксплуатирующихся сталей.

Малогабаритный коррозиметр «КМ-МИСиС» (рис. 1) разработан на современной элементной базе на основе прецизионного цифрового микровольтметра с нулевым сопротивлением. Коррозиметр предназначен для измерения скорости коррозии методом поляризационного сопротивления с бестоковой IR-компенсацией. Прибор имеет простой, интуитивно понятный интерфейс управления и ввода/вывода информации на жидкокристаллическом дисплее.

Программой коррозиметра предусмотрена возможность введения параметров, позволяющих оценивать скорость коррозии различных марок сталей и установку нуля. Эти параметры устанавливаются при изготовлении и калибровке коррозиметра. Коррозиметр показывает как измеренное значение скорости коррозии, так и текущие значения разности потенциалов «Е 2 -Е1 » для контроля параметров.

Основные параметры коррозиметра находятся в соответствии с Единой Системой Защиты от Коррозии и Старения (ЕСЗКС).

Коррозиметр «КМ-МИСиС» предназначен для определения скорости коррозии методом поляризационного сопротивления в электролитически проводящих средах и может использоваться для определения скорости коррозии металлических деталей и оборудования в энергетике, химической и нефтехимической промышленности, строительстве, машиностроении, при охране окружающей среды, для нужд образования.

Опыт эксплуатации

Коррозиметр прошел опытно-промышленные испытания в эксплуатационных условиях теплосетей г. Москвы.

Испытания на Ленинском проспекте проводили в августе - ноябре 2003 г. на первом и втором контуре тепловых сетей (абонент 86/80). На этом участке в I и II контур трубопроводов тепловых сетей были вварены патрубки, в которые установили датчики (рабочие электроды) и проводили ежедневные измерения скорости коррозии и электрохимических параметров с помощью опытного образца коррозиметра. Измерения проводили во внутренней части трубопроводов с регистрацией параметров теплоносителя. Основные параметры теплоносителя приведены в таблице 1.

При измерениях с различной длительностью от 5 до 45 мин. регистрировали основные параметры коррозионного состояния трубопроводов тепловых сетей при длительных испытаниях. Результаты измерений приведены на рис. 2 и 3. Как следует из результатов испытаний, начальные значения скорости коррозии хорошо коррелируются с длительными испытаниями как при испытаниях в I, так и во II контуре. Средняя скорость коррозии для I контура составляет около 0,025 - 0,05 мм/год, для II контура около 0,25 - 0,35 мм/год. Полученные результаты подтверждают имеющиеся опытные и литературные данные по коррозионной стойкости трубопроводов тепловых сетей из углеродистых и низколегированных сталей. Более точные значения могут быть получены при конкретизации марок сталей эксплуатируемых трубопроводов. Обследование коррозионного состояния тепловых сетей проводили на участке шоссе Энтузиастов - Саянская ул. Участки теплотрассы в этом районе (№ 2208/01 - 2208/03) часто выходят из строя, трубопроводы на данном уча
стке были уложены в 1999 - 2001 гг. Теплотрасса состоит из прямой и обратной нитки. Температура прямой нитки теплотрассы около 80-120 ОС при давлении 6 атм, обратной - около 30-60 ОС. В весенне-осенний период теплотрасса часто подтопляется грунтовыми водами (вблизи Терлецкие пруды) и/или канализационными стоками. Характер укладки теплотрассы в этом районе - канальная, в бетонные желоба с крышкой, и глубиной укладки около 1,5-2 м. Первые течи в теплотрассе были замечены весной 2003 г., вышли из строя и были заменены в августе - сентябре 2003 г. При осмотре канал теплотрассы был затоплен примерно на 1/3 - 2/3 диаметра трубы грунтовыми водами или стоками. Трубы теплотрассы имели изоляцию из стеклоткани.

Участок № 2208/01 - 22008/02. Теплотрасса уложена в 1999 г., трубы сварные, продольно-шовные, диаметром 159 мм, изготовлены предположительно из ст. 20. Трубопроводы имеют теплоизоляционное покрытие из кузбасс-лака, минеральной ваты и пергамина (рубероида или стеклоткани). На данном участке имеется 11 дефектных зон со сквозными коррозионными поражениями преимущественно в зоне затопления канала. Плотность коррозионных поражений по длине прямой нитки 0,62 м- 1 , обратной -0,04 м -1 . Вышли из строя в августе 2003 г.

Участок № 2208/02 - 2208/03. Уложен в 2001 г. Преимущественная коррозия прямой нитки теплотрассы. Общая длина дефектных участков трубопровода, подлежащего замене -82 м. Плотность коррозионных поражений прямой нитки 0,54 м -1 . По данным ГУП «Мосгортепло» трубопроводы изготовлены из стали 10ХСНД.

Участок № 2208/03 - ЦТП. Уложен в 2000 г., трубы бесшовные, предположительно из ст. 20. Плотность коррозионных поражений прямой нитки -0,13 м -1 , обратной нитки -0,04 м- 1 . Средняя плотность сквозных коррозионных поражений (типа делокализованной язвенной коррозии) внешней поверхности трубопроводов прямой нитки 0,18 - 0,32 м -1 . На вырезанных образцах труб покрытие на внешней стороне отсутствует. Характер коррозионных поражений внешней стороны трубы образцов - преимущественно общая коррозия при наличии сквозных поражений типа язвенной коррозии, которые имеют конусообразную форму с размером около 10-20 см с внешней поверхности, переходящих в сквозные диаметром около 2-7 мм. На внутренней части трубы - небольшая общая коррозия, состояние удовлетворительное. Результаты определения состава образцов труб приведены в таблице 2.

По составу материал образцов труб соответствует сталям типа «Д» (или ХГСА).

Поскольку часть трубопроводов находилась в канале в воде, возможно было оценить скорость коррозии наружной части трубы. Оценку скорости коррозии проводили в местах выхода канальной прокладки, в грунтовой воде в непосредственной близости от трубопровода, и в местах наиболее быстрого течения грунтовых вод. Температура грунтовых вод составляла 40 - 60 ОС.

Результаты измерений приведены в табл. 3-4, где данные, полученные в спокойной воде, выделены красным цветом.

Результаты измерений показывают, что скорости общей и локальной коррозии увеличиваются во времени, что наиболее выражено для локальной коррозии в спокойной воде. Скорость общей коррозии имеет тенденцию к возрастанию на течении, в спокойной воде увеличиваются скорости локальной коррозии.

Полученные данные позволяют определить скорость коррозии трубопроводов тепловых сетей и прогнозировать их коррозионное поведение. Скорость коррозии трубопроводов на данном участке составляет > 0,6 мм/год. Максимальный срок службы трубопроводов в этих условиях - не более 5-7 лет с периодическими ремонтами в местах локальных коррозионных поражений. Более точный прогноз возможен при непрерывном коррозионном мониторинге и по мере накопления статистических данных.

Анализ эксплуатационных коррозионных поражений т

  • 1. Основные понятия и показатели надёжности (надёжность, безотказность, ремонтопригодность, долговечность и др.). Характеристика.
  • 2. Взаимосвязь качества и надёжности машин и механизмов. Возможность оптимального сочетания качества и надёжности.
  • 3. Способы определения количественных значений показателей надёжности (расчётные, экспериментальные, эксплуатационные и др.). Виды испытаний на надёжность.
  • 4. Способы повышения надёжности технических объектов на стадии проектирования, в процессе производства и эксплуатации.
  • 5. Классификация отказов по уровню их критичности (по тяжести последствий). Характеристика.
  • 7. Основные разрушающие факторы, действующие на объекты в процессе эксплуатации. Виды энергии, оказывающие влияние на надёжность, работоспособность и долговечность машин и механизмов. Характеристика.
  • 8. Влияние физического и морального износа на предельное состояние объектов трубопроводного транспорта. Способы продления периода исправной эксплуатации конструкции.
  • 9. Допустимые и недопустимые виды повреждений деталей и сопряжений.
  • 10. Схема потери работоспособности объектом, системой. Характеристика предельного состояния объекта.
  • 11. Отказы функциональные и параметрические, потенциальные и фактические. Характеристика. Условия, при которых отказ может быть предотвращён или отсрочен.
  • 13. Основные типы структур сложных систем. Особенности анализа надёжности сложных систем на примере магистрального трубопровода, насосной станции.
  • 14. Способы расчёта надёжности сложных систем по надёжности отдельных элементов.
  • 15. Резервирование как способ повышения надёжности сложной системы. Разновидности резервов: ненагруженный, нагруженный. Резервирование систем: общее и раздельное.
  • 16. Принцип избыточности как способ повышения надежности сложных систем.
  • 17. Показатели надежности: наработка, ресурс технический и его виды, отказ, срок службы и его вероятностные показатели, работоспособность, исправность.
  • 19. Надежность и качество, как технико-экономические категории. Выбор оптимального уровня надежности или ресурса на стадии проектирования.
  • 20. Понятие «отказ» и его отличие от «повреждения». Классификация отказов по времени их возникновения (конструкционные, производственные, эксплуатационные).
  • 22. Деление мт на эксплуатационные участки. Защита трубопроводов от перегрузок по давлению.
  • 23. Причины и механизм коррозии трубопроводов. Факторы, способствующие развитию коррозии объектов.
  • 24. Коррозионное поражение труб магистральных трубопроводов (мт). Разновидности коррозионного поражения труб мт. Влияние процессов коррозии на изменение свойств металлов.
  • 25. Защитные покрытия для трубопроводов. Требования, предъявляемые к ним.
  • 26. Электро-хим. Защита трубопроводов от коррозии, ее виды.
  • 27. Закрепление трубопроводов на проектных отметках, как способ повышения их надежности. Способы берегоукрепления в створах подводных переходов.
  • 28. Предупреждение всплытия трубопроводов. Методы закрепления трубопроводов на проектных отметках на обводняемых участках трассы.
  • 29. Применение системы автоматизации и телемеханизации технологических процессов для обеспечения надежной и устойчивой работы мт.
  • 30. Характеристики технического состояния линейной части мт. Скрытые дефекты трубопроводов на момент пуска в эксплуатацию и их виды.
  • 31. Отказы запорно-регулирующей арматуры мт. Их причины и последствия.
  • 32. Отказы механо - технологического оборудования нпс и их причины. Характер отказов магистральных насосов.
  • 33. Анализ повреждений основного электротехнического оборудования нпс.
  • 34. Чем определяется несущая способность и герметичность резервуаров. Влияние скрытых дефектов, отклонений от проекта, режимов эксплуатации на техническое состояние и надежность резервуаров.
  • 35. Применение системы технического обслуживания и ремонта (тор) при эксплуатации мт. Задачи, возлагаемые на систему тор. Параметры, диагностируемые при контроле технического состояния объектов мт.
  • 36. Диагностика объектов мт, как условие обеспечения их надежности. Контроль состояния стенок труб и арматуры методами разрушающего контроля. Испытания трубопроводов.
  • 37. Контроль состояния стенок трубопроводов методами неразрушающего контроля. Аппараты для диагностирования: самоходные и перемещаемые потоком перекачиваемой жидкости.
  • 38. Диагностика напряженно-деформированного состояния линейной части трубопровода.
  • 39, 40, 41, 42. Диагностика наличия утечек жидкости из трубопроводов. Методы диагностики мелких утечек в мнп и мнпп.
  • 1. Визуальный
  • 2. Метод понижения давления
  • 3. Метод отрицательных ударных волн
  • 4. Метод сравнения расходов
  • 5. Метод линейного баланса
  • 6. Радиоактивный метод
  • 7. Метод акустической эмиссии
  • 8. Лазерный газоаналитический метод
  • 9. Ультразвуковой метод (зондовый)
  • 43. Методы контроля состояния изоляционных покрытий трубопроводов. Факторы, приводящие к разрушениям изоляционных покрытий.
  • 44. Диагностика технического состояния резервуаров. Визуальный контроль.
  • 45. Определение скрытых дефектов в металле и сварных швах резервуара.
  • 46. Контроль коррозионного состояния резервуаров.
  • 47. Определение механических свойств металла и сварных соединений резервуаров.
  • 48. Контроль геометрической формы и осадки основания резервуара.
  • 49. Диагностика технического состояния насосных агрегатов.
  • 50. Профилактическое обслуживание мт, как способ повышения надежности в процессе его эксплуатации. Стратегии то и ремонта.
  • 51. Система планово-предупредительного ремонта (ппр) и ее влияние на надежность и долговечность мт. Виды то и ремонта.
  • 52. Перечень мероприятий, включаемых в систему ппр трубопроводных систем.
  • 53. Недостатки системы ппр по наработке и основные направления ее совершенствования.
  • 54. Капитальный ремонт линейной части мт, его основные этапы. Виды капитального ремонта нефтепроводов.
  • 55. Последовательность и содержание работ при ремонте трубопровода с подъемом и укладки его на лежки в траншее.
  • 56. Аварии на мт, их классификация и организация ликвидации аварий.
  • 57. Причины аварий и виды дефектов на мт.
  • 58. Технология аварийно - восстановительных работ трубопроводов.
  • 59. Способы герметизации трубопроводов. Требования, предъявляемые к герметизирующим устройствам.
  • 60. Метод герметизации трубопровода через «окна».
  • Толщину листов верхних поясов, начиная с четвертого, проверяют по образующей вдоль шахтной лестницы по высоте пояса (низ, середина, верх). Толщину нижних трех поясов проверяют по четырем диаметрально противо­положным образующим. Толщины патрубков, размещенных на листах первого пояса, измеряют в нижней части, не менее, чем в двух точках.

    Толщину листов днища и кровли измеряют по двум взаимноперпенди- кулярным направлениям. Число измерений на каждом листе должно быть не менее двух. В местах, где имеется коррозионное разрушение листов кровли, вырезаются отверстия размером 500x500 мм и производятся измерения сече­ний элементов несущих конструкций. Толщину листов понтона и плавающей крыши измеряют на ковре, а также на наружных, внутренних и радиальных ребрах жесткости.

    Результаты измерений осредняются. При изменении толщины листа в нескольких точках в качестве фактической принимается среднеарифмитиче- ская величина. Измерения, давшие результат, отличающийся от среднеариф- митической величины более, чем на 10 % в меньшую сторону, указываются дополнительно. При измерении толщины нескольких листов в пределах одно­го пояса или любого другого элемента резервуара за фактическую толщину принимается минимально замеренная толщина отдельного листа.

    Результаты измерений сравниваются с предельно допустимыми величи­нами толщин стенки, кровли, несущих конструкций, понтонов.

    Предельно допустимый износ листов кровли и днища резервуара не должен превышать 50 %, а окраек днища - 30 % проектной величины. Для не­сущих конструкций покрытия (ферм, балок) износ не должен превышать 30 % от проектной величины, а для листов понтона (плавающей крыши) - 50% в центральной части и 30 % для коробов.

    47. Определение механических свойств металла и сварных соединений резервуаров.

    Для определения фактической несущей способности и пригодности резервуара к дальнейшей эксплуатации весьма важно знать механические свойства основного металла и сварных соединений.

    Механические испытания производятся в случае, когда отсутствуют данные о первоначальных механических свойствах основного металла и сварных соединений, при значительной коррозии, при появлении трещин, а также во всех других случаях, когда имеется подозрение на ухудшение механических свойств, усталость при действии переменных и знакопеременных нагрузок, перегрева, действия чрезмерно высоких нагрузок.

    Механические испытания основного металла выполняются в соответствии с требованиями ГОСТ 1497-73 и ГОСТ 9454-78. Они включают в себя определение пределов прочности и текучести, относительного удлинения и ударной вязкости. При механических испытаниях сварных соединений (согласно ГОСТ 6996-66) выполняют определение предела прочности, испытания на статический изгиб и ударную вязкость.

    В случаях, когда требуется определить причины ухудшения механических свойств металла и сварных соединений, появление трещин в различных элементах резервуара, а также характер и размеры коррозионного повреждения, находящегося внутри металла, производятся металлографические исследования.

    Для механических испытаний и металлографических исследований вырезают основной металл диаметром 300 мм в одной из четырех нижних поясов стенки резервуара.

    В процессе металлографических исследований определяют фазовый состав и размеры зерна, характер термической обработки, наличие неметаллических включений и характер коррозионного разрушения (наличие межкристал- лидной коррозии).

    Если в паспорте резервуара отсутствуют данные о марке металла, из которого он изготовлен, прибегают к химическому анализу. Для определения химического состава металла используются образцы, вырезанные для механических испытаний.

    Механические свойства и химический состав основного металла и сварных соединений должен соответствовать указаниям проекта, а также требованиям стандартов и технических условий.



Поделиться