Основные особенности процессов сгорания топлива. Реакции горения и газификации

Горение топлива - это процесс окисления горючих компонентов, происходящий при высоких температурах и сопровождающийся выделением тепла. Характер горения определяется множеством факторов, в том числе способом сжигания, конструкцией топки, концентрацией кислорода и т. д. Но условия протекания, продолжительность и конечные результаты топочных процессов в значительной мере зависят от состава, физических и химических характеристик топлива.

Состав топлива

К твердому топливу относят каменный и бурый уголь, торф, горючие сланцы, древесину. Эти виды топлив представляют собой сложные органические соединения, образованные в основном пятью элементами - углеродом С, водородом Н, кислородом О, серой S и азотом N. В состав топлива также входит влага и негорючие минеральные вещества, которые после сгорания образуют золу. Влага и зола - это внешний балласт топлива, а кислород и азот - внутренний.

Основным элементом горючей части является углерод, он обуславливает выделение наибольшего количества тепла. Однако, чем больше доля углерода в составе твердого топлива, тем труднее оно воспламеняется. Водород при сгорании выделяет в 4,4 раза больше тепла, чем углерод, но его доля в составе твердых топлив невелика. Кислород, не будучи теплообразующим элементом и связывая водород и углерод, снижает теплоту сгорания, поэтому является элементом нежелательным. Особенно велико его содержание в торфе и древесине. Количество азота в твердом топливе небольшое, но он способен образовывать вредные для окружающей среды и человека оксиды. Также вредной примесью является сера, она выделяет мало теплоты, но образующиеся оксиды приводят к коррозии металла котлов и загрязнению атмосферы.

Технические характеристики топлива и их влияние на процесс горения

Важнейшими техническими характеристиками топлива являются: теплота сгорания, выход летучих веществ, свойства нелетучего остатка (кокса), зольность и влагосодержание.

Теплота сгорания топлива

Теплота сгорания - это количество тепла, выделяющееся при полном сгорании единицы массы (кДж/кг) или объема топлива (кДж/м3). Различают высшую и низшую теплоту сгорания. В высшую входит тепло, выделяемое при конденсации паров, которые содержатся в продуктах сгорания. При сжигании топлива в топках котлов уходящие дымовые газы имеют температуру, при которой влага находится в парообразном состоянии. Поэтому в этом случае применяют низшую теплоту сгорания, которая не учитывает теплоту конденсации водяных паров.

Состав и низшая теплота сгорания всех известных месторождений угля определены и приводятся в расчетных характеристиках.

Выход летучих веществ

При нагревании твердого топлива без доступа воздуха под воздействием высокой температуры сначала выделяются водяные пары, а затем происходит термическое разложение молекул с выделением газообразных веществ, получивших название летучих веществ.

Выход летучих веществ может происходить в интервале температур от 160 до 1100 °С, но в среднем - в области температур 400-800 °С. Температура начала выхода летучих, количество и состав газообразных продуктов зависят от химического состава топлива. Чем топливо химически старше, тем меньше выход летучих и выше температура начала их выделения.

Летучие вещества обеспечивают более раннее воспламенение твердой частицы и оказывают значительное влияние на горение топлива. Молодые по возрасту топлива - торф, бурый уголь - легко загораются, сгорают быстро и практически полностью. Наоборот, топливо с низким выходом летучих, например, антрацит, загорается труднее, горит намного медленнее и сгорает не полностью (с повышенной потерей тепла).

Свойства нелетучего остатка (кокса)

Твердая часть топлива, оставшаяся после выхода летучих, состоящая в основном из углерода и минеральной части, называется коксом. Коксовый остаток может быть в зависимости от свойств органических соединений, входящих в горючую массу: спекшимся, слабоспекшимся (разрушающимся при воздействии), порошкообразным. Антрацит, торф, бурые угли дают порошкообразный нелетучий остаток. Большинство каменных углей спекается, но не всегда сильно. Слипшийся или порошкообразный нелетучий остаток дают каменные угли с очень большим выходом летучих (42-45%) и с очень малым выходом (менее 17%).

Структура коксового остатка важна при сжигании угля в топках на колосниковых решетках. При факельном сжигании в энергетических котлах характеристика кокса не имеет большого значения.

Зольность

Твердое топливо содержит наибольшее количество негорючих минеральных примесей. Это прежде всего глина, силикаты, железный колчедан, но также могут входить закись железа, сульфаты, карбонаты и силикаты железа, оксиды различных металлов, хлориды, щелочи и т.д. Большая часть их попадает при добыче в виде пород, между которыми залегают пласты угля, но присутствуют и минеральные вещества, перешедшие в топливо из углеобразователей или в процессе преобразования его исходной массы.

При сжигании топлива минеральные примеси претерпевают ряд реакций, в результате которых образуется твердый негорючий остаток, называемый золой. Вес и состав золы не идентичны весу и составу минеральных примесей топлива.

Свойства золы играют большую роль в организации работы котла и топки. Ее частички, уносимые продуктами сгорания, при высоких скоростях истирают поверхности нагрева, а при малых скоростях отлагаются на них, что ведет к ухудшению теплопередачи. Зола, уносимая в дымовую трубу, способна нанести вред окружающей среде, во избежание этого требуется установка золоуловителей.

Важным свойством золы является ее плавкость, различают тугоплавкую (выше 1425 °С), среднеплавкую (1200-1425 °С) и легкоплавкую (менее 1200 °С) золу. Зола, прошедшая стадию плавления и превратившаяся в спекшуюся или сплавленную массу, называется шлаком. Температурная характеристика плавкости золы имеет большое значение для обеспечения надежной работы топки и поверхностей котла, правильный выбор температуры газов около этих поверхностей позволит исключить шлакование.

Влага - нежелательная составляющая топлива, она наряду с минеральными примесями является балластом и уменьшает содержание горючей части. Помимо этого, она снижает тепловую ценность, так как дополнительно требуются затраты энергии на ее испарение.

Влага в топливе может быть внутренней и внешней. Внешняя влага содержится в капиллярах или удерживается на поверхности. С химическим возрастом количество капиллярной влаги сокращается. Поверхностной влаги тем больше, чем меньше куски топлива. Внутренняя влага входит в органическое вещество.

Способы сжигания топлива в зависимости от вида топки

Основные виды топочных устройств:

  • слоевые,
  • камерные.

Слоевые топки предназначены для сжигания крупнокускового твердого топлива. Они могут быть с плотным и кипящим слоем. При сжигании в плотном слое воздух для горения проходит через слой, не влияя на его устойчивость, то есть сила тяжести горящих частиц превышает динамический напор воздуха. При сжигании в кипящем слое благодаря повышенной скорости воздуха частицы переходят в состояние "кипения". При этом происходит активное перемешивание окислителя и топлива, благодаря чему интенсифицируется горение топлива.

В камерных топках сжигают твердое пылевидное топливо, а также жидкое и газообразное. Камерные топки подразделяются на циклонные и факельные. При факельном сжигании частицы угля должны быть не более 100 мкм, они сгорают в объеме топочной камеры. Циклонное сжигание допускает больший размер частиц, под влиянием центробежных сил они отбрасываются на стенки топки и полностью выгорают в закрученном потоке в зоне высоких температур.

Горение топлива. Основные стадии процесса

В процессе горения твердого топлива можно выделить определенные стадии: подогрев и испарение влаги, возгонка летучих и образование коксового остатка, горение летучих и кокса, образование шлака. Такое деление процесса горения относительно условно, так как хотя эти этапы протекают последовательно, частично они налагаются друг на друга. Так, возгонка летучих веществ начинается до окончательного испарения всей влаги, образование летучих идет одновременно с процессом их горения, так же как и начало окисления коксового остатка предшествует окончанию горения летучих, а дожигание кокса может идти и после образования шлака.

Время течения каждой стадии процесса горения в значительной мере определяется свойствами топлива. Дольше всего длится стадия горения кокса, даже у топлив с большим выходом летучих. Существенное влияние на продолжительность стадий процесса горения оказывают разнообразные режимные факторы и конструктивные особенности топки.

1. Подготовка топлива до воспламенения

Топливо, поступающее в топку, подвергается нагреванию, в результате чего при наличии влаги происходит ее испарение и подсушка топлива. Время, необходимое на подогрев и подсушку, зависит от количества влаги и температуры, с которой топливо подается в топочное устройство. Для топлив с большим содержанием влаги (торф, влажные бурые угли) стадия прогрева и подсушивания сравнительна продолжительна.

В слоевые топки топливо подают с температурой, приближенной к окружающей среде. Только в зимнее время в случае смерзания угля его температура ниже, чем в котельном помещении. Для сжигания в факельных и вихревых топках топливо подвергают дроблению и размолу, сопровождаемому сушкой горячим воздухом или дымовыми газами. Чем выше температура поступающего топлива, тем меньше времени и тепла необходимо на подогрев его до температуры воспламенения.

Подсушка топлива в топке происходит за счет двух источников тепла: конвективного тепла продуктов сгорания и лучистого тепла факела, обмуровки, шлака.

В камерных топках подогрев осуществляется преимущественно за счет первого источника, то есть подмешивания к топливу продуктов сгорания в месте его ввода. Поэтому одно из важных требований, предъявляемых к конструкции устройств для ввода топлива в топку, - обеспечение интенсивного подсоса продуктов сгорания. Уменьшению времени нагрева и подсушки также способствует более высокая температура в топке. С этой целью при сжигании топлив с началом выхода летучих при высоких температурах (более 400 °С) в камерных топках делают зажигательные пояса, то есть закрывают экранные трубы огнеупорным теплоизоляционным материалом, чтобы снизить их тепловосприятие.

При сжигании топлива в слое роль каждого вида источников тепла определяется конструкцией топки. В топках с цепными решетками нагревание и подсушка осуществляются преимущественно лучистым теплом факела. В топках с неподвижной решеткой и подачей топлива сверху подогрев и подсушивание происходят за счет движущихся через слой снизу вверх продуктов сгорания.

В процессе нагревания при температуре выше 110 °С начинается термическое разложение органических веществ, входящих в состав топлив. Наименее прочными являются те соединения, которые содержат значительное количество кислорода. Эти соединения распадаются при сравнительно невысоких температурах с образованием летучих веществ и твердого остатка, состоящего преимущественно из углерода.

Молодые по химическому составу топлива, содержащие много кислорода, имеют низкую температуру начала выхода газообразных веществ и дают их больший процент. Топлива с малым содержанием соединений кислорода имеют небольшой выход летучих и более высокую температуру их воспламенения.

Содержание в твердом топливе молекул, которые легко подвергаются разложению при нагревании, оказывает влияние и на реакционную способность нелетучего остатка. Сначала разложение горючей массы происходит преимущественно на наружной поверхности топлива. По мере дальнейшего прогревания пирогенетические реакции начинают происходить и внутри частиц топлива, в них повышается давление и внешняя оболочка разрывается. При сжигании топлив с большим выходом летучих коксовый остаток становится пористым и имеет большую поверхность по сравнению с плотным твердым остатком.

2. Процесс горения газообразных соединений и кокса

Собственно горение топлива начинается с воспламенения летучих веществ. В период подготовки топлива происходят разветвленные цепные реакции окисления газообразных веществ, сначала эти реакции протекают с малыми скоростями. Выделяющееся тепло воспринимается поверхностями топки и частично накапливается в виде энергии движущихся молекул. Последнее приводит к возрастанию скорости цепных реакций. При определенной температуре реакции окисления идут с такой скоростью, что выделяющееся тепло полностью покрывает теплопоглощение. Эта температура является температурой воспламенения.

Температура воспламенения не является константой, она зависит как от свойств топлива, так и от условий в зоне воспламенения, в среднем составляет 400-600 °С. После воспламенения газообразной смеси дальнейшее самоускорение реакций окисления вызывает повышение температуры. Для поддержания горения необходим непрерывный подвод окислителя и горючих веществ.

Воспламенение газообразных веществ приводит к окутыванию коксовой частицы огневой оболочкой. Горение кокса начинается, когда к концу подходит горение летучих. Твердая частица прогревается до высокой температуры, и по мере уменьшения количества летучих веществ снижается толщина пограничного горящего слоя, кислород достигает раскаленной поверхности углерода.

Горение кокса начинается при температуре 1000 °С и является самым длительным процессом. Причина в том, что, во-первых, снижается концентрация кислорода, во-вторых, гетерогенные реакции протекают более медленно, чем гомогенные. В итоге длительность горения частицы твердого топлива определяется в основном временем горения коксового остатка (около 2/3 общего времени). Для топлив с большим выходом летучих, твердый остаток составляет менее ½ начальной массы частицы, поэтому их сжигание происходит быстро и возможность недожога невысока. Химически старые топлива имеют плотную частицу, горение которой занимает почти все время нахождения в топке.

Коксовый остаток большинства твердых топлив в основном, а для некоторых видов - целиком состоит из углерода. Горение твердого углерода происходит с образованием окиси углерода и углекислого газа.

Оптимальные условия для тепловыделения

Создание оптимальных условий для процесса горения углерода - основа правильного построения технологического метода сжигания твердых топлив в котельных агрегатах. На достижение наибольшего тепловыделения в топке могут оказывать влияние следующие факторы: температура, избыток воздуха, первичное и вторичное смесеобразование.

Температура . Тепловыделение при сжигании топлива существенно зависит от температурного режима топки. При относительно низких температурах в ядре факела имеет место неполнота сгорания горючих веществ, в продуктах сгорания остаются окись углерода, водород, углеводороды. При температурах от 1000 до 1800-2000 °С достижимо полное сгорание топлива.

Избыток воздуха . Удельное тепловыделение достигает максимального значения при полном сгорании и коэффициенте избытка воздуха, равном единице. С уменьшением коэффициента избытка воздуха выделение тепла падает, так как недостаток кислорода приводит к окислению меньшего количества топлива. Понижается температурный уровень, снижаются скорости реакций, что приводит к резкому уменьшению тепловыделения.

Повышение коэффициента избытка воздуха больше единицы снижает тепловыделение еще сильнее, чем недостаток воздуха. В реальных условиях сжигания топлива в топках котлов предельные значения тепловыделения не достигаются, так как присутствует неполнота сгорания. Она во многом зависит от того, как организованы процессы смесеобразования.

Процессы смесеобразования . В камерных топках первичное смесеобразование достигается подсушкой и перемешиванием топлива с воздухом, подачей в зону подготовки части воздуха (первичного), созданием широко раскрытого факела с широкой поверхностью и высокой турбулизацией, применением подогретого воздуха.

В слоевых топках задача первичного смесеобразования состоит в том, чтобы подавать необходимое количество воздуха в разные зоны горения на решетке.

С целью обеспечения догорания газообразных продуктов неполного горения и кокса организуют процессы вторичного смесеобразования. Этим процессам способствуют: подача вторичного воздуха с высокой скоростью, создание такой аэродинамики, при которой достигается равномерное заполнение факелом всей топки и, следовательно, вырастает время пребывания газов и коксовых частичек в топке.

3. Образование шлака

В процессе окисления горючей массы твердого топлива происходят значительные изменения и минеральных примесей. Легкоплавкие вещества и сплавы с низкой температурой плавления растворяют тугоплавкие соединения.

Обязательным условием нормальной работы котлоагрегатов является бесперебойный отвод продуктов сгорания и образующегося шлака.

При слоевом сжигании шлакообразование может приводить к механическому недожогу - минеральные примеси обволакивают недогоревшие частиц кокса либо вязкий шлак может перекрывать воздушные проходы, преграждая доступ кислорода к горящему коксу. Для снижения недожога применяют различные мероприятия - в топках с цепными решетками увеличивают время нахождения шлака на решетке, производят частую шуровку.

В слоевых топках вывод шлака производится в сухом виде. В камерных топках шлакоудаление может быть сухим и жидким.

Таким образом, горение топлива является сложным физико-химическим процессом, на который оказывает воздействие большое количество различных факторов, но все они должны быть учтены при проектировании котлов и топочных устройств.

Человечество на протяжении веков совершенствовало конструкции отопительных печей, в которых изначально задумывалось сжигать доступное повсеместно твердое топливо. В этом плане мало что изменилось, и сегодня в ХХI веке при наличии газа и жидкого топлива мы нередко обращаемся к традиционным отопительным технологиям. Как-то легко становится на сердце, если в современном доме помимо центрального отопления имеется еще и хорошая печь про запас. Ну, а традиционные бани и вовсе не могут обойтись без тепла дровяной печи.

Для эффективного и безопасного управления дровяной печью истопнику необходимо знать о тонкостях сжигания твердого топлива. Многие сегодня уже не помнят, как правильно топить печь, однако эксперименты в данном деле крайне нежелательны. В данном материале мы постараемся максимально осветить тему горения твердого топлива.

Под твердым топливом подразумеваются дрова, каменный уголь, антрацит, кокс, торф и прочее. В традиционных печах все это сжигается слоевым способом на колосниках или без таковых. В топку периодически загружается топливо, а образующийся шлак извлекается. Слоевой способ сжигания носит циклический характер. Замкнутый цикл имеет несколько стадий:

  • разогрев и подсушка слоя;
  • выделение горючих летучих веществ и их сгорание;
  • горение твердого топлива;
  • догорание остатков и остывание шлака (золы);
  • очистка топки от шлака.
  • Каждая из этих стадий имеет собственный тепловой режим, при этом показатели при горении топлива постоянно изменяются. Чтобы обеспечить оптимальный тепловой режим печи, необходимо периодически подкладывать новую порцию топлива (слой). Момент загрузки нового слоя определяется в индивидуальном порядке и зависит от многих факторов. Рассмотрим стадии послойного сжигания твердого топлива подробнее.

    Разогрев и подсушка слоя сопровождается поглощением тепла, т.е. носит эндотермический характер. Поставщиком тепла является пламя стартовой закладки из тонких сухих дров или уже разгоревшееся топливо, а также горячие стенки топливника.

    Стадия воспламенения и тления происходит с нарастающим тепловыделением. Излишнее поступление воздуха в топку в этот период нежелательно, поскольку он будет охлаждать дымовые газы, а, следовательно, дольше будет нагреваться дымоход. Воздушные заслонки на стадии воспламенения и тления должны быть лишь приоткрыты, при этом желательно, чтобы холодный воздух подавался только в зону воспламенения.

    Стадия горения нуждается в больших объемах кислорода воздуха, т.к. данный процесс является ни чем иным, как окислением углеводородов. Пламенный нагрев идет по нарастающей, и, по сути, ограничивается только количеством поступающего кислорода. Если сечение дымохода недостаточное, то пламя может выбиваться из отверстий подачи воздуха. В такой ситуации выход один - немедленно полностью открыть задвижку дымохода и прикрыть подачу воздуха. Когда подача воздуха уменьшается, языки пламени становятся длиннее и даже могут проникнуть в дымоход, что будет являться признаком недожига. Очевидно, что подаваемый воздух в режиме пламенного горения необходимо разделять на два управляемых потока. Первичный поток будет подаваться прямо в дрова, в зависимости от объема, увеличивая или уменьшая скорость выделения летучих веществ; а вторичный - на факел пламени, для регулировки полноты сгорания летучих веществ, т.е. длину языков пламени. Увеличение интенсивности вторичного потока приводит к сокращению длины последних вплоть до исчезновения, но при этом скорость горения дров не замедляется. Однако огневая мощь пламени дров на самом деле не такая большая, как кажется. Она способна разогреть стенки топливника металлической печи не выше 300-400°С.

    Горение углей обеспечивает нагревание металлического топливника докрасна - это наиболее экзотермическая стадия. Эффект тепловыделения увеличивается при увеличении подачи первичного воздуха (пропускание через слой). Вторичный воздух на данном этапе не нужен. Угли выгорят быстрее, если подать в топку сырых чурок: произойдет реакция газификации угля водяным паром. Если дрова сырые, то стадия горения и тления происходят практически одновременно.

    Виды топливных камер и процесс сжигания дров

    В простейшей печной топке каминного типа с глухим подом процесс горения проходит с избытком воздуха, поскольку площадь открытого портала обычно в 8-15 раз больше площади сечения дымовой трубы. В связи тем, что большие объемы засасываемого воздуха не дают трубе камина нагреваться выше 60-80°С, тяга в них значительно меньше, чем в печах с дверцей (250-400°С).

    Если каминную топку оснастить дверцей и поддувалом с заслонкой, то ее КПД существенно изменится в сторону увеличения. Однако у такой конструкции имеется серьезный недостаток - чрезмерное задымление камеры, при открытии которой дым вырывается наружу. Уменьшить дымление можно, переместив трубу максимально вперед, но тогда она перекроет верх печи, используемый для нагрева воды или камней. Компромиссным решением в данном случае может стать наклонная полка при заднем расположении трубы. Полка создаст максимальную тягу у самой дверцы, при открытии которой восходящий поток будет засасывать дым, не давая ему вырваться наружу. Такая конструкция хороша для длительного горения, т.к. воздух идет по поду, попадая под дрова, а в районе дымооборота хорошо перемешивается с летучими веществами, обеспечивая полноту их сгорания.

    Для акцента на пламенном горении используют вводы вторичного воздуха в поток летучих веществ. Реализации данного режима сжигания дров помогают также конструкции с колосниковой решеткой. Они хороши, прежде всего, тем, что обеспечивают подачу кислорода в любую область слоя. Однако большое количество поступающего воздуха снижает температуру стенок дымового канала, а, следовательно, тягу и конвективную теплоотдачу. Данное явление можно минимизировать, прикрыв периферию колосниковой решетки подом, оставив область продувки только в центре.

    Для сжигания дров подойдут любые колосниковые решетки. При необходимости можно их изготовить самостоятельно из арматуры или прута. А вот для сжигания каменного угля понадобятся чугунные колосники, форма сечения которых близка к треугольной. Такая форма не позволяет шлаку забивать собой щели между колосниками. Располагать колосники следует вдоль топки, чтобы можно было шуровать уголь кочергой. Чугунные колосниковые решетки бывают как для угля, так и для дров. У последних колосники тоньше, а щели между ними уже.

    Колосниковые печи способны развивать большую мощность, однако удержать их от разгона непросто. При коэффициенте подачи воздуха равном единице стенки печи разогреваются до красна, и дрова начинают газифицироваться по нарастающей. Пламени становится настолько много, что оно попадает в трубу и в этом случае требуется увеличить подачу воздуха, что в свою очередь вызывает еще большую газификацию и разогрев. Печь успокоится сама по себе только после выхода летучих веществ из дровяной закладки. Горение углей после этого уже хорошо поддается регулировке.

    Важно понять, что основной причиной разгона печи разгона являются разогретые до высокой температуры металлические стенки, которые уже не отбирают тепло дров, при этом последние начинают греть сами себя. Не допустить разгона печи можно, если при протопке держать заслонку трубы открытой только наполовину, а когда из топки станут раздаваться характерные газовые хлопки, - приоткрыть дверцу топливника и одновременно полностью открыть трубу. От резкого появления избытка воздуха стенки печи станут остывать, а когда они перестанут светиться, можно будет закрыть дверцу топливника и воздухозабор. Дымоход снова прикрывается наполовину. От этого печь плавно перейдет в режим тления.

    Немаловажный момент, влияющий на разгон печи, - порция закладываемых дров. Чтобы уменьшить вероятность условий разгона, дрова нужно закладывать небольшими порциями от 1 до 3 кг за один раз. При этом, чем крупнее диаметр полена, тем большей может быть масса закладки. С помощью регулировки подачи воздуха нужно стараться не допустить перегрев стенок. Разгон печи опасен, прежде всего, тем, что может привести к короблению или прогоранию металлических частей печи.

    В первую очередь от разгона страдает нижняя часть стенок топливника. Если металлическая печь раз от раза разгоняется, то стенки можно изнутри защитить огнеупорным кирпичом на высоту 20-30 см. Ошибкой будет обкладка стенок снаружи, т.к. это приведет к еще более сильному разогреву металла. Проблему разгона полностью снимает водяная рубашка - котел. Однако если говорить банных печах, то такое решение подходит не для саун, а для хаммама.

    Сквозные прогары топливника или скрытые трещины реально опасны при спонтанном разгоне металлической печи. Если при нормальном режиме горения они будут работать как воздухозаборные отверстия, то в режиме разгона станут «соплами», через которые станут вырываться наружу горящие летучие вещества.

    К атегория: Печи

    Основные особенности процессов сгорания топлива

    В отопительных печах может использоваться твердое, жидкое и газообразное топливо. Каждому из этих топлив свойственны свои особенности, которые влияют на эффективность использования печей.

    Конструкции отопительных печей создавались в течение длительного времени и предназначались для сжигания в них твердого топлива. Только в более поздний период стали создаваться конструкции, рассчитанные на использование жидкого и газообразного топлива. Чтобы наиболее эффективно использовать эти ценные виды в существующих печах, необходимо знать, чем отличаются процессы горения этих топлив от горения твердого топлива.

    Во всех печах твердое топливо (дрова, различные виды каменного угля, антрацит, кокс и др.) сжигается на колосниках слоевым способом, с периодической загрузкой топлива и очисткой колосников от шлака. Слоевой процесс сжигания имеет четкий циклический характер. Каждый цикл включает следующие стадии: загрузка топлива, подсушка и разогрев слоя, выделение летучих веществ и их горение, горение топлива в слое, догорание остатков и, наконец, удаление шлаков.

    На каждой из этих стадий создается определенный тепловой режим и процесс горения в печи происходит с непрерывно меняющимися показателями.
    Первичная стадия подсушки и разогрева слоя носит так называемый эндотермичный характер, т. е. она сопровождается не выделением, а поглощением теплоты, получаемой от раскаленных стен топливника и от недогоревших остатков. Далее по мере разогрева слоя начинается выделение газообразных горючих компонентов и их выгорание в газовом объеме. На этой стадии начинается тепловыделение в топке, которое постепенно увеличивается. Под влиянием разогрева начинается горение твердой коксовой основы слоя, дающей обычно наибольший тепловой эффект. По мере прогорания слоя тепловыделение постепенно уменьшается, и в конечной стадии имеет место малоинтенсивное дожигание горючих веществ. Известно, что роль и влияние отдельных стадий цикла слоевого горения зависит от следующих показателей качества твердого топлива: влажности, зольности, содержания летучих горючих веществ и углерода в горючей
    массе.

    Рассмотрим, как влияют эти составляющие на характер процесса горения в слое.

    Увлажнение топлива отрицательно влияет на горение так как на испарение влаги должна быть затрачена часть удельной теплоты сгорания топлива. В результате снижаются температуры в топливнике, ухудшаются условия сжигания, а сам цикл горения затягивается.

    Отрицательная роль зольности топлива проявляется в том, что зольная масса обволакивает горючие компоненты топлива и препятствует доступу к ним кислорода воздуха. В результате горючая масса топлива не догорает, образуется так называемый механический недожог.

    Исследованиями ученых установлено, что большое влияние на характер развития процессов горения оказывает соотношение содержания в твердом топливе летучих газообразных веществ и твердого углерода. Летучие горючие вещества начинают выделяться из твердого топлива при сравнительно низких температурах, начиная со 150-200 °С и выше. Летучие вещества разнообразны по составу и отличаются различными температурами выхода, поэтому процесс их выделения растянут по времени и его окончательная стадия обычно сочетается с горением твердой топливной части слоя.

    Летучие вещества имеют относительно низкую температуру воспламенения, так как содержат много водородеодержащих компонентов, горение их происходит в надслоевом газовом объеме топливника. Твердая часть топлива, остающаяся после выхода летучих веществ, состоит в основном из углерода, имеющего наиболее высокую температуру воспламенения (650-700°С). Горение углеродного остатка начинается в последнюю очередь. Оно протекает непосредственно в тонком слое колосниковой решетки, и ввиду интенсивного тепловыделения в нем развиваются высокие температуры.

    Типичная картина изменения температуры в топке и газоходах в течение цикла горения твердого топлива показана на рис. 1. Как видно, в начале топки наблюдается быстрое нарастание температур в топливнике и дымоходах, В стадии же догорания происходит резкое снижение температуры внутри печи, особенно в топливнике. Каждая из стадий требует подачи в топку определенного количества воздуха для горения. Однако, ввиду того что в топку поступает постоянное количество воздуха, на стадии интенсивного горения коэффициент избытка воздуха составляет величину ат=1,5-2, а на стадии догорания, продолжительность которой достигает 25-30% времени топки, коэффициент избытка воздуха достигает ат=8-10. На рис. 2 показано, как изменяется коэффициент избытка воздуха на протяжении одного цикла горения на колосниковой решетке трех видов твердого топлива: дров, торфа и каменного угля в типичной отопительной печи периодического действия.

    Рис. 1. Изменение температуры дымовых газов в различных сечениях отопительной печи при топке твердым топливом 1 - температура в топливнике (на расстоянии 0,23 м от колосниковой решетки); 1 - темперйтура в первом горизонтальном дымоходе; ’3 - температура в третьем горизонтальном дымоходе; 4 - температура в шестом горизонтальном дымоходе (перед заслонкой печи)

    Из рис. 2 видно, что коэффициент избытка воздуха в печах, работающих с периодической загрузкой твердого топлива, непрерывно изменяется.

    При этом на стадии интенсивного выхода летучих веществ количества поступающего в топку воздуха обычно недостаточно для полного их сгорания, а на стадиях предварительного разогрева и дожигания горючих веществ количество воздуха в несколько раз превышает теоретически необходимое.

    В результате на стадии интенсивного выхода летучих веществ происходит химический недожог выделившихся горючих газов, а при дожигании остатков имеют место повышенные потери теплоты с уходящими газами ввиду увеличения объема продуктов сгорания. Потери теплоты с химическим недожогом составляют 3-5%, а с уходящими газами - 20-35%. Однако отрицательное действие химического недожога проявляется не только в дополнительных потерях теплоты и снижении КПД. Опыт эксплуатации большого количества отопительных печей показывает; что в результате химического недожога интенсивно выделяющихся летучих веществ на внутренних стенках топки и дымоходов откладывается аморфный углерод в виде сажи.

    Рис. 2. Изменение коэффициента избытка воздуха в течение цикла горения твердого топлива

    Поскольку сажа имеет низкую теплопроводность, ее отложения увеличивают термическое сопротивление стен печи и тем самым снижают полезную теплоотдачу печей. Отложения сажи в дымоходах сужают сечение для прохода газов, ухудшают тягу и, наконец, создают повышенную пожароопасность, так как сажа горюча.

    Из сказанного ясно, что неудовлетворительные показатели слоевого процесса во многом объясняются неравномерностью выделения летучих веществ по времени.

    При слоевом сжигании высокоуглеродистых топлив процесс горения сосредоточен в пределах довольно тонкого топливного слоя, в котором развиваются высокие температуры. Процесс горения чистого углерода в слое имеет свойство саморегулирования. Это значит, что количество прореагировавшего (сожженного) углерода будет соответствовать количеству поданного окислителя (воздуха). Поэтому при постоянном расходе воздуха постоянным будет и количество сожженного топлива. Изменение же тепловой нагрузки должно производиться за счет регулирования подачи воздуха VB. Например, при увеличении VB возрастает количество сожженного топлива, а снижение Ув вызовет уменьшение теплопроизводительности слоя, причем величина коэффициента избытка воздуха останется стабильной.

    Однако сжигание антрацита и кокса связано со следующими трудностями. Для возможности создания высоких температур толщина слоя при сжигании антрацита и кокса поддерживается достаточно большой. При этом рабочей зоной слоя является относительно тонкая нижняя его часть, в которой осуществляются экзотермические реакции оксидирования углерода кислородом воздуха, т. е. происходит собственно горение. Весь вышележащий слой служит как бы тепловым изолятором горящей части слоя, предохраняющим зону горения от охлаждения за счет излучения теплоты на стенки топливника.

    В результате окислительных реакций в зоне горения выделяется полезная теплота согласно реакции
    с+о2->со.

    Однако при высоких температурах слоя в верхней его зоне осуществляются обратные восстановительные эндотермические реакции, протекающие с поглощением теплоты, согласно уравнению
    С02+С2СО.

    В результате этих реакций образуется оксид углерода СО, который является горючим газом, обладающим довольно высокой удельной теплотой сгорания, поэтому присутствие его в дымовых газах свидетельствует о неполноте сгорания топлива и снижении экономичности печи. Таким образом, для обеспечения высоких температур в зоне горения топливный слой должен иметь достаточную толщину, но это приводит к вредным восстановительным реакциям в верхней части слоя, приводящим к химическому недожогу твердого топлива.

    Из приведенного ясно, что в любой печи периодического действия, работающей на твердом топливе, имеет место нестационарный процесс горения, неизбежно снижающий КПД эксплуатируемых печей.

    Большое значение для экономичной, работы печи имеет качество твердого топлива.

    Согласно стандартам для коммунально-бытовых нужд выделяют в основном каменные угли (марок Д, Г, Ж, К, Т и др.), а также бурые угли и антрациты. По размеру кусков угли должны поставляться следующих классов: 6-13, 13-25, 25-50 и 50-100 мм. Зольность угля на сухую массу колеблется в пределах 14-35% для каменных углей и до 20% -для антрацита, влажность- 6-15% для каменных и 20-45% для бурых углей.

    Топочные устройства бытовых печей не имеют средств механизации процесса горения (регулирования подачи дутьевого воздуха, шуровки слоя и др.), поэтому для эффективного сжигания в печах к качеству угля должны предъявляться достаточно высокие требования. Значительная часть угля поставляется, однако, несортированным, рядовым, с качественными характеристиками (по влажности, зольности, содержанию мелочи) существенно ниже предусмотренных стандартами.

    Сжигание некондиционного топлива происходит несовершенно, с повышенными потерями от химического и механического недожога. Академией коммунального хозяйства им. К. Д. Памфилова был определен годовой материальный ущерб, причиняемый в результате поставки углей низкого качества. Расчеты показали, что материальный ущерб, обусловленный неполным использованием топлива, составляет примерно 60% стоимости добычи угля. Экономически и технически целесообразно обогащать топливо в местах его добычи до кондиционного состояния, так как дополнительные расходы на обогащение составят примерно половину указанной величины материального ущерба.

    Важной качественной характеристикой угля, влияющей на эффективность его сжигания, является его фракционный состав.

    При повышенном содержании в топливе мелочи она, уплотняясь, закрывает прозоры в горящем топливном слое, что приводит к кратерному горению, имеющему неравномерный характер по площади слоя. По этой же причине хуже по сравнению с другими видами топлива сжигаются бурые угли, имеющие свойство растрескиваться при нагреве с образованием значительного количества мелочи.

    С другой стороны, использование чрезмерно крупных кусков угля (более 100 мм) также приводит к кратерному горению.

    Влажность угля, вообще говоря, не ухудшает топочного процесса; однако она снижает удельную теплоту сгорания, температуру горения, а также осложняет хранение угля, так как при минусовых температурах происходит его смерзание. Для предотвращения смерзания влажность каменных углей не должна превышать 8%.

    Вредным компонентом в твердом топливе является сера, так как продуктами ее сгорания являются диоксид серы S02 и сернистый ангидрид S03, обладающие сильными коррозионными свойствами, к тому же еще и весьма токсичные.

    Следует заметить, что в печах периодического действия рядовые угли хотя и менее эффективно, но все же могут удовлетворительно сжигаться; для печей длительного горения указанные требования должны категорически выполняться в полной мере.

    В печах непрерывного действия, в которых сжигается жидкое или газообразное топливо, процесс горения имеет не циклический, а непрерывный характер. Поступление топлива в печь происходит равномерно, благодаря чему соблюдается стационарный режим горения. Если при сжигании твердого топлива температура в топливнике печи колеблется в широких пределах, что неблагоприятно отражается на процессе горения, то при сжигании природного газа вскоре после включения горелки температура в топочном пространстве достигает 650-700 °С. Далее она постоянно увеличивается с течением времени и достигает в конце топки 850-1100 °С. Скорость повышения температуры при этом определяется тепловым напряжением топочного пространства и временем топки печи (рис. 25). Сжигание газа сравнительно легко поддерживать при постоянном коэффициенте избытка воздуха, что осуществляется с помощью воздушной заслонки. Благодаря этому при сжигании газа в печи создается стационарный режим горения, позволяющий свести к минимуму потери теплоты с уходящими газами и добиться работы печи с высоким КПД, достигающим 80-90%. КПД газовой печи стабилен по времени и существенно выше, чем печи на твердом топливе.

    Влияние режима горения топлива и величины площади теп-ловоспринимающей поверхности дымооборотов на КПД печи. Теоретические расчеты показывают, что тепловая экономичность отопительной печи, т. е. величина теплового КПД, зависит от так называемых внешних и внутренних факторов. К внешним факторам относятся величина площади теплоотдающей наружной поверхности S печи в зоне топливника и дымообо-ротов, толщина стенок 6, коэффициент теплопроводности К материала стенок печи и теплоемкость С. Чем больше величины. S, X и меньше 6, тем лучше теплоотдача от стен печи к окружающему воздуху, более полно охлаждаются газы и выше КПД печи.

    Рис. 3. Изменение температуры продуктов сгорания в топливнике газовой отопительной печи в зависимости от напряженности топочного пространства и времени топки

    К внутренним факторам относится в первую очередь величина КПД топливника, зависящая в основном от полноты сгорания топлива. В отопительных печах периодического действия практически всегда имеются потери теплоты от химической неполноты горения и механического недожога. Эти потери зависят от совершенства организации процесса горения, определяемого удельным тепловым напряжением топочного объема Q/V. Значение QIV для топливника заданной конструкции зависит от расхода сжигаемого топлива.

    Исследованиями и опытом эксплуатации установлено, что для каждого вида топлива и конструкции топливника существует оптимальная величина Q/V. При низких Q/V внутренние стенки топливника прогреваются слабо, температуры в зоне горения недостаточны для эффективного сжигания топлива. При повышении Q/V возрастают температуры в топочном объеме, и при достижении определенного значения Q/V достигаются оптимальные условия горения. При дальнейшем повышении расхода топлива уровень температур продолжает повышаться, но процесс горения не успевает завершиться в пределах топливника. Газообразные горючие компоненты увлекаются в газоходы, процесс их горения прекращается и появляется химический недожог топлива. Точно так же при чрезмерном расходе топлива часть его не успевает сгорать и остается на колосниковой решетке, что приводит к механическому недожогу. Таким образом, для того чтобы отопительная печь имела максимальный КПД, необходимо, чтобы ее топливник работал с оптимальным тепловым напряжением.

    Потери теплоты в окружающую среду от стен топливника не снижают КПД печи, так как теплота расходуется на полезный обогрев помещения.

    Вторым важным внутренним фактором является расход дымовых газов Vr. Даже если печь работает при оптимальной величине теплового напряжения топливника, объем газов, проходящих через дымоходы, может существенно меняться за счет изменения коэффициента избытка воздуха ат, представляющего собой отношение действительного расхода воздуха, поступившего в топку, к теоретически неоходимому его количеству. При данной величине QIV значение ат может изменяться в весьма широких пределах. В обычных отопительных печах периодического действия величина ат в период максимального горения может быть близкой к 1, т. е. соответствовать минимально возможному теоретическому пределу. Однако в период подготовки топлива и на стадии догорания остатков величина ат в печах периодического действия обычно резко возрастает, нередко достигая предельно высоких значений - порядка 8-10. С увеличением ат возрастает объем газов, сокращается время их пребывания в системе дымооборотов и, как следствие, увеличиваются потери теплоты с уходящими газами.

    На рис. 4 показаны графики зависимости КПД отопительной печи от различных параметров. На рис. 4, а показаны величины КПД отопительной печи в зависимости от значений ат> из которых видно, что при увеличении ат от 1,5 до 4,5 КПД уменьшается с 80 до 48%. На рис. 4, б показана зависимость КПД отопительной печи от величины площади внутренней поверхности дымооборотов S, из которой видно, что при увеличении S от 1 до 4 м2 КПД возрастает с 65 до 90%.

    Кроме перечисленных факторов величина КПД зависит от продолжительности топки печи т (рис. 4, в). По мере увеличения х внутренние стенки печи прогреваются до более высокой температуры и газы соответственно охлаждаются меньше. Поэтому с увеличением продолжительности топки экономичность любой отопительной печи снижается, приближаясь к определенной минимальной величине, характерной для печи данной конструкции.

    Рис. 4. Зависимость КПД газовой отопительной печи от различных параметров а - от коэффициента избытка воздуха при площади внутренней поверхности дымооборотов, м2; б - от площади внутренней поверхности дымооборотов при различных коэффициентах избытка воздуха; в - от длительности топки при различных площадях внутренней поверхности дымооборотов, м2

    Теплопередача отопительных печей и их аккумулирующая способность. В отопительных печах теплота, которая должна быть передана дымовыми газами отапливаемому помещению, должна пройти через толщу стен печи. С изменением толщины стен топливника и дымоходов соответственно меняются термическое сопротивление и массивность кладки (ее аккумулирующая способность). Например, при уменьшении толщины стен снижается их термическое сопротивление, возрастает тепловой поток и одновременно уменьшаются габариты печи. Однако уменьшение толщины стен печей периодического действия, работающих на твердом топливе, недопустимо по следующим причинам: при периодической кратковременной топке внутренние поверхности топливника и дымоходов нагреваются до высоких температур и температура наружной поверхности печи в периоды максимального горения будет выше допустимых пределов; после прекращения горения вследствие интенсивной теплоотдачи наружных стенок в окружающую среду печь будет быстро охлаждаться.

    При больших величинах М температура помещения будет в широких пределах изменяться во времени и выходить из допустимых норм. С другой стороны, если выкладывать печь слишком толстостенной, то за короткий период топки ее большой массив не успеет прогреться и, кроме того, с утолщением стен увеличивается разница между площадью внутренней поверхности дымоходов, воспринимающей теплоту от газов, и площадью наружной поверхности печи, передающей теплоту окружающему воздуху, вследствие чего температура наружной поверхности печи будет слишком низкой для эффективного обогрева помещения. Поэтому существует такая оптимальная толщина стен (1/2- 1 кирпич), при которой массив печи периодического действия накапливает достаточное количество теплоты за время топки и вместе с тем достигается достаточно высокая температура наружных поверхностей печи для нормального обогрева помещения.

    При использовании в отопительных печах жидкого или газообразного топлива вполне достижим непрерывный режим горения, поэтому при непрерывной топке нет необходимости в аккумуляции теплоты за счет увеличения массива кладки. Процесс теплопередачи от газов к отапливаемому помещению имеет стационарный характер по времени. В этих условиях толщина стенок и массивность печи может выбираться исходя не из обеспечения определенной аккумулирующей величины, а из соображений прочности кладки и обеспечения должной долговечности.

    Влияние перевода печи с периодической топки на непрерывную хорошо видно из рис. 5, на котором показано изменение температуры внутренней поверхности стенки топливника в случае периодической и непрерывной топки. При периодической топке уже через 0,5-1 ч внутренняя поверхность стенки топливника нагревается до 800-900 °С.

    Такой резкий нагрев уже после 1-2 лет эксплуатации печи часто вызывает растрескивание кирпичей и их разрушение. Такой режим, однако, является вынужденным, так как снижение тепловой нагрузки приводит к чрезмерному увеличению продолжительности топки.

    При непрерывной топке раход топлива резко сокращается и температура нагрева стенок топливника снижается. Как видно из рис. 27, при непрерывной топке для большинства марок каменных углей температура стенки повышается с 200 лишь до 450-500 °С, в то время как при периодической топке она значительно выше - 800-900 °С. Поэтому топливники печей периодического действия обычно футеруются огнеупорным кирпичом, в то время как топливники печей непрерывного действия не нуждаются в футеровке, так как температура на их поверхности не достигает предела огнеупорности обычного красного кирпича (700-750 °С).

    Следовательно, при непрерывной топке более эффективно используется кирпичная кладка, намного увеличивается срок службы печей и для большинства марок каменных углей (исключая антрациты и тощие угли) имеется возможность все части печи выкладывать из красного кирпича.

    Тяга в печах. Для того чтобы заставить дымовые газы пройти из топливника через дымообороты печи до дымовой трубы, преодолев все встречающиеся на их пути местные сопротивления, необходимо затратить определенное усилие, которое должно превышать эти сопротивления, иначе печь будет дымить. Это усилие принято называть силой тяги печи.

    Возникновение силы тяги поясняется на схеме (рис. 6). Дымовые газы, образующиеся в топливнике, как более легкие по сравнению с окружающим воздухом, поднимаются вверх и заполняют дымовую трубу. Столб наружного воздуха противостоит столбу газов в дымовой трубе, но, будучи холодным, он значительно тяжелее столба газов. Если провести через топочную дверку условную вертикальную плоскость, то с правой стороны на нее будет действовать (давить) столб горячих газов высотой от середины топочной дверки до верха дымовой трубы, а с левой - столб наружного холодного воздуха такой же высоты. Масса левого столба больше, чем правого, так как плотность холодного воздуха больше, чем горячего, поэтому левый столб будет вытеснять дымовые газы, заполняющие дымовую трубу, и в системе будет происходить движение газов по направлению от большего давления к меньшему, т. е. в сторону дымовой трубы.

    Рис. 5. Изменение температуры на внутренней поверхности стенки топливника а - терморегулятор настроен на нижний предел; б - терморегулятор настроен на верхний предел

    Рис. 6. Схема работы дымовой трубы 1-топочная дверка; 2- топливник; 3 - столб наружного воздуха; 4 - дымовая труба

    Действие силы тяги состоит, таким образом, в том, что она, с одной стороны, заставляет подниматься вверх горячие газы, а с другой стороны, вынуждает наружный воздух проходить в топливник для горения.

    Среднюю температуру газов в дымоходе можно принять равной средней арифметической между температурой газов на входе и выходе дымовой трубы.



    - Основные особенности процессов сгорания топлива

    Горючие газы и пары смол (так на­зываемые летучие), выделяющиеся при термическом разложении натурального твердого топлива в процессе его нагрева­ния, смешиваясь с окислителем (возду­хом), при высокой температуре сгорают достаточно интенсивно, как обычное га­зообразное топливо. Поэтому сжигание топлив с большим выходом летучих (дро­ва, торф, сланец) не вызывает затрудне­ний, если, конечно, содержание балласта в них (влажность плюс зольность) не настолько велико, чтобы стать препят­ствием для получения нужной для горе­ния температуры.

    Время сгорания топлив со средним (бурые и каменные угли) и небольшим (тощие угли и антрациты) выходом лету­чих практически определяется скоростью реакции на поверхности коксового остат­ка, образующегося после выделения ле­тучих. Сгорание этого остатка обеспечи­вает и выделение основного количества теплоты.

    Реакция, протекающая на поверхно­сти раздела двух фаз (в данном случае на поверхности коксового кусочка) на­зывается гетерогенной. Она состо­ит по крайней мере из двух последова­тельных процессов: диффузии кислорода к поверхности и его химической реакции с топливом (почти чистым углеродом, оставшимся после выхода летучих) на поверхности. Увеличиваясь по закону Аррениуса, скорость химической реакции при высокой температуре становится столь большой, что весь кислород, подводимый к поверхности, немедленно вступает в реакцию. В результате ско­рость горения оказывается зависящей только от интенсивности доставки кисло­рода к поверхности горящей частицы пу­тем массообмена и диффузии. На нее практически перестают влиять как тем­пература процесса, так и реакционные свойства коксового остатка. Такой ре­жим гетерогенной реакции называется диффузионным. Интенсифициро­вать горение в этом режиме можно толь­ко путем интенсификации подвода реа­гента к поверхности топливной частицы. В разных топках это достигается различ­ными методами.

    Слоевые топки. Твердое топливо, за­груженное слоем определенной толщины на распределительную решетку, поджи­гается и продувается (чаще всего снизу вверх) воздухом (рис. 28, а). Фильтру­ясь между кусочками топлива, он теряет кислород и обогащается оксидами (СО 2 , СО) углерода вследствие горения угля, восстановления углем водяного пара и диоксида углерода.

    Рис. 28. Схемы организации топочных процессов:

    а - в плотном слое; б - в пылевидном состоянии; _в - в циклонной топке;

    г - в кипящем слое; В - воздух; Т, В - топливо, воздух; ЖШ - жидкий шлак

    Зона, в пределах которой практиче­ски полностью исчезает кислород, назы­вается кислородной; ее высота со­ставляет два-три диаметра кусков топли­ва. В выходящих из нее газах со­держатся не только СО 2 , Н 2 О и N 2 , но и горючие газы СО и Н 2 , образовавшиеся как из-за восстановления СО 2 и Н 2 О уг­лем, так и из выделяющихся из угля летучих. Если высота слоя больше, чем кислородной зоны, то за кислородной следует восстановительная зо­на, в которой идут только реакции СО 2 + С = 2СО и Н 2 О + С = СО + Н 2 . В ре­зультате концентрация выходящих из слоя горючих газов увеличивается по мере увеличения его высоты.


    В слоевых топках высоту слоя стара­ются держать равной высоте кислород­ной зоны или большей ее. Для дожига­ния продуктов неполного сгорания (Н 2 , СО), выходящих из слоя, а также для дожигания выносимой из него пыли в то­почный объем над слоем подают допол­нительный воздух.

    Количество сгоревшего топлива про­порционально количеству поданного воз­духа, однако увеличение скорости воз­духа сверх определенного предела нару­шает устойчивость плотного слоя, так как воздух, прорывающийся через слой в отдельных местах, образует кратеры. Поскольку в слой всегда загружается полидисперсное топливо, увеличивается вынос мелочи. Чем крупнее частицы, тем с большей скоростью можно продувать воздух через слой без нарушения его устойчивости. Если принять для грубых оценок теплоту «сгорания» 1 м 3 воздуха в нормальных условиях при α в =1 рав­ной 3,8 МДж и понимать под w н при­веденный к нормальным условиям расход воздуха на единицу площади решетки (м/с), то теплонапряжение зеркала го­рения (МВт/м 2) составит

    q R = 3,8W н / α в (105)

    Топочные устройст­ва для слоевого сжигания классифици­руют в зависимости от способа подачи, перемещения и шуровки слоя топлива на колосниковой решетке. В немеханизированных топках, в кото­рых все три операции осуществляют вручную, можно сжигать не более 300 - 400 кг/ч угля. Наибольшее распростра­нение в промышленности получили пол­ностью механизированные слоевые топ­ки с пневмомеханическими забрасывателями и цепной решеткой об­ратного хода (рис. 29). Их особен­ность - горение топлива на непрерывно движущейся со скоростью 1 -15 м/ч колосниковой решетке, сконструированной в виде полотна транспортерной ленты имеющей, привод от электродвигателя. Полотно решетки состоит из отдельных колосниковых элементов, закрепленных на бесконечных шарнирных цепях, при водимых в движение «звездочками». Необходимый для горения воздух подводится под решетку через зазоры между элементами колосников.

    Рис. 29. Схема топки с пневмомеханическим забрасывателем и цепной решеткой обратного хода:

    1 - полотно колосниковой решетки; 2 - приводные «звездочки»; 3 - слой топлива и шлака; 4 – 5 - ротор забрасывателя; 6 - ленточный питатель; 7 - топливный бункер; 8 - топочный объем; 9 - экранные трубы; 10 - 11 - обмуровка топки; 12 - заднее уплотнение; 13 - окна для подвода воздуха под слой

    Факельные топки . В прошлом веке для сжигания в слоевых топках (а дру­гих тогда не было) использовали только уголь, не содержащий мелочи (обычно фракцию 6 - 25 мм). Фракция мельче 6 мм - штыб (от немецкого staub - пыль) являлась отходом. В начале этого века для ее сжигания был разработан пылевидный способ, при котором угли измельчали до 0,1 мм, а трудносжигае­мые антрациты - еще мельче. Такие пы­линки увлекаются потоком газа, относи­тельная скорость между ними очень ма­ла. Но и время их сгорания чрезвычайно мало - секунды и доли секунд. Поэтому при вертикальной скорости газа менее 10 м/с и достаточной высоте топки (де­сятки метров в современных котлах) пыль успевает полностью сгореть на лету в процессе движения вместе с газом от горелки до выхода из топки.

    Этот принцип и положен в основу факельных (камерных) топок, в которые тонко размолотая горючая пыль вдувается через горелки вместе с необходимым для горения воздухом (см. рис. 28, б) аналогично тому, как сжигаются газообразные или жидкие топлива. Таким образом, камерные топки пригодны для сжигания любых топлив, что является большим их преимуществом перед слоевыми. Второе преимущест­во - возможность создания топки на любую практически сколь угодно боль­шую мощность. Поэтому камерные топки занимают сейчас в энергетике доминиру­ющее положение. В то же время пыль не удается устойчиво сжигать в маленьких топках, особенно при переменных режи­мах работы, поэтому пылеугольные топки с тепловой мощностью менее 20 МВт не делают.

    Топливо измельчается в мельничных устройствах и вдувается в топочную ка­меру через пылеугольные горелки. Транспортирующий воздух, вдувае­мый вместе с пылью, называется пер­вичным.

    При камерном сжигании твердых топлив в виде пыли летучие вещества, выделяясь в процессе ее прогрева, сгора­ют в факеле как газообразное топливо, что способствует разогреву твердых частиц до температуры воспламенения и облегчает стабилизацию факела. Коли­чество первичного воздуха должно быть достаточным для сжигания летучих. Оно составляет от 15 - 25 % всего количества воздуха для углей с малым выходом ле­тучих (например, антрацитов) до 20 - 55 % для топлив с большим их выходом (бурых углей). Остальной необходимый для горения воздух (его называют вто­ричным) подают в топку отдельно и перемешивают с пылью уже в процессе горения.

    Для того чтобы пыль загорелась, ее нужно сначала нагреть до достаточно высокой температуры. Вместе с нею, естественно, приходится нагревать и транспортирующий ее (т. е. первич­ный) воздух. Это удается сделать только путем подмешивания к потоку пылевзвеси раскаленных продуктов сгорания.

    Хорошую организацию сжигания твердых топлив (особенно трудносжига­емых, с малым выходом летучих) обеспечивает использование так называемых улиточных горелок (рис. 30).

    Рис. 30. Прямоточно-улиточная горелка для твердого пылевидного топлива: В - воздух; Т, В - топливо, воздух

    Угольная пыль с первичным воздухом подается в них через центральную трубу и благо­даря наличию рассекателя выходит в топку в виде тонкой кольцевой струи. Вторичный воздух подается через «улит­ку», сильно закручивается в ней и, вы­ходя в топку, создает мощный турбулент­ный закрученный факел, который обеспе­чивает подсос больших количеств раска­ленных газов из ядра факела к устью го­релки. Это ускоряет прогрев смеси топ­лива с первичным воздухом и ее вос­пламенение, т. е. создает хорошую стаби­лизацию факела. Вторичный воздух хо­рошо перемешивается с уже воспламе­нившейся пылью благодаря сильной его турбулизации. Наиболее крупные пылин­ки догорают в процессе их полета в по­токе газов в пределах топочного объема.

    При факельном сжигании угольной пыли в каждый момент времени в топке находится ничтожный запас топлива - не более нескольких десятков килограм­мов. Это делает факельный процесс весь­ма чувствительным к изменениям расхо­дов топлива и воздуха и позволяет при необходимости практически мгновенно изменять производительность топки, как при сжигании мазута или газа. Одновре­менно это повышает требования к на­дежности снабжения топки пылью, ибо малейший (в несколько секунд!) перерыв приведет к погасанию факела, что связа­но с опасностью взрыва при возобновле­нии подачи пыли. Поэтому в пылеугольных топках устанавливают, как правило, несколько горелок.

    При пылевидном сжигании топлив в ядре факела, расположенном недалеко от устья горелки, развиваются высокие температуры (до 1400-1500 °С), при ко­торых зола становится жидкой или тестообразной. Налипание этой золы на стенки топки может привести к их за­растанию шлаком. Поэтому сжигание пылевидного топлива чаще всего приме­няют в котлах, где стены топки закрыты водоохлаждаемыми трубами (экрана­ми), около которых газ охлаждается и взвешенные в нем частицы золы успе­вают затвердеть до соприкосновения со стенкой. Пылевидное сжигание может применяться также в топках с жидким шлакоудалением, в которых стены по­крыты тонкой пленкой жидкого шлака и расплавленные частицы золы стекают в этой пленке.

    Теплонапряжение объема в пылеугольных топках обычно составляет 150-175 кВт/м 3 , увеличиваясь в небольших топках до 250 кВт/м 3 . При хорошем пе­ремешивании воздуха с топливом прини­мается α в =1,2÷1,25; q мех = 0,5÷6 % (большие цифры - при сжигании ан­трацитов в небольших топках); q хим = 0 ÷1%.

    В камерных топках удается после дополнительного размола сжигать отхо­ды углей, образующиеся при их обогаще­нии на коксохимических заводах (пром-продукт), коксовые отсевы и еще более мелкий коксовый шлам.

    Циклонные топки. Специфический способ сжигания осуществлен в циклон­ных топках. В них ис­пользуют достаточно мелкие частицы уг­ля (обычно мельче 5 мм), а необходимый для горения воздух подают с огромными скоростями (до 100м/с) по касательной к образующей циклона. В топке создает­ся мощный вихрь, вовлекающий частицы в циркуляционное движение, в котором они интенсивно обдуваются потоком. В результате интенсивного горения в топке развиваются температуры, близ­кие к адиабатным (до 2000 °С). Зола угля плавится, жидкий шлак стекает по стенкам. По ряду причин от применения таких топок в энергетике отказались, и сейчас они используются в качестве технологических - для сжигания серы с целью получения SO 2 в производстве H 2 SO 4 , обжига руд и т. д. Иногда в циклонных топках осуществляют огневое обезвреживание сточных вод, т. е. выжи­гание содержащихся в них вредностей за счет подачи дополнительного (обычно газообразного или жидкого) топлива.

    Топки с кипящим слоем. Устойчивое горение пылеугольного факела возможно только при высокой температуре в его ядре - не ниже 1300-1500 °С. При этих температурах начинает заметно окис­ляться азот воздуха по реакции N 2 + O 2 = 2NO. Определенное количество NO образуется и из азота, содержащего­ся в топливе. Оксид азота, выброшенный вместе с дымовыми газами в атмосферу, доокисляется в ней до высокотоксичного диоксида NO 2 . В СССР предельно до­пустимая концентрация NO 2 (ПДК), бе­зопасная для здоровья людей, в воздухе населенных пунктов составляет 0,085 мг/м 3 . Чтобы обеспечить ее, на крупных тепловых электростанциях при­ходится строить высоченные дымовые трубы, разбрасывающие дымовые газы на возможно большую площадь. Однако при сосредоточении большого количества станций недалеко друг от друга и это не спасает.

    В ряде стран регламентируется не ПДК, а количество вредных выбросов на единицу теплоты, выделенной при сгора­нии топлива. Например, в США для крупных предприятий допускается вы­брос 28 мг оксидов азота на 1 МДж теп­лоты сгорания. В СССР нормы выбросов составляют для разных топлив от 125 до 480 мг/м 3 .

    При сжигании топлив, содержащих серу, образуется токсичный SO 2 , дейст­вие которого на человека к тому же сум­мируется с действием NO 2 .

    Эти выбросы служат причиной образования фотохи­мического смога и кислотных дождей, вредно влияющих не только на людей и животных, но и на растительность. В Западной Европе, например, от таких дождей погибает значительная часть хвойных лесов.

    Если в золе топлива оксидов кальция и магния недостаточно для связывания всего SO 2 (обычно нужен двух- или трех­кратный его избыток по сравнению со стехиометрией реакции), к топли­ву подмешивают известняк СаСО 3 . Из­вестняк при температурах 850-950 °С интенсивно разлагается на СаО и СО 2 , а гипс CaSO 4 не разлагается, т. е. реак­ция справа налево не идет. Таким образом, токсичный SO 2 связывается до безвредного практически нерастворимого в воде гипса, который удаляется вместе с золой.

    С другой стороны, в процессе дея­тельности человека образуется большое количество горючих отходов, которые не считаются топливом в общепринятом смысле: «хвосты» углеобогащения, отва­лы при добыче угля, многочисленные от­ходы целлюлозно-бумажной промышлен­ности и других отраслей народного хо­зяйства. Парадоксально, например, что «порода», которую около угольных шахт складывают в огромные терриконы, за­частую самовозгорается и длительное время загрязняет дымом и пылью окру­жающее пространство, но ни в слоевых, ни в камерных топках ее не удается сжечь из-за большого содержания золы. В слоевых топках зола, спекаясь при горении, препятствует проникновению кислорода к частицам горючего, в камер­ных не удается получить нужную для устойчивого горения в них высокую тем­пературу.

    Возникшая перед человечеством на­стоятельная необходимость разработки безотходных технологий поставила во­прос о создании топочных устройств для сжигания таких материалов. Ими стали топки с кипящим слоем.

    Псевдоожиженным (или кипящим) называется слой мелко­зернистого материала, продуваемый снизу вверх газом со скоростью, превы­шающей предел устойчивости плотного слоя, но недостаточной для выноса частиц из слоя. Интенсивная циркуляция частиц в ограниченном объеме камеры создает впечатление бурно кипящей жидкости, что и объясняет происхождения названия.

    Физически продуваемый снизу плот­ный слой частиц теряет устойчивость по­тому, что сопротивление фильтрующе­муся сквозь него газу становится рав­ным весу столба материала на единицу площади поддерживающей решетки. По­скольку аэродинамическое сопротивле­ние есть сила, с которой газ действует на частицы (и соответственно по треть­ему закону Ньютона - частицы на газ), то при равенстве сопротивления и веса слоя частицы (если рассматривать иде­альный случай) опираются не на решет­ку, а на газ.

    Средний размер частиц в топках с ки­пящим слоем обычно составляет 2-3 мм. Им соответствует рабочая скорость псев­доожижения (ее берут в 2-3 раза боль­ше, чем w к ) 1,5 ÷ 4 м/с. Это определяет в соответствии площадь газо­распределительной решетки при задан­ной тепловой мощности топки. Теплонап­ряжение объема q v принимают примерно таким же, как и для слоевых топок.

    Простейшая топка с кипящим слоем (рис. 31) во многом напоминает слое­вую и имеет с ней много общих конструктивных элементов. Прин­ципиальное различие между ними за­ключается в том, что интенсивное пере­мешивание частиц обеспечивает постоянство температуры по всему объему кипящего слоя.


    Рис. 31. Схема топки с кипящим слоем: 1 - выгрузка золы; 2 - подвод воздуха под слой; 3 - кипящий слой золы и топлива; 4 - подвод воздуха к забрасывателю; 5 - ротор забрасывателя; 6 - ленточный питатель; 7 - топливный бункер; 8 - топоч­ный объем; 9 - экранные трубы; 10 - острое дутье и возврат уноса; 11- обмуровка топки; 12 - тепло-воспринимающие трубы в кипящем слое; В - вода; П – пар.

    Поддержание температуры кипящего слоя в необходимых пределах (850 - 950 °С) обеспечивается двумя различны­ми способами. В небольших промышлен­ных топках, сжигающих отходы или де­шевое топливо, в слой подают значитель­но больше воздуха, чем это необходимо для полного сжигания, устанавливая α в ≥ 2.

    При том же количестве выделен­ной теплоты температура газов умень­шается по мере увеличения α в, ибо та же теплота тратится на нагрев большого количества газов.

    В крупных энергетических агрегатах такой метод снижения температуры горе­ния неэкономичен, ибо «лишний» воздух, уходя из агрегата, уносит и теплоту, за­траченную на его нагрев (возрастают потери с уходящими газами - см. да­лее). Поэтому в топках с кипящим слоем крупных котлоагрегатов размещают тру­бы 9 и 12 с циркулирующим в них рабо­чим телом (водой или паром), восприни­мающим необходимое количество тепло­ты. Интенсивное «омывание» этих труб частицами обеспечивает высокий коэф­фициент теплоотдачи от слоя к трубам, что в некоторых случаях позволяет уменьшить металло­емкость котла по сравнению с традици­онным. Топливо устойчиво горит при его содержании в кипящем слое, составляю­щем 1 % и менее; остальные 99 % с лиш­ним - зола. Даже при столь неблагоп­риятных условиях интенсивное переме­шивание не позволяет зольным частицам блокировать горючие от доступа к ним кислорода (в отличие от плотного слоя). Концентрация горючих при этом оказы­вается одинаковой по всему объему ки­пящего слоя. Для удаления золы, вводи­мой с топливом, часть материала слоя непрерывно выводится из него в виде мелкозернистого шлака - чаще всего просто «сливается» через отверстия в по­дине, поскольку кипящий слой способен течь как жидкость.

    Топки с циркуляционным кипящим слоем. В последнее время появились топ­ки второго поколения с так называемым циркуляционным кипящим слоем. За эти­ми топками устанавливают циклон, в ко­тором улавливаются все недогоревшие частицы и возвращаются обратно в топ­ку. Таким образом, частицы оказывают­ся «запертыми» в системе топка - цик­лон- топка до тех пор, пока не сгорят полностью. Эти топки имеют высокую экономичность, не уступающую камерно­му способу сжигания, при сохранении всех экологических преимуществ.

    Топки с кипящим слоем широко ис­пользуются не только в энергетике, но и в других отраслях промышленности, например, для сжигания колчеданов с целью получения SО 2 , обжига различ­ных руд и их концентратов (цинковых, медных, никелевых, золотосодержащих) и т. д. (С точки зрения теории горения обжиг, например, цинковой руды по ре­акции 2ZnS+3O 2 = 2ZnO + 2SO 2 есть сгорание этого специфического «топли­ва», протекающее, как и все реакции горения, с выделением больших коли­честв теплоты.) Большое распростране­ние, особенно за рубежом, топки с кипя­щим слоем нашли для огневого обезвре­живания (т. е. сжигания) различных вредных отходов производства (твердых, жидких и газообразных) - шламов осветления сточных вод, мусора и т.д.

    Тема 12. Печи химической промышленности. Принципиальная схема топливной печи. Классификация печей химической промышленности. Основные типы печей, особенности их конструкции. Тепловой баланс печей

    Печи химической промышленности. Принципиальная схема топливной печи

    Промышленная печь представляет собой энерготехнологический агрегат, предназначенный для термической обработки материалов с целью придания им необходимых свойств. Источником теплоты в топливных (пламенных) печах служат различные виды углеродного топлива (газ, мазут и др.). Современные печные установки часто представляют собой крупные механизированные и автоматизированные агрегаты высокой производительности.

    Наибольшее значение для выбора технологического режима процесса имеет оптимальная температура технологического процесса, которая определяется термодинамическим и кинетическим расчетами процессов. Оптимальным температурным режимом процесса называют температурные условия, при которых обеспечивается максимальная производительность по целевому продукту в данной печи.

    Обычно рабочая температура в печи несколько ниже оптимальной, она зависит от условий сжигания топлива, условий теплообмена, изоляционных свойств и стойкости футеровки печи, теплофизических свойств перерабатываемого материала и др. факторов. Например, для обжиговых печей рабочая температура находится в интервале между температурой активного протекания окислительных процессов и температурой спекания продуктов обжига. Под тепловым режимом печи понимают совокупность процессов инерции теплоты, теплоты массообмена и механики сред, обеспечивающих распределения теплоты в зоне технологического процесса. Тепловой режим зоны технологического процесса определяет тепловой режим всей печи.

    На режим работы печей оказывает большое влияние состав газовой атмосферы в печи, необходимый для правильного протекания технологического процесса. Для окислительных процессов газовая среда в печи должна содержать кислород, количество которого колеблется от3 до 15% и больше. Для восстановительной среды характерно низкое содержание кислорода (до 1-2%) и присутствие восстанавливающих газов (СО, Н 2 и др.) 10-20% и больше. Состав газовой фазы определяет условия сжигания топлива в печи и зависит от количества воздуха, поступающего на горение.

    Движение газов в печи оказывает существенное влияние на технологический процесс, на горение и теплопередачу, а в печах, «кипящего слоя» или вихревых печах движение газов является основным фактором устойчивой работы. Принудительное движение газов осуществляется дымососами и вентиляторами.

    На скорость технологического процесса влияет движение материала, подвергающегося термообработке.

    Схема печной установки включает следующие элементы: топочное устройство для сжигания топлива и организации теплообмена; рабочее пространство печи для выполнения целевого технологического режима; теплообменные устройства для регенерации теплоты дымовых газов (подогрев газа, воздуха); утилизационные установки (запечные котлы-утилизаторы) для использования теплоты уходящих газов; тяговое и дутьевое устройство (дымососы, вентиляторы) для удаления сгорания топлива и газообразных продуктов термической обработки материалов и подачи воздуха к горелкам, форсункам под колосники; очистительные устройства (фильтры и т.п.).

    Горение твердого топлива (угольной пыли) включает два периода: тепловую подготовку и собственно горение (рис. 4.5).

    В процессе тепловой подготовки (рис. 4.5, зона I) частица прогревается, высушивается, и при температуре выше 110 °С начинается тепловое разложение исходного вещества топлива с выделением газообразных летучих веществ. Длительность этого периода зависит главным образом от влажности топлива, размера его частиц, условий теплообмена и составляет обычно десятые доли секунды. Протекание процессов в период тепловой подготовки связано с поглощением теплоты, главным образом, на прогрев, подсушку топлива и термическое разложение сложных молекулярных соединений, поэтому нагрев частицы в это время идет замедленно.

    Собственно горение начинается с воспламенения летучих веществ (рис. 4.5, зона II) при температуре 400…600 °С, а выделяющаяся в процессе их горения теплота обеспечивает ускоренный прогрев и воспламенение твердого коксового остатка. Горение летучих веществ занимает 0,2…0,5 с. При большом выходе летучих (бурые и молодые каменные угли, сланцы, торф) выделяющейся теплоты их горения достаточно для воспламенения коксовой частицы, а при малом выходе летучих возникает необходимость дополнительного прогрева коксовой частицы от окружающих раскаленных газов (зона III).

    Горение кокса (рис. 4.5, зона IV) начинается при температуре около 1000 °С и является наиболее длительным процессом. Это определяется тем, что часть кислорода в зоне у поверхности частицы израсходована на сжигание горючих летучих веществ и оставшаяся концентрация его снизилась, кроме того, гетерогенные реакции всегда уступают по скорости гомогенным для однородных по химической активности веществ.

    В итоге общая длительность горения твердой частицы (1,0…2,5 с) в основном определяется горением коксового остатка (около 2/3 общего времени горения). Для топлив, имеющих большой выход летучих веществ, коксовый остаток составляет менее половины начальной массы частицы, поэтому их сжигание при разных начальных размерах происходит достаточно быстро и возможность недожога снижается. Старые по возрасту топлива имеют плотную коксовую частицу, горение которой занимает почти все время пребывания в топочной камере.

    Коксовый остаток большинства твердых топлив в основном, а для ряда твердых топлив целиком, состоит из углерода (от 60 до 97% массы частицы). Учитывая, что углерод обеспечивает основное тепловыделение при сжигании топлива, рассмотрим динамику горения углеродной частицы с поверхности. Кислород подводится из окружающей среды к частице углерода за счет турбулентной диффузии - турбулентного массопереноса, имеющего достаточно высокую интенсивность, однако непосредственно у поверхности частицы сохраняется тонкий газовый слой (пограничный слой), перенос окислителя через который осуществляется по законам молекулярной диффузии (рис. 4.6). Этот слой в значительной мере тормозит подвод кислорода к поверхности. В нем происходит догорание горючих газовых компонентов, выделяющихся из частицы в ходе термического разложения. Количество кислорода, подводимого в единицу времени к единице поверхности частицы посредством турбулентной диффузии, определяется по формуле



    В (4.16) и (4.17) С ПОТ - концентрация кислорода в окружающем частицу потоке; С СЛ - то же на внешней границе пограничного слоя; С ПОВ - то же на поверхности топлива; δ - толщина пограничного слоя; D - коэффициент молекулярной диффузии через пограничный слой; А - коэффициент турбулентного массообмена.

    Совместное решение уравнений (4.16) и (4.17) приводит к выражению

    4.18a
    4.18б

    в котором

    4.19

    Обобщенная константа скорости диффузии.

    Из формулы (4.18) следует, что подвод кислорода к реагирующей поверхности твердого топлива определяется константой скорости диффузии и разностью концентраций кислорода в потоке и на реагирующей поверхности.

    В установившемся процессе горения количество кислорода, подводимого диффузией к поверхности реагирования, равно количеству, прореагировавшему на поверхности в результате химической реакции. Отсюда скорость реакции горения углерода с поверхности К s находится из равенства массовых скоростей двух процессов - диффузионного подвода и расхода кислорода на поверхности в результате химической реакции

    В соответствии с законом Аррениуса определяющим параметром скорости химической реакции является температура процесса. Константа скорости диффузии k Д слабо изменяется с ростом температуры (см. рис. 4.1, а), в то время как константа скорости реакции k р имеет экспоненциальную зависимость от температуры.

    При относительно невысокой температуре (800…1000°С) химическая реакция протекает медленно, несмотря на избыток кислорода около твердой поверхности, так как k Д >> k Р. В этом случае горение тормозится кинетикой химической реакции, поэтому эту зону температур называют областью кинетического горения.

    Наоборот, при высоких температурах горения (выше 1500°С) и сжигании угольной пыли значение k Р >> k Д и процесс горения тормозится условиями подвода (диффузии) кислорода к поверхности частицы. Этим условиям соответствует область диффузионного горения. Создание в этой зоне температур факела дополнительных условий для перемешивания горящей смеси (увеличение значения k Д) способствует ускорению и углублению выгорания топлива.

    Аналогичный эффект в части интенсификации горения достигается уменьшением размера частиц пылевидного топлива. Частицы малых размеров имеют более развитый теплообмен с окружающей средой и, таким образом, более высокое значение k Д. Повышение температуры приводит к смещению процесса окисления в область диффузионного горения.

    Область чисто диффузионного горения пылевидного топлива характерна для ядра факела, отличающегося наиболее высокой температурой горения, и зоны догорания, где концентрации реагирующих веществ уже малы и их взаимодействие определяется законами диффузии. Воспламенение любого топлива начинается при относительно низких температурах, в условиях достаточного количества кислорода, т.е. в кинетической области. В этой области горения определяющую роль играет скорость химической реакции, зависящая от таких факторов, как реакционная способность топлива и уровень температуры. Влияние аэродинамических факторов в этой области горения незначительно.



    Поделиться