Производство преобразование распределение накопление и передача энергии. Производство электрической энергии

Электроэнергетической системой называется электрическая часть энергосистемы и питающиеся от нее , объединенные общностью процесса производства, передачи, распределения и потребления электрической энергии.

В настоящее время в составе 6 объединенных энергосистем работает параллельно 74 районных систем.

Электроэнергетической сетью называется совокупность электроустановок для передачи и распределения электрической энергии, состоящая из подстанций, распределительных устройств, токопроводов, воздушных и кабельных линий электропередачи, работающих на определенной территории.

Подстанцией называется электроустановка, служащая для преобразования и распределения электроэнергии и состоящая из трансформаторов или других преобразователей энергии, распределительных устройств до и выше 1000 В, аккумуляторной батареи устройств управления и вспомогательных сооружений.

Распределительным устройством называется электроустановка, служащая для приема и распределения электроэнергии и содержащая коммутационные аппараты, сборные и соединительные шины, вспомогательные устройства (компрессорные, аккумуляторные и др.), а также устройства защиты, автоматики и измерительные приборы.

Линией электропередачи (ЛЭП) любого напряжения (воздушной или кабельной) называется электроустановка, предназначенная для передачи электрической энергии на одном и том же напряжении без трансформации.

Рис. 1. Передача и распределение электрической энергии

По ряду признаков электрические сети подразделяются на большое количество разновидностей, для которых применяются различные методы расчета, монтажа и эксплуатации.

Электрические сети делятся:

4. соблюдением технологии электромонтажных работ;

5. своевременным и качественным выполнением правил технической эксплуатации.

Живучесть электрической сети - это свойство выполнять свое назначение в условиях разрушающих воздействий в том числе и в боевой обстановке при воздействиях средств поражения противника.

Живучесть достигается:

1. использованием конструкций, которые наименее подвержены разрушению при воздействии поражающих факторов оружия противника;

2. специальной защитой сети от поражающих факторов;

3. четкой организацией ремонтно-восстановительных работ. Живучесть - основное тактическое требование.

Экономичность - это минимум затрат на сооружение и эксплуатацию сети при условии выполнения требований надежности и живучести.

Экономичность обеспечивается:

1. применением типовых серийно выпускаемых и стандартных конструкций;

2. унификацией материалов и оборудования;

3. применением недефицитньгх и недорогих материалов;

4. возможностью дальнейшего развития, расширения и усовершенствования в процессе эксплуатации.

И. И. Мещеряков




Все технологические процессы любого производства связаны с потреблением энергии. На их выполнение расходуется подавляющая часть энергетических ресурсов.

Важнейшую роль на промышленном предприятии играет электрическая энергия – самый универсальный вид энергии, являющейся основным источником получения механической энергии.

Преобразование энергии различных видов в электрическую происходит на электростанциях .

Электростанциями называются предприятия или установки, предназначенные для производства электроэнергии. Топливом для электрических станций служат природные богатства – уголь, торф, вода, ветер, солнце, атомная энергия и др.

В зависимости от вида преобразуемой энергии электростанции могут быть разделены на следующие основные типы: тепловые, атомные, гидроэлектростанции, гидроаккумулирующие, газотурбинные, а также маломощные электрические станции местного значения – ветряные, солнечные, геотермальные, морских приливов и отливов, дизельные и др.

Основная часть электроэнергии (до 80 %) вырабатывается на тепловых электростанциях (ТЭС). Процесс получения электрической энергии на ТЭС заключается в последовательном преобразовании энергии сжигаемого топлива в тепловую энергию водяного пара, приводящего во вращение турбоагрегат (паровую турбину, соединённую с генератором). Механическая энергия вращения преобразуется генератором в электрическую. Топливом для электростанций служат каменный уголь, торф, горючие сланцы, естественный газ, нефть, мазут, древесные отходы.

При экономичной работе ТЭС, т.е. при одновременном отпуске потребителем оптимальных количеств электроэнергии и теплоты, их КПД достигает более 70 %. В период, когда полностью прекращается потребление теплоты (например, в неотопительный сезон), КПД станции снижается.

Атомные электростанции (АЭС) отличаются от обычной паротурбинной станции тем, что на АЭС в качестве источника энергии используется процесс деления ядер урана, плутония, тория и др. В результате расщепления этих материалов в специальных устройствах – реакторах, выделяется огромное количество тепловой энергии.

По сравнению с ТЭС атомные электростанции расходуют незначительное количество горючего. Такие станции можно сооружать в любом месте, т.к. они не связаны с местом расположения естественных запасов топлива. Кроме того, окружающая среда не загрязняется дымом, золой, пылью и сернистым газом.

На гидроэлектростанциях (ГЭС) водная энергия преобразуется в электрическую при помощи гидравлических турбин и соединённых с ними генераторов.

Различают ГЭС плотинного и деривационного типов. Плотинные ГЭС применяют на равнинных реках с небольшими напорами, деривационные (с обходными каналами) – на горных реках с большими уклонами и при небольшом расходе воды. Следует отметить, что работа ГЭС зависит от уровня воды, определяемого природными условиями.

Достоинствами ГЭС являются их высокий КПД и низкая себестоимость выработанной электроэнергии. Однако следует учитывать большую стоимость капитальных затрат при сооружении ГЭС и значительные сроки их сооружения, что определяет большой срок их окупаемости.

Особенностью работы электростанций является то, что они должны вырабатывать столько энергии, сколько её требуется в данный момент для покрытия нагрузки потребителей, собственных нужд станций и потерь в сетях. Поэтому оборудование станций должно быть всегда готово к периодическому изменению нагрузки потребителей в течении дня или года.

Большинство электростанций объединены в энергетические системы , к каждой из которых предъявляются следующие требования:

  • Соответствие мощности генераторов и трансформаторов максимальной мощности потребителей электроэнергии.
  • Достаточная пропускная способность линий электропередач (ЛЭП).
  • Обеспечение бесперебойного электроснабжения при высоком качестве энергии.
  • Экономичность, безопасность и удобство в эксплуатации.

Для обеспечения указанных требований энергосистемы оборудуют специальными диспетчерскими пунктами, оснащёнными средствами контроля, управления, связи и специальными схемами расположения электростанций, линий передач и понижающих подстанций. Диспетчерский пункт получает необходимые данные и сведения о состояниях технологического процесса на электростанциях (расходе воды и топлива, параметрах пара, скорости вращения турбин и т.д.); о работе системы – какие элементы системы (линии, трансформаторы, генераторы, нагрузки, котлы, паропроводы) в данный момент отключены, какие находятся в работе, в резерве и т.д.; об электрических параметрах режима (напряжениях, токах, активных и реактивных мощностях, частоте и т.д.).

Работа электростанций в системе даёт возможность за счёт большого количества параллельно работающих генераторов повысить надёжность электроснабжения потребителей, полностью загрузить наиболее экономические агрегаты электростанций, снизить стоимость выработки электроэнергии. Кроме того, в энергосистеме снижается установленная мощность резервного оборудования; обеспечивается более высокое качество электроэнергии, отпускаемой потребителям; увеличивается единичная мощность агрегатов, которые могут быть установлены в системе.

В России, как и во многих других странах, для производства и распределения электроэнергии применяется трёхфазный переменный ток частотой 50Гц (в США и ряде других стран 60Гц). Сети и установки трёхфазного тока более экономичны по сравнению с установками однофазного переменного тока, а также дают возможность широко использовать в качестве электропривода наиболее надёжные, простые и дешевые асинхронные электродвигатели.

Наряду с трёхфазным током в некоторых отраслях промышленности применяют постоянный ток, который получают выпрямлением переменного тока (электролиз в химической промышленности и цветной металлургии, электрифицированный транспорт и др.).

Электрическую энергию, вырабатываемую на электростанциях, необходимо передать в места её потребления, прежде всего в крупные промышленные центры страны, которые удалены от мощных электростанций на многие сотни, а иногда и тысячи километров. Но электроэнергию недостаточно передать. Её необходимо распределить среди множества разнообразных потребителей – промышленных предприятий, транспорта, жилых зданий и т.д. Передачу электроэнергии на большие расстояния осуществляют при высоком напряжении (до 500кВт и более), чем обеспечиваются минимальные электрические потери в линиях электропередачи и получается большая экономия материалов за счёт сокращения сечений проводов. Поэтому в процессе передачи и распределения электрической энергии приходится повышать и понижать напряжение. Этот процесс выполняется посредством электромагнитных устройств, называемых трансформаторами. Трансформатор не является электрической машиной, т.к. его работа не связана с преобразованием электрической энергии в механическую и наоборот; он преобразует лишь напряжение электрической энергии. Повышение напряжения осуществляется при помощи повышающих трансформаторов на электростанциях, а понижение – при помощи понижающих трансформаторов на подстанциях у потребителей.

Промежуточным звеном для передачи электроэнергии от трансформаторных подстанций к приёмникам электроэнергии являются электрические сети .

Трансформаторная подстанция – это электроустановка, предназначенная для преобразования и распределения электроэнергии.

Подстанции могут быть закрытыми или открытыми в зависимости от расположения её основного оборудования. Если оборудование находится в здании, то подстанция считается закрытой; если на открытом воздухе, то – открытой.

Оборудование подстанций может быть смонтировано из отдельных элементов устройств или из блоков, поставляемых в собранном для установки виде. Подстанции блочной конструкции называются комплектными.

В оборудование подстанций входят аппараты, осуществляющие коммутацию и защиту электрических цепей.

Основной элемент подстанций – силовой трансформатор. Конструктивно силовые трансформаторы выполняются так, чтобы максимально отвести тепло, выделяемое ими при работе от обмоток и сердечника в окружающую среду. Для этого, например, сердечник с обмотками погружают в бак с маслом, делают поверхность бака ребристой, с трубчатыми радиаторами.

Комплектные трансформаторные подстанции, устанавливаемые непосредственно в производственных помещениях мощностью до 1000 кВА, могут оснащаться сухими трансформаторами.

Для увеличения коэффициента мощности электроустановки на подстанциях устанавливают статические конденсаторы, компенсирующие реактивную мощность нагрузки.

Автоматическая система контроля и управления аппаратами подстанции следит за процессами, происходящими в нагрузке, в сетях электроснабжения. Она выполняет функции защиты трансформатора и сетей, отключает при посредстве выключателя защищаемые участки при аварийных режимах, осуществляет повторное включение, автоматическое включение резерва.

Трансформаторные подстанции промышленных предприятий подключаются к питающей сети различными способами в зависимости от требований надёжности бесперебойного электроснабжения потребителей.

Типовыми схемами, осуществляющими бесперебойное электроснабжение, являются радиальная, магистральная или кольцевая.

В радиальных схемах от распределительного щита трансформаторной подстанции отходят линии, питающие крупные электроприёмники: двигатели, групповые распределительные пункты, к которым присоединены более мелкие приёмники. Радиальные схемы применяются в компрессорных, насосных станциях, цехах взрыво- и пожароопасных, пыльных производств. Они обеспечивают высокую надёжность электроснабжения, позволяют широко использовать автоматическую аппаратуру управления и защиты, но требуют больших затрат на сооружение распределительных щитов, прокладку кабеля и проводов.

Магистральные схемы применяются при равномерном распределении нагрузки по площади цеха, когда не требуется сооружать распределительный щит на подстанции, что удешевляет объект; можно использовать сборные шинопроводы, что ускоряет монтаж. При этом перемещение технологического оборудования не требует переделки сети.

Недостатком магистральной схемы является низкая надёжность электроснабжения, так как при повреждении магистрали отключаются все электроприёмники, присоединённые к ней. Однако установка перемычек между магистралями и применение защиты существенно повышает надёжность электроснабжения при минимальных затратах на резервирование.

От подстанций ток пониженного напряжения промышленной частоты распределяется по цехам с помощью кабелей, проводов, шинопроводов от цехового распределительного устройства до устройств электроприводов отдельных машин.

Перерывы в электроснабжении предприятий, даже кратковременные, приводят к нарушениям технологического процесса, порче продукции, повреждению оборудования и невосполнимым убыткам. В некоторых случаях перерыв в электроснабжении может создать взрыво- и пожароопасную обстановку на предприятиях.

Правилами устройства электроустановок все приёмники электрической энергии по надёжности электроснабжения подразделяются на три категории:

  • Приёмники энергии, для которых недопустим перерыв в электроснабжении, поскольку он может привести к повреждению оборудования, массовому браку продукции, нарушению сложного технологического процесса, нарушению работы особо важных элементов городского хозяйства и в конечном счёте – угрожать жизни людей.
  • Приёмники энергии, перерыв в электроснабжении которых приводит к невыполнению плана выпуска продукции, простою рабочих, механизмов и промышленного транспорта.
  • Остальные приёмники электрической энергии, например цехи несерийного и вспомогательного производства, склады.

Электроснабжение приёмников электрической энергии первой категории в любых случаях должно быть обеспечено и при нарушении его автоматически восстановлено. Поэтому такие приёмники должны иметь два независимых источника питания, каждый из которых может полностью обеспечить их электроэнергией.

Приёмники электроэнергии второй категории могут иметь резервный источник электроснабжения, подключение которого производится дежурным персоналом через некоторый промежуток времени после отказа основного источника.

Для приёмников третьей категории резервный источник питания, как правило, не предусматривается.

Электроснабжение предприятий подразделяется на внешнее и внутреннее. Внешнее электроснабжение – это система сетей и подстанций от источника электропитания (энергосистемы или электростанции) до трансформаторной подстанции предприятия. Передача энергии в этом случае осуществляется по кабельным или воздушным линиям номинальным напряжением 6, 10, 20, 35, 110 и 220 кВ. К внутреннему электроснабжению относится система распределения энергии внутри цехов предприятия и на его территории.

К силовой нагрузке (электродвигатели, электропечи) подводится напряжение 380 или 660 В, к осветительной – 220 В. Двигатели мощностью 200 кВт и более в целях снижения потерь целесообразно подключать на напряжение 6 или 10 кВ.

Наиболее распространённым на промышленных предприятиях является напряжение 380 В. Широко внедряется напряжение 660 В, что позволяет снизить потери энергии и расход цветных металлов в сетях низшего напряжения, увеличить радиус действия цеховых подстанций и мощность каждого трансформатора до 2500 кВА. В ряде случаев при напряжении 660 В экономически оправданным является применение асинхронных двигателей мощностью до 630 кВт.

Распределение электроэнергии производится с помощью электропроводок – совокупности проводов и кабелей с относящимися к ним креплениями, поддерживающими и защитными конструкциями.

Внутренняя проводка – это электропроводка, проложенная внутри здания; наружная – вне его, по наружным стенам здания, под навесами, на опорах. В зависимости от способа прокладки, внутренняя проводка может быть открытой, если она проложена по поверхности стен, потолков и т.д., и скрытой, если она проложена в конструктивных элементах зданий.

Проводка может быть проложена изолированным проводом или небронированным кабелем сечением до 16 кв.мм. В местах возможного механического воздействия электропроводку заключают в стальные трубы, герметизируют, если среда помещения взрывоопасная, агрессивная. На станках, полиграфических машинах проводка выполняется в трубах, в металлических рукавах проводом с полихлорвиниловой изоляцией, не разрушающейся от воздействия на неё машинными маслами. Большое количество проводов системы управления электропроводом машины укладывается в лотках. Для передачи электроэнергии в цехах с большим количеством производственных машин применяются шинопроводы.

Для передачи и распределения электроэнергии широко применяются силовые кабели в резиновой, свинцовой оболочке; небронированные и бронированные. Кабели могут укладываться в кабельные каналы, укрепляться на стенах, в земляных траншеях, заделываться в стены.

Технологическая карта урока.

Урок 15. Производство, преобразование, распределение, накопление и передача энергии как технология

Задачи урока:

Формирование понятий: производство, преобразование, распределение, накопление и передача энергии;

Актуализация сведений из личного опыта;

Развитие логического мышления;

Формирование навыков работы с информацией;

Умение работать в группах и индивидуально.

1

Организационный момент

Дети рассаживаются по местам, проверяют наличие принадлежностей

Личностные УУД:

- формирование навыков самоорганизации

Поверка домашнего задания

Устный опрос:

    Что такое технология?

    Какое значение имеют технологии для производства?

    По какой причине возникают новые технологии?

Коммуникативные УУД:

Личностные УУД:

Развитие речи,

Формулирование целей урока

Тема нашего урока сегодня «Производство, преобразование, распределение, накопление и передача энергии как технология»

Регулятивные УУД:

Умение ставить учебную задачу

Объяснение темы урока

Все технологические процессы любого производства связаны с потреблением энергии.

Важнейшую роль на промышленном предприятии играет электрическая энергия – самый универсальный вид энергии, являющейся основным источником получения механической энергии.

Преобразование энергии различных видов в электрическую происходит на электростанциях .

Электростанциями называются предприятия или установки, предназначенные для производства электроэнергии. Топливом для электрических станций служат природные богатства – уголь, торф, вода, ветер, солнце, атомная энергия и др.

В зависимости от вида преобразуемой энергии электростанции могут быть разделены на следующие основные типы: тепловые, атомные, гидроэлектростанции, ветряные, солнечные и др.

Основная часть электроэнергии (до 80 %) вырабатывается на тепловых электростанциях (ТЭС). Процесс получения электрической энергии на ТЭС заключается в последовательном преобразовании энергии сжигаемого топлива в тепловую энергию водяного пара, приводящего во вращение турбоагрегат (паровую турбину, соединённую с генератором). Механическая энергия вращения преобразуется генератором в электрическую. Топливом для электростанций служат каменный уголь, торф, горючие сланцы, естественный газ, нефть, мазут, древесные отходы.

Атомные электростанции (АЭС) отличаются от обычной паротурбинной станции тем, что на АЭС в качестве источника энергии используется процесс деления ядер урана, плутония, тория и др. В результате расщепления этих материалов в специальных устройствах – реакторах, выделяется огромное количество тепловой энергии.

По сравнению с ТЭС атомные электростанции расходуют незначительное количество горючего. Такие станции можно сооружать в любом месте, т.к. они не связаны с местом расположения естественных запасов топлива. Кроме того, окружающая среда не загрязняется дымом, золой, пылью и сернистым газом.

На гидроэлектростанциях (ГЭС) водная энергия преобразуется в электрическую при помощи гидравлических турбин и соединённых с ними генераторов.

Достоинствами ГЭС являются их высокий КПД и низкая себестоимость выработанной электроэнергии. Однако следует учитывать большую стоимость капитальных затрат при сооружении ГЭС и значительные сроки их сооружения, что определяет большой срок их окупаемости.

Особенностью работы электростанций является то, что они должны вырабатывать столько энергии, сколько её требуется в данный момент для покрытия нагрузки потребителей, собственных нужд станций и потерь в сетях. Поэтому оборудование станций должно быть всегда готово к периодическому изменению нагрузки потребителей в течении дня или года.

Электрическую энергию, вырабатываемую на электростанциях, необходимо передать в места её потребления, прежде всего в крупные промышленные центры страны, которые удалены от мощных электростанций на многие сотни, а иногда и тысячи километров. Но электроэнергию недостаточно передать. Её необходимо распределить среди множества разнообразных потребителей – промышленных предприятий, транспорта, жилых зданий и т.д. Передача происходит через трансформаторные подстанции и электрические сети.

Перерывы в электроснабжении предприятий, даже кратковременные, приводят к нарушениям технологического процесса, порче продукции, повреждению оборудования и невосполнимым убыткам. В некоторых случаях перерыв в электроснабжении может создать взрыво- и пожароопасную обстановку на предприятиях.

Распределение электроэнергии производится с помощью электропроводок – совокупности проводов и кабелей с относящимися к ним креплениями, поддерживающими и защитными конструкциями.

Личностные УУД:

- закрепление знаниевой компоненты

Развитие речи

Умение кратко формулировать мысль

Умение приводить примеры из личного опыта

Развитие навыков чтения

Закрепление учебного материала

Ответить на вопросы теста:

    Что такое ТЭС, АЭС, ГЭС?

    Где происходит преобразование различных видов энергии в электрическую?

    В чем преимущество атомной электростанции перед тепловой электростанцией?

    Как происходит передача электроэнергии?

    Чем опасны перерывы в электроснабжении предприятий?

Коммуникативные УУД:

Умение слушать и исправлять ошибки других Личностные УУД:

Формирование навыков письма

Развитие логического мышления

Итоги урока

Проверка теста, выставление оценок.

Личностные УУД:

- развитие самооценки

В первом методическом руководстве для начинающего оперативного персонала был рассмотрен принцип производства электроэнергии на тепловых электрических станциях. В этой главе мы рассмотрим основные процессы и особенности эксплуатации оборудования при передаче электроэнергии от электростанции до потребителя.

Электроэнергия, выходящая из генератора в подавляющем большинстве случаев сразу же преобразовывается с помощью повышающего трансформатора в электроэнергию более высокого напряжения, а у потребителя преобразовывается с помощью понижающего трансформатора в электроэнергию более низкого напряжения. Для чего это делается. Генераторное напряжение на большинстве ТЭС составляет 6-10 кВ, на крупных генераторах 15-20 кВ. Электроэнергию, а проще говоря, мощность такого напряжения на большие расстояния передавать экономически не выгодно по двум причинам:

  • 1. Слишком большие потери (чем выше напряжение, тем меньше потери электроэнергии. Об этом подробнее будет рассмотрено в разделе «Потери электрической мощности»);
  • 2. Из-за низкой пропускной способности.

Если кто помнит, каждый проводник определенного сечения может пропустить определенной величины электрический ток и если эту величину превысить, то проводник начнет греться и в дальнейшем просто расплавится. Если посмотреть на формулу полной мощности S=v3UI (U - напряжение, I - ток), то легко догадаться, что при одной и той же величине передаваемой мощности, чем выше напряжение линии, тем меньше величина тока, протекающего по ней. Следовательно, чтобы мощность, передаваемую, например, по одной линии 110 кВ передать при помощи линий 10 кВ, то нужно будет построить 10 линий 10 кВ с проводом такого же сечения, как и линия 110 кВ. Если электростанция расположена рядом с потребителем (например, крупный завод), то нет смысла повышать напряжение для передачи электроэнергии и она подается потребителю на генераторном напряжении, что позволяет сэкономить на трансформаторах. Кстати, чем отличается электроэнергия от электрической мощности? Да ничем. Электрическая мощность - это мгновенное значение электрической энергии и измеряется она в Ваттах, киловаттах, Мегаваттах (Вт, кВт, МВт), а электрическая энергия - это количество электрической мощности, переданное за единицу времени и измеряется она в киловатт часах (кВт*ч,). Агрегат, в котором происходит преобразование электроэнергии с одного напряжения на другое называется трансформатором.

Принцип работы и конструкция трансформатора

Как мы уже сказали, трансформатор служит для преобразования электрической мощности одного напряжения в электрическую мощность другого напряжения. Как это происходит. Трехфазный трансформатор представляет собой магнитопровод (сердечник), набранный из листов электротехнической стали и состоящий из трех вертикальных стержней соединенных сверху и снизу такими же поперечными стержнями (они называются ярмо). На стержни надеваются обмотки низкого и высокого напряжения в виде цилиндрических катушек из изолированного медного провода. В энергетике эти обмотки называются высшего и низшего напряжения, если трансформатор двух обмоточный, то есть имеет только два напряжения. В трех обмоточном трансформаторе есть еще обмотка среднего напряжения. Обмотки надеваются на стержень в следующем порядке: сначала обмотка низшего напряжения (она ближе всех к магнитопроводу), затем на нее надевается обмотка среднего напряжения и затем обмотка высшего напряжения, то есть на каждый стержень надевается три обмотки, если трансформатор трех обмоточный и две обмотки, если трансформатор двух обмоточный. Для простоты будем рассматривать работу двух обмоточного трансформатора. Обмотки одного стержня образуют фазу. К началу каждой обмотки присоединены линейные вывода, по которым электрическая мощность входит и выходит из трансформатора. Обмотка, к которой электрическая мощность подходит к трансформатору называется первичной, а обмотка, от которой преобразованная мощность уходит вторичной. Если мощность подходит к обмотке низшего напряжения, а уходит с обмотки высшего напряжения, то трансформатор называют повышающим. И наоборот, если мощность подходит к обмотке высшего напряжения, а уходит с обмотки низшего напряжения, то трансформатор называют понижающим. По своей конструкции они ничем не отличаются. Концы обмоток высшего и низшего напряжений соединены по разному. Концы обмоток высшего напряжения соединены вместе и образуют звезду, ее еще называют нейтраль (почему, рассмотрим позже). Концы обмоток низшего напряжений соединены мудрено, а именно - конец каждой обмотки соединен с началом другой, образуя, если развернуть на схеме, треугольник, к вершинам которого подключены линейные вывода. Почему обмотки высшего и низшего напряжений соединены по разному? По чисто экономическим соображениям. Электрический ток и напряжение разделяются на фазные и линейные. Линейным называется напряжение между фаз А-Б, Б-С и С-А, его еще называют междуфазным. Фазное напряжение - это напряжение между каждой (отдельной) фазой и землей или, в случае с трансформатором, нейтралью трансформатора. Фазное напряжение в v3 раз (в 1.73 раза) меньше линейного. Линейный и фазный ток лучше рассмотреть на примере соединений обмоток трансформатора. Ток, текущий по каждой фазе линии называется линейный. Ток, текущий по обмотке каждой фазы трансформатора или электродвигателя называется фазным. Если обмотка этих агрегатов соединена в звезду, то линейный ток, как в фазе линии, так и в фазе звезды одинаковый (нарисуйте звезду и линию и сразу будет понятно). То есть при соединении обмотки в звезду линейный ток равен фазному. Если обмотку соединить в треугольник (нарисуйте), то мы видим, как ток из линии, подойдя к вершине треугольника, расходится по двум обмоткам. Здесь уже фазный ток не равен линейному, он меньше его. Фазный ток, так же как и напряжение в v3 раз (в 1.73 раза) меньше линейного. Когда обмотка соединена в звезду, то ток, протекающий по ней равен линейному току, а напряжение на этой обмотке равно фазному напряжению. А когда обмотка соединена в треугольник, то ток, протекающий по ней равен фазному, а напряжение на каждой обмотке равно линейному напряжению. И если, к примеру, обмотку трансформатора, к которой подводится напряжение 110 кВ соединить сначала в звезду, а затем в треугольник, то в первом случае (когда звезда) напряжение приложенное к обмотке каждой фазы будет равно 63 кВ, а во втором случае (когда треугольник) 110 кВ. Следовательно, когда обмотка соединена в треугольник - изоляция на ней должна быть больше, а значит дороже. С токами все наоборот. Когда обмотка соединена в треугольник, то протекающий по ней ток в v3 раз меньше тока, протекающего по этой же обмотке, если ее соединить в звезду. Если меньше ток, значит меньше сечение провода обмотки и обмотка дешевле. Поскольку ток на стороне низшего напряжения больше тока стороны высшего напряжения (а значит и сечение провода обмотки больше), то именно обмотку низшего напряжения и соединяют в треугольник. Чем выше напряжение, тем дороже стоит изоляция. Вот поэтому обмотку высшего напряжения соединяют в звезду. Существуют также такие понятия, как номинальный ток и номинальное напряжение. Номинальный ток - это максимальный ток, длительно протекающий по проводнику, не перегревая его выше допустимой для его изоляции температуры. Номинальное напряжение - это максимальное напряжение относительно земли (фазное напряжение) или других фаз этого оборудования (линейное напряжение), длительно приложенное к проводнику (воздействующее на проводник) без опасности повреждения (пробоя) его изоляции. Для каждого оборудования заводом изготовителем указывается номинальный ток и напряжение его проводников.

Так вот. Когда к первичной обмотке трансформатора подводится электрическая мощность, то протекающий по ней (по обмотке) ток создает в магнитопроводе, на который одеты обмотки, переменный магнитный поток, который в свою очередь наводит во вторичной обмотке, так называемую электродвижущую силу (э.д.с). Э.д.с - это то же самое, что и мощность. Вот таким образом, с помощью электромагнитной связи, мощность и передается через трансформатор. Прошу не путать с электрической связью. Электрическая связь (ее еще называют металлическая) - это когда мощность передается по проводнику безо всяких воздушных промежутков. Зависимость между первичным и вторичным напряжением, а также количеством витков обмоток определяется формулой:

U1 / U2 = w1 / w2

где U1 и w1 - это напряжение и число витков первичной обмотки, а U2 и w2 - соответственно, вторичной. Из этого следует, что подбирая число витков первичной и вторичной обмоток можно получить желаемое вторичное напряжение. Отношение величины высшего напряжения к низшему напряжению или отношение числа витков обмотки высшего напряжения к обмотке низшего напряжения (что одно и то же) называется коэффициентом трансформации трансформатора. Коэффициент трансформации всегда больше единицы (это можно и так догадаться). Трансформаторы, служащие для преобразования электрической мощности одного напряжения в мощность другого напряжения называются силовыми. Существуют также трансформаторы тока и напряжения. Эти трансформаторы называются измерительными, т.к. они предназначены для питания приборов измерения тока и напряжения, но о них подробнее будет рассмотрено в разделе релейная защита, автоматика и измерения. Величина мощности, проходящей через силовой трансформатор, не изменяется (если исключить незначительные потери при трансформации), изменяются только величины тока и напряжения. Вспоминая формулу мощности, S=v3UI не трудно догадаться, что во сколько раз изменяется напряжение при трансформации, во столько же раз изменяется и ток, только в обратную сторону, то есть если напряжение после трансформатора увеличилось в 10 раз, то ток в 10 раз уменьшился. Вот для этого (чтобы уменьшить величину тока) и повышают напряжение на электростанциях с тем, чтобы передавать ее на далекие расстояния. Трансформаторы бывают сухими и масляными. Сухие трансформаторы (серии ТС) - это трансформаторы с воздушным охлаждением для закрытых помещений. Конструкция самая простая, магнитопровод с обмотками стоит на изоляторах на полу помещения и закрыт металлическим сетчатым кожухом. Выделяемое тепло отводится окружающим воздухом. Сухие трансформаторы выпускаются на напряжение до 10 кВ и используются в основном на собственных нуждах электростанций. В промышленности в основном применяются масляные трансформаторы (серии ТМ, ТД, ТДЦ, ТЦ. Буквы М, Д, ДЦ и Ц означают способ охлаждения и циркуляции масла). В масляном трансформаторе магнитопровод с обмотками помещен в герметичный корпус, заполненный трансформаторным маслом, которое служит для охлаждения и одновременно для изоляции магнитопровода и обмоток. На верху корпуса имеется бак-расширитель, который служит для подпитки корпуса и приемки масла из корпуса при температурных изменениях объема масла внутри корпуса трансформатора. По бокам корпуса масляного трансформатора расположены масляные радиаторы, которые служат для охлаждения масла. Масло под воздействием разности температур внутри корпуса и снаружи в радиаторе постоянно циркулирует через радиаторы, охлаждаясь о наружный воздух. Это называется естественное охлаждение и естественная циркуляция масла (система охлаждения М). Такая система охлаждения применяется на трансформаторах до 10 МВт. На трансформаторах мощностью более 10 МВт масляные радиаторы обдуваются вентиляторами для большей эффективности охлаждения. Эта система охлаждения Д - с естественной циркуляцией и принудительным дутьем. Для еще более эффективного охлаждения масла циркуляцию его осуществляют насосами, одновременно обдувая радиаторы вентиляторами. Эта система охлаждения относится к типу ДЦ - с принудительной циркуляцией масла и принудительным дутьем и применяется на трансформаторах мощностью свыше 100 МВт. Самой эффективной на сегодняшний день является система Ц - с принудительной циркуляцией масла и водяным охлаждением масляных радиаторов. Она применяется на трансформаторах 500 МВт и выше.

В технической литературе часто встречается еще одна характеристика трансформатора - это Uк %, что переводится, как напряжение короткого замыкания в процентах. Напряжение Uк % - это напряжение приложенное к одной из обмоток трансформатора, при котором по другой обмотке замкнутой накоротко, протекает номинальный ток (по первой обмотке, к стати, в это время протекает тоже номинальный ток). Uк % характеризует полное сопротивление обмоток трансформатора и используется при расчетах токов за трансформатором в различных режимах работы сети.

Силовые трансформаторы выпускаются в основном в трехфазном исполнении. Мощные трансформаторы (500 МВА и выше) выпускаются в однофазном исполнении по той простой причине, что трехфазный трансформатор такой мощности будет иметь такие размеры, что доставить его к месту установки не будет представляться возможным. Трансформаторы бывают двух обмоточными (ВН, НН), трех обмоточными (ВН, СН, НН) и с расщепленными обмотками. Трансформатор с расщепленными обмотками имеет две одинаковые обмотки низшего напряжения. Для чего это делается? Трансформаторы с расщепленными обмотками имеют повышенный Uк % (сопротивление обмоток), поэтому их целесообразнее использовать для питания РУ с большим количеством присоединений. РУ делается не из двух секций (на каждую по одному трансформатору), а из четырех. Один трансформатор питает две секции (каждая обмотка питает отдельную секцию). Тем самым мы уменьшаем ток КЗ на секции в два раза, по сравнению с тем, если бы секций было две и каждая питалась от двух обмоточного трансформатора.

Регулирование напряжения трансформатора

Как мы уже говорили, величину напряжения на вторичной обмотке трансформатора можно изменять с помощью изменения количества витков первичной или вторичной обмоток. На силовых трансформаторах предусмотрено изменение количества витков на обмотке высшего напряжения. Для этого часть витков обмотки высшего напряжения имеют регулировочные ответвления, с помощью которых можно либо добавлять, либо уменьшать количество витков обмотки высшего напряжения. Уменьшая число витков обмотки высшего напряжения, когда она является первичной обмоткой (понижающий трансформатор), уменьшается сопротивление обмотки, следовательно увеличивается ток и магнитный поток в сердечнике трансформатора, а значит и увеличивается напряжение на обмотке низшего напряжения, которая в данном случае является вторичной. И наоборот. Увеличивая число витков обмотки высшего напряжения, увеличивается сопротивление обмотки, следовательно уменьшается ток и магнитный поток в сердечнике трансформатора, а значит и уменьшается напряжение на обмотке низшего напряжения.

В случае повышающего трансформатора, когда обмотка низшего напряжения является первичной, а высшего напряжения вторичной, процесс повышения напряжения на вторичной обмотке происходит не за счет увеличения магнитного потока, а за счет увеличения числа витков вторичной обмотки, то есть обмотки высшего напряжения.

Почему регулировка напряжения производится именно на обмотке высшего напряжения, будет ясно после рассмотрения конструкции переключателя ответвлений. В масляных трансформаторах применяются два типа переключателей ответвлений - ПБВ и РПН. Переключатель ПБВ означает переключение без возбуждения, то есть на отключенном трансформаторе и представляет собой систему неподвижных контактов, соединенных с ответвлениями обмотки и подвижные контакты, соединенные с основной обмоткой. Подвижные контакты находятся на устройстве в виде барабана, поворачивая который рукояткой привода, расположенной на крышке трансформатора, производят изменение числа витков обмотки высшего напряжения. Поскольку часто регулировать таким способом напряжение неудобно из-за необходимости отключения трансформатора, то с помощью переключателей ПБВ производится в основном сезонное регулирование напряжения, когда изменяются нагрузки в прилегающей сети, то есть зимой и летом (зимой нагрузки больше, а значит больше и падение напряжения в сети и напряжение приходится повышать).

Для частых регулировок напряжения на трансформаторах устанавливают переключатель типа РПН, что означает регулирование под нагрузкой. Переключатель ответвлений типа РПН позволяет регулировать напряжение, не отключая трансформатор и даже не снимая с него нагрузку, поэтому и конструкция его сложнее, нежели переключателя ПБВ. Для того, чтобы во время переключения подвижного контакта с одного ответвления на другое не происходило разрыва цепи тока обмотки, в переключателе типа РПН имеется два подвижных контакта на каждую фазу (основной и шунтирующий) и переключение с одного ответвления на другое происходит в два этапа - сначала на новое ответвление переключается основной контакт, а затем шунтирующий. А для того, чтобы в момент, когда основной контакт стоит уже на новом ответвлении, а шунтирующий остался еще на старом, не происходило закорачивание витков, находящихся между этими контактами, в цепи шунтового контакта установлено специальное сопротивление и ток не идет через закоротку, образованную основным и шунтирующим контактами. Переключатель типа РПН установлен не в общем баке трансформатора, где расположен магнитопровод с обмотками, а в отдельном отсеке, куда выведены ответвления обмоток высшего напряжения. Это связано с тем, что при переключениях под нагрузкой между контактами возникает, хоть и незначительная, но электрическая дуга, которая разлагает масло с выделением водорода. И если бы РПН находился в общем баке, то водород постоянно накапливался в газовом реле трансформатора, вызывая, тем самым, не нужные срабатывания газовой защиты (об этом подробнее будет рассмотрено в граве релейная защита и автоматика). РПН может переключаться, как дистанционно ключом управления, так и с помощью автоматики АРН (автоматическое регулирование напряжения), реагирующей на изменения напряжения на вторичной обмотке.

В сухих трансформаторах переключателей ответвлений нет и изменение количества витков происходит путем пересоединения на обмотке каждой фазы специальной металлической пластины, соединяющей основную часть обмотки с добавочными витками.

Автотрансформаторы

Автотрансформаторы служат для соединения распределительных устройств разного напряжения. Автотрансформатор отличается от трех обмоточного трансформатора тем, что у него нет обмотки среднего напряжения. Среднее напряжение берется с части обмотки высшего напряжения. Ведь у обмотки трансформатора соединенной в звезду напряжение от максимального в начале обмотки уменьшается с каждым витком в сторону нейтрали, пока совсем не снизится до нуля на нейтрали после последнего витка. Вот на основе этого принципа и выполнена обмотка среднего напряжения у автотрансформатора. К примеру, у автотрансформатора напряжением 220/110/10 кВ где-то на середине обмотки высшего напряжения (220 кВ) сделаны ответвления соответствующие напряжению 110 кВ, это и есть обмотка среднего напряжения, совмещенная с обмоткой высшего напряжения (вернее, являющаяся ее частью). Поэтому автотрансформатор меньше по габаритам и дешевле трех обмоточного трансформатора той же мощности. Ответвлений на обмотке высшего напряжения несколько (как и в трансформаторе) для возможности регулирования напряжения с помощью переключателя типа РПН.

В ПТЭ можно встретить такое понятие, как допустимое напряжение для данного ответвления обмотки трансформатора. Как это понимать и где взять эти допустимые напряжения? Как мы уже сказали в начале этого раздела, у обмоток трансформаторов соединенных в звезду с каждым витком в сторону нейтрали напряжение уменьшается. В связи с этим уменьшают и изоляцию с каждым витком, а точнее с каждым ответвлением в сторону нейтрали (в целях экономии). Поэтому каждое ответвление имеет свое допустимое напряжение. А посмотреть это напряжение можно в таблице анцапф трансформатора, в заводской инструкции, на худой конец, на табличке прикрепленной к трансформатору.

Производство электроэнергии в мире в наши дни играет огромную роль. Она - стержень государственной экономики любой страны. Гигантские суммы денег ежегодно вкладываются в производство и использование электроэнергии и научные исследования, связанные с этим. В повседневной жизни мы постоянно сталкиваемся с ее действием, поэтому современный человек должен иметь представление об основных процессах ее выработки и потребления.

Как получают электроэнергию

Производство электроэнергии осуществляется из других ее видов при помощи специальных устройств. Например, из кинетической. Для этого применяют генератор - прибор, преобразующий механическую работу в электрическую энергию.

Другие существующие способы ее получения - это, например, преобразование излучения светового диапазона фотоэлементами или солнечной батареей. Или производство электроэнергии путем химической реакции. Или использование потенциала радиоактивного распада либо теплоносителя.

Вырабатывают ее на электростанциях, которые бывают гидравлическими, атомными, тепловыми, солнечными, ветряными, геотермальными и проч. В основном все они работают по одной схеме - благодаря энергии первичного носителя определенным устройством вырабатывается механическая (энергия вращения), передаваемая затем в специальный генератор, где и вырабатывается электроток.

Основные виды электростанций

Производство и распределение электроэнергии в большинстве стран ведутся путем строительства и эксплуатации ТЭС - тепловых электростанций. Их функционирование требует большого запаса органического топлива, условия добычи которого из года в год усложняются, а стоимость растет. Коэффициент полезной отдачи топлива в ТЭС не слишком высок (в пределах 40%), а число экологически грязных отходов велико.

Все эти факторы снижают перспективность такого способа выработки.

Наиболее экономично производство электроэнергии гидроэнергетическими установками (ГЭС). КПД их доходит до 93%, себестоимость 1 кВт/ч впятеро дешевле других способов. Природный источник энергии таких станций практически неисчерпаем, количество работников - минимально, ими легко управлять. По развитию данной отрасли наша страна - признанный лидер.

К сожалению, темпы развития ограничены серьезными затратами и длительными сроками строительства ГЭС, связанными с их удаленностью от больших городов и магистралей, сезонным режимом рек и трудными условиям работы.

Кроме того, гигантские водохранилища ухудшают экологическую ситуацию - затапливают ценные земли вокруг водоемов.

Использование атомной энергии

В наши дни производство, передача и использование электроэнергии производятся атомными электростанциями - АЭС. Они устроены практически по тому же принципу, что и тепловые.

Главный их плюс - малое количество требующегося топлива. Килограмм обогащенного урана по своей производительности эквивалентен 2,5 тыс. тонн угля. Именно поэтому АЭС теоретически можно строить в любом районе независимо от наличия близлежащих топливных ресурсов.

В настоящее время запасы урана на планете значительно больше, чем минерального горючего, а воздействие АЭС на окружающую природу минимально при условии безаварийной работы.

Огромный и серьезный недостаток АЭС - вероятность страшной аварии с непредсказуемыми последствиями, отчего для их бесперебойной работы требуются очень серьезные меры по обеспечению безопасности. К тому же производство электроэнергии на АЭС регулируется с трудом - как для их запуска, так и для полной остановки понадобится несколько недель. И практически отсутствуют технологии утилизации опасных отходов.

Что такое электрический генератор

Производство и передача электроэнергии осуществимы благодаря электрогенератору. Это устройство преобразования любых видов энергии (тепловой, механической, химической) в электрическую. Принцип его действия построен на процессе электромагнитной индукции. ЭДС индуктируется в проводнике, который движется в магнитном поле, пересекает его силовые магнитные линии. Таким образом, проводник может служить источником электроэнергии.

Основа любого генератора - система электромагнитов, формирующих магнитное поле, и проводников, которые его пересекают. Большинство всех генераторов переменного тока основаны на применении вращающегося магнитного поля. Его неподвижную часть именуют статором, подвижную - ротором.

Понятие трансформатора

Трансформатор - электромагнитное статическое устройство, предназначенное для преобразования одной системы тока в другую (вторичную) при помощи электромагнитной индукции.

Первые трансформаторы в 1876 г. были предложены П. Н. Яблочковым. В 1885 г. венгерскими учеными разработаны промышленные однофазные приборы. В 1889-1891 гг. изобретен трехфазный трансформатор.

Простейший однофазный трансформатор состоит из стального сердечника и пары обмоток. Применяются они для распределения и передачи электроэнергии, ведь генераторы электростанций вырабатывают ее при напряжении от 6 до 24 кВт. Передавать ее выгодно при больших значениях (от 110 до 750 кВт). Для этого на электростанциях устанавливают повышающие трансформаторы.

Как используется электроэнергия

Ее львиная доля идет на снабжение электричеством предприятий промышленности. Производство потребляет до 70% всей вырабатываемой в стране электроэнергии. Эта цифра значительно разнится для отдельных регионов в зависимости от климатических условий и уровня индустриального развития.

Другая статья расходов - снабжение электротранспорта. От электросетей ЭЭС работают подстанции городского, междугороднего, промышленного электротранспорта, использующего постоянный ток. Для транспорта на переменном токе применяются понижающие подстанции, которые тоже потребляют энергию электростанций.

Другой сектор потребления электроэнергии - коммунально-бытовое снабжение. Потребителями здесь являются здания жилых районов любых населенных пунктов. Это дома и квартиры, административные здания, магазины, заведения образования, науки, культуры, здравоохранения, общественного питания и т. д.

Как происходит передача электроэнергии

Производство, передача и использование электроэнергии - три кита отрасли. Причем передать полученную мощность потребителям - самая сложная задача.

"Путешествует" она главным образом посредством ЛЭП - воздушных линий электропередачи. Хотя все чаще начинают применять кабельные линии.

Вырабатывается электроэнергия мощными агрегатами гигантских электростанций, а потребителями ее служат относительно небольшие приёмники, разбросанные по обширной территории.

Существует тенденция концентрировать мощности, связанная с тем, что с их увеличением уменьшаются относительные затраты возведения электростанций, а следовательно, и себестоимость получаемого киловатт-часа.

Единый энергокомплекс

На принятие решения о размещении крупной электростанции влияет ряд факторов. Это вид и количество имеющихся в наличии ресурсов, доступность транспортировки, климатические условия, включенность в единую энергосистему и т. д. Чаще всего электростанции строятся вдали от крупных очагов потребления энергии. Эффективность ее передачи на немалые расстояния влияет на успешную работу единого энергетического комплекса огромной территории.

Производство и передача электроэнергии должны происходить с минимальным количеством потерь, главная причина которых - нагрев проводов, т. е. увеличение внутренней энергии проводника. Для сохранения передаваемой на большие расстояния мощности нужно пропорционально увеличить напряжение и уменьшить в проводах силу тока.

Что такое ЛЭП

Математические расчеты показывают, что величина потерь в проводах на нагрев обратно пропорциональна квадрату напряжения. Именно поэтому электроэнергию на большие расстояния передают при помощи ЛЭП - высоковольтных линий электропередач. Между их проводами напряжение исчисляется десятками, а порой сотнями тысяч вольт.

Электростанции, расположенные неподалеку друг от друга, объединяются в единую энергосистему именно при помощи ЛЭП. Производство электроэнергии в России и ее передача ведутся путем централизованной энергетической сети, в которую входит огромное количество электростанций. Единое управление системой гарантирует постоянную подачу потребителям электроэнергии.

Немного истории

Как формировалась единая электрическая сеть в нашей стране? Попробуем заглянуть в прошлое.

До 1917 года производство электроэнергии в России велось недостаточными темпами. Страна отставала от развитых соседей, что отрицательно сказывалось на экономике и обороноспособности.

После Октябрьской революции проект электрификации России разрабатывался Государственной комиссией по электрификации России (сокращенно ГОЭЛРО), возглавляемой Г. М. Кржижановским. С ней сотрудничали более 200 ученых и инженеров. Контроль осуществлялся лично В. И. Лениным.

В 1920 г. был готов «План электрификации РСФСР», рассчитанный на 10-15 лет. Он включал восстановление прежней энергосистемы и строительство 30 новых электростанций, оборудованных современными турбинами и котлами. Главная идея плана - задействовать гигантские отечественные гидроэнергоресурсы. Предполагались электрификация и коренная реконструкция всего народного хозяйства. Упор делался на рост и развитие тяжёлой промышленности страны.

Знаменитый план ГОЭРЛО

Начиная с 1947 года СССР стал первым в Европе и вторым в мире производителем электроэнергии. Именно благодаря плану ГОЭЛРО была сформирована в кратчайшие сроки вся отечественная экономика. Производство и потребление электроэнергии в стране вышло на качественно новый уровень.

Выполнение намеченного стало возможным благодаря сочетанию сразу нескольких важных факторов: высокого уровня научных кадров страны, сохранившегося с дореволюционных времен материального потенциала России, централизации политической и экономической власти, свойству российского народа верить "верхам" и воплощать провозглашаемые идеи.

План доказал эффективность советской системы централизованной власти и государственного управления.

Результаты плана

В 1935 году принятая программа была выполнена и перевыполнена. Построено 40 электростанций вместо запланированных 30, введено мощностей почти втрое больше, чем предусматривалось по плану. Возведено 13 электроцентралей мощностью по 100 тыс. кВт каждая. Общая мощность российских ГЭС составила около 700 000 кВт.

В эти годы были возведены крупнейшие объекты стратегического значения, такие как всемирно известная Днепровская ГЭС. По суммарным показателям Единая советская энергосистема превзошла аналогичные системы самых развитых стран Нового и Старого Света. Производство электроэнергии по странам Европы в те годы значительно отставало от показателей СССР.

Развитие села

Если до революции в деревнях России электричества практически не существовало (небольшие электростанции, устанавливаемые крупными землевладельцами не в счет), то с реализацией плана ГОЭЛРО благодаря использованию электроэнергии сельское хозяйство получило новый толчок к развитию. На мельницах, лесопилках, зерноочистительных машинах появились электродвигатели, что способствовало модернизации отрасли.

Помимо того, электричество прочно вошло в быт горожан и селян, в буквальном смысле вырвав "темную Россию" из мрака.



Поделиться