Расчет неподвижных опор теплотрассы. Расчет усилий, действующих на неподвижные опоры

(табл. 10.1 )

момент сопротивления поперечного сечения трубы при расчётной толщине стенки трубы, см3, (табл. 2.10. СП);

Коэффициент прочности сварного шва (табл. 10.2 ).

0,8 коэффициент пластичности

Эквивалентная весовая нагрузка кгс/м (равна весу трубопровода в рабочем состоянии);

Эквивалентную весовую нагрузку при подземной прокладке трубопроводов принимают равной расчетному весу трубопровода в рабочем или холодном состоянии.

где q – вес одного метра трубопровода: вес трубы (qтр), воды (qв) (табл. 2.11., 2.12. СП), изоляционной конструкции (qиз).

Пролёт между подвижными опорами при сальниковых компенсаторах определяют расчётом по растягивающим или сжимающим напряжениям (=0,95,=1 соответственно).

По сжимающим напряжениям,=1

По растягивающим напряжениям,=0,95

за расчётный принимают

Нагрузки на неподвижные опоры.

Нагрузки на неподвижные опоры трубопроводов подразделяют на вертикальные и горизонтальные.

Вертикальные:

l-пролёт между подвижными опорами, м.

Горизонтальные нагрузки на неподвижные опоры трубопроводов возникают под влиянием следующих:

Трения в подвижных опорах, при тепловом удлинении теплопроводов.

Трения в сальниковых компенсаторах, при тепловом удлинении теплопроводов.

Горизонтальные осевые нагрузки на промежуточные опоры определяют с учётом всех действующих сил по обе стороны опоры:

Силы трения в подвижных опорах, кгс

Силы трения в сальниковых компенсаторах, кгс

где q вес 1 метра трубопровода, кгс

L-длинна трубопровода от неподвижной опоры до компенсатора, м

f-коэффициент трения подвижных опор(табл. 11.1 )

Силы трения в сальниковых компенсаторах определяют в зависимости от рабочего давления теплоносителя, диаметра трубы и конструкции сальниковой набивки:

кгс

кгс

Рабочее давление теплоносителя

длинна слоя набивки по сои сальникового компенсатора (4.16 )

наружный диаметр стакана сальникового компенсатора(4.16 )

коэффициент трения набивки с металлом =0,15

число болтов компенсатора(4.16 )

Площадь поперечного сечения набивки (4.16 )

величину принимают не менее 10 кгс/см2.

В качестве расчётной принимают меньшую из сил.

Результирующие горизонтальные усилия на промежуточные неподвижные опоры находятся как разница суммарных сил по обе стороны опоры. S=SБ-SМ, м. При этом для запаса прочности меньшую из сил принимают с коэффициентом 0,7: S=SБ-0,7SМ, при SБ=SМ принимаем одну из сумм с коэффициентом 0,3 S1=0,3Sт.к. l1=l2=120 м, то S1=S2.

f=0,3 для скользящих опор

qтр=62,15 кгс

qв=134,6 кгс

qиз=30,4 кгс

16 кгс/см2

В качестве расчётной принимаем кгс

S=5451,6+8346,9=13798,5 кгс

В качестве расчётной принимаем 13798,5=4139,6 кгс

Расчет тепловой изоляции теплопроводов.

Расчёт производится на головном участке (от Энергоцентра до первого ответвления.)

Исходные данные:

Определяем толщину тепловой изоляции для двухтрубной прокладки тепловой сети диаметром dн =0,426 м в железобетонном непроходном канале с размерами 2,54 х 0,93 м (внутренний) и 2,94 х 1,33 м (наружный). Место строительства - г. Москва Средняя температура теплоносителя в подающем теплопроводе , в обратном (из температурного графика). Глубина заложения оси трубопроводов h = 1,23 м. Среднегодовая температура грунта tгр = 3,2 °С. В качестве тепловой изоляции принимаем маты минераловатные, прошивные, ГОСТ 2/880-88 марки 100. Покровный слой из стеклоткани .

Для трубопроводов с dн = 0,426 м (dу = 400 мм) по нормам плотность теплового потока и (табл. 13.6 .).

;

.

Принимаем толщину слоя тепловой изоляции и покровного слоя

1. Вертикальную нормативную нагрузку на опору труб , Н, следует определять по формуле

где - вес 1м трубопровода, включающий вес трубы, теплоизоляционной конструкции и воды (для паропроводов учитывается вес воды при гидравлическом испытании), Н/м;

Пролет между подвижными опорами, м.

Примечания: 1. Пружинные опоры и подвески паропроводов 400 мм в местах, доступных для обслуживания, допускается рассчитывать на вертикальную нагрузку без учета веса воды при гидравлическом испытании, предусматривая для этого специальные приспособления для нагрузки опор во время испытания.

2. При размещении опоры в узлах трубопроводов должен дополнительно учитываться вес запорной и дренажной арматуры, компенсаторов, а также вес трубопроводов на прилегающих участках ответвлений, приходящихся на данную опору.

3. Схема нагрузок на опору приведена на чертеже.

Схема нагрузок на опору

1 - труба; 2 - подвижная опора трубы

2. Горизонтальные нормативные осевые , , и боковые , , нагрузки на подвижные опоры труб от сил трения в опорах нужно определять по формулам:

(2)

(3)

где - коэффициенты трения в опорах соответственно при перемещении опоры вдоль оси трубопровода и под углом к оси, принимаемые по табл. 1* данного приложения;

Вес 1 м трубопровода в рабочем состоянии, включающий вес трубы, теплоизоляционной конструкции и воды для водяных и конденсатных сетей (вес воды в паропроводах не учитывается), Н/м.

Таблица 1*

Коэффициенты трения

При известной длине тяги коэффициент трения для жесткой подвески следует определять по формуле

где - тепловое удлинение участка трубопровода от неподвижной опоры до компенсатора, мм;

Рабочая длина тяги, мм.

3. Горизонтальные боковые нагрузки с учетом направления их действия должны учитываться при расчете опор, расположенных под гибкими компенсаторами, а также на расстоянии трубопровода от угла поворота или гибкого компенсатора.

4. При определении нормативной горизонтальной нагрузки на неподвижную опору труб следует учитывать:

4.1. Силы трения в подвижных опорах труб , Н, определяемые по формуле

где - коэффициент трения в подвижных опорах труб;

Вес 1 м трубопровода в рабочем состоянии (п. 2), Н/м;

Длина трубопровода от неподвижной опоры до компенсатора или угла поворота трассы при самокомпенсации, м.

4.2. Силы трения в сальниковых компенсаторах, , Н, определяемые по формулам:

; (6)

, (7)

где - рабочее давление теплоносителя (п. 7.6), Па, (но не менее 0,5 · Па);

Длина слоя набивки по оси сальникового компенсатора, м;

Наружный диаметр патрубка сальникового компенсатора, м;

Коэффициент трения набивки о металл, принимаемый равным 0,15;

Число болтов компенсатора;

Площадь поперечного сечения набивки сальникового компенсатора, кв.м, определяемая по формуле

, (8)

Внутренний диаметр корпуса сальникового компенсатора, м.

При определении величины по формуле (6) величину принимают не менее Па. В качестве расчетной принимают большую из сил, полученных по формулам (6) и (7).

4.3. Неуравновешенные силы внутреннего давления при применении сальниковых компенсаторов , Н, на участках трубопроводов, имеющих запорную арматуру, переходы, углы поворота или заглушки, определяемые по формуле

где - площадь поперечного сечения по наружному диаметру патрубка сальникового компенсатора, кв.м;

Рабочее давление теплоносителя, Па.

4.4. Распорные усилия сильфонных компенсаторов от внутреннего давления , H, определяемые по формуле

где - эффективная площадь поперечного сечения компенсатора, кв.м, определяемая по формуле

, (11)

где - соответственно наружный и внутренний диаметры гибкого элемента компенсатора, м.

4.5. Жесткость сильфонных компенсаторов , H, определяемая по формуле

где R - жесткость компенсатора при его сжатии на 1 мм, Н/мм;

Компенсирующая способность компенсатора, мм.

Значения величин R, , принимаются по техническим условиям и рабочим чертежам на компенсаторы.

4.6. Распорные усилия сильфонных компенсаторов при их установке в сочетании с сальниковыми компенсаторами на смежных участках , Н, определяемые по формуле

. (13)

4.7. Силы упругой деформации при гибких компенсаторах и при самокомпенсации, определяемые расчетом труб на компенсацию тепловых удлинений.

4.8. Силы трения трубопроводов при перемещении трубы внутри теплоизоляционной оболочки или силы трения оболочки о грунт при бесканальной прокладке трубопроводов, определяемые по специальным указаниям в зависимости от типа изоляции.

5. Горизонтальную осевую нагрузку на неподвижную опору трубы следует определять:

на концевую опору - как сумму сил, действующих на опору (п. 4);

на промежуточную опору - как разность сумм сил, действующих с каждой стороны опоры; при этом меньшая сумма сил, за исключением неуравновешенных сил внутреннего давления, распорных усилий и жесткости сильфонных компенсаторов, принимается с коэффициентом 0,7.

Примечания: 1. При определении суммарных нагрузок на опоры трубопроводов жесткость сильфонных компенсаторов следует принимать с учетом допускаемых техническими условиями на компенсаторы предельных отклонений величин жесткости.

2. Когда суммы сил, действующих с каждой стороны промежуточной неподвижной опоры, одинаковы, горизонтальная осевая нагрузка на опору определяется как сумма сил, действующих с одной стороны опоры, с коэффициентом 0,3.

6. Горизонтальную боковую нагрузку на неподвижную опору трубы следует учитывать при поворотах трассы и от ответвлений трубопроводов.

При двухсторонних ответвлениях трубопроводов боковая нагрузка на опору учитывается от ответвлений с наибольшей нагрузкой.

7. Неподвижные опоры труб должны рассчитываться на наибольшую горизонтальную нагрузку при различных режимах работы трубопроводов, в том числе при открытых и закрытых задвижках.

При кольцевой схеме тепловых сетей должна учитываться возможность движения теплоносителя с любой стороны.


Похожая информация.


Определение вертикальной и горизонтальной нагрузки на неподвижную опору.

Определение вертикальной нагрузки

Нагрузки, действующие на неподвижные опоры, подразделяются на вертикальные и горизонтальные. К вертикальным нагрузкам относятся весовые (Р в ) и компенсационные (Р к), если трубопровод расположен в вертикальной плоскости).

Р в - ql , H, Стр.37 (37)

где q – вес 1 м трубопровода (вес трубы, изоляционной конструкции и воды);

q = q тр + q из + q в Н/м;

l – пролет между подвижными опорами, м.

1 участок: Р в = 1217*13,0 = 15821 Н

7 участок: Р в = 843*11,6 = 9778,8 Н

Аналогично рассчитаем другие участки трубопроводов.

Если неподвижная опора располагается в узле трубопроводов, то необходимо учитывать дополнительную нагрузку от арматуры и сальниковых компенсаторов.

В дипломном проекте необходимо определить нагрузки на 2-3 неподвижные опоры (согласно заданию руководителя). Для заданных опор определить вертикальную нагрузку.

Горизонтальные нагрузки на неподвижные опоры более многообразны. Они возникают под влиянием следующих сил:

    силы упругой деформации гибких компенсаторов или самокомпенсации при их растяжке в холодном состоянии или при тепловом удлинении трубопроводов;

    силы внутреннего давления при использовании неуравновешенных сальниковых компенсаторов;

    силы трения в сальниковых компенсаторах при тепловом удлинении трубопровода;

    силы трения в подвижных опорах при тепловом удлинении трубопроводов, прокладываемых в каналах и наземно;

    силы трения трубопровода о грунт при бесканальной прокладке.

Сила трения в подвижных опорах.

Н Стр.38 (38)

где μ – коэффициент трения скольжения; принять для скользящих опор μ = 0,3 – сталь по стали; μ = 0,6 – сталь по бетону; для катковых, роликовых, шариковых и подвесных опор μ = 0,1;

q - вес 1 м трубопровода, Н/м;

L 1 – длина трубопровода от неподвижной опоры до компенсатора или от неподвижной опоры до поворота (при самокомпенсации), м.

1 участок: = 0,3*1217*130 = 47463 Н

7 участок: = 0,3*843*120 = 30348 Н

Сила внутреннего давления

Н Стр.38 (39)

где Р раб – рабочее давление теплоносителя, Па;

f 1 и f 2 - большее и меньшее сечение трубы, м.

На поворотах труб на 90° и при закрытых задвижках f 2 = 0.

1 участок: Р вд = 1,6*(58 – 0) = 92,8 Н

7 участок: Р вд = 1,6*(40 – 0) = 64 Н

Таблица 12

Наименование

нагрузок

Фактор, вызывающий появление силы

Наименование силы

Обозначение силы

Вертикальные

Вес трубопровода

Силы веса

Горизонтальные

Температурное удлинение трубопроводов

Силы трения в подвижных опорах

Силы упругой деформации при П- образных компенсаторах

Р к

Внутреннее давление

Р ВД

На каждую неподвижную опору осевые усилия действуют слева и справа. В зависимости от направления реакций усилия частично уравновешиваются или суммируются.

Неподвижные опоры, воспринимающие частично уравновешенные горизонтальные осевые усилия, называются разгруженными (промежуточными). Они размещены между смежными прямолинейными участками трубопроводов. Неразгруженные (концевые) опоры размещены на поворотах трубопроводов или перед заглушкой и воспринимают горизонтальные усилия, действующие с одной стороны.

При расчете нагрузок необходимо рассматривать все возможные режимы работы трубопровода от холодного до рабочего состояния.

При определении горизонтальной осевой нагрузки на опору для каждого режима работы трубопровода силы, действующие на неподвижную опору в одном направлении, складываются, а затем из большей суммы сил вычитают меньшую, при этом, учитывая возможные отклонения от расчетных величин, силы трения и силы упругой деформации вычитают с коэффициентом 0,7, чем обеспечивается некоторый запас в расчетной нагрузке на неподвижную опору. При равенстве суммы сил, действующих на опору с обеих сторон, в качестве расчетной принимается одна из сумм с коэффициентом 0,3.

Расчет неподвижных опор.

Неподвижные опоры фик­сируют положение трубопровода в определенных точках и восприни­мают усилия, возникающие в ме­стах фиксации под действием темпе­ратурных деформаций и внутренне­го давления.

Опоры оказывают весьма важное влияние на работу теплопровода. Нередки случаи серьезных аварий из-за неправильного размещения опор, неудачного выбора конструк­ций или небрежного монтажа. Весь­ма важно, чтобы все опоры были нагружены, для чего необходимо при монтаже выверять расстановку их по трассе и положение по вы­соте. При бесканальной прокладке обычно отказываются от установки свободных опор под трубопроводами во избежание неравномерных проса­док, а также дополнительных изги­бающих напряжений. В этих про­кладках трубы укладываются на не­тронутый грунт или тщательно ут­рамбованный слой песка.

От пролета (расстояния) между опорами зависит изгибающее напря­жение, возникающее в трубопрово­де, и стрела прогиба.

При расчете изгибающих напря­жений и деформаций трубопровод, лежащий на свободных опорах, рас­сматривается как многопролетная балка. На рис. Т.с.19 приведена эпю­ра изгибающих моментов многопро­летного трубопровода.

Рассмотрим усилия и напряже­ния, действующие в трубопроводах.

Примем следующие обозначения:

М - силовой момент, Н*м; Q B , Q г - усилие вертикальное и гори­зонтальное, Н; q в, q г - удельная на­грузка на единицу длины, верти­кальная и горизонтальная, H/m;..N- горизонтальная реакция на опоре, Н.

Максимальный изгибающий мо­мент в многопролетном трубопрово­де возникает на опоре. Величина этого момента (9.11)

где q - удельная нагрузка на еди­ницу длины трубопровода, Н/м; - длина пролета между опорами, м. Удельная нагрузка q определяет­ся по формуле (9-12)

где q B - вертикальная удельная на­грузка, учитывающая вес трубопро­вода с теплоносителем и тепловой изоляцией; q г - горизонтальная удельная нагрузка, учитывающая ветровое усилие,

(9-13)

где w - скорость ветра, м/с; - плотность воздуха, кг/м 3 ; d и - наружный диаметр изоляции трубо­провода, м; k - аэродинамический коэффициент, равный в среднем 1,4-1,6.

Ветровое усилие должно учиты­ваться только в надземных тепло­проводах открытой прокладки.

Изгибающий момент, возникаю­щий в середине пролета,

На расстоянии 0,2 от опоры из­гибающий момент равен нулю.

Максимальный прогиб имеет ме­сто в середине пролета.

Стрела прогиба трубопровода , (9.15)

На основании выражения (9-11) определяется пролет между свобод­ными опорами

(9-16) откуда (9-17)

При выборе пролета между опо­рами для реальных схем трубопро­водов исходят из того, чтобы при наиболее неблагоприятных режимах работы, например при наиболее вы­соких температурах и давлениях теп­лоносителя, суммарное напряжение от всех действующих усилий в са­мом слабом сечении (обычно свар­ном шве) не превосходило допусти­мой величины .

Предварительную оценку рас­стояния между опорами можно про­извести на основе уравнения (9-17), принимая напряжение от изгиба 4 равным 0,4-0,5 допускаемого напряжения:

Неподвижные опоры воспринимают реакцию внутреннего давления, свободных опор и

компенсатора.

Результирующее усилие, действующее на неподвижную опору, может быть представлено в виде

, где

а - коэффициент, зависящий от направления действия осевых усилий внутреннего давления с обоих сторон опоры. Если опора разгружена от усилия внутреннего давления, то а =0, иначе а =1; р - внутреннее давление в трубопроводе; - площадь внутреннего сечения трубопровода; - коэффициент трения на свободных опорах; - разность длин участков трубопровода с обеих сторон неподвижной опоры; - разность сил трения осевых сколь­зящих компенсаторов или сил упругости гибких компенсаторов с обоих сторон неподвиж­ной опоры.


26. Компенсация тепловых удлиннений трубопроводов систем теплоснабжения. Основы расчета гибких компенсаторов.

В тепловых сетях в настоящее время наиболее широко применяются сальниковые, П- образные, а в последнее время и сильфонные (волнистые) компенсаторы. Кроме специальных компенсаторов используют для компенсации и естественные углы поворотов теплотрассы - самокомпенсацию. Компенсаторы должны иметь достаточную компенсирующую способность для восприятия температурного удлинения участка трубопровода между неподвижными опорами, при этом максимальные напряжения в радиальных компенсаторах не должны превышать допускаемых (обычно 110 МПа). Необходимо также определить реакцию компенсатора, используемую при расчетах нагрузок на неподвижные опоры. Тепловое удлинение расчетного участка трубопровода , мм, определяют по формуле

, (2.81)

Расчетный перепад температур, определяемый по формуле , (2.82)

L

Гибкие компенсаторы в отличие от сальниковых характеризуются мень­шими затратами на обслуживание. Их применяют при всех способах прокладки и при любых параметрах теплоносителя. Использование сальниковых компенса­торов ограничивается давлением не более 2,5 МПа и температурой теплоно­сителя не выше 300°С. Их устанавли­вают при подземной прокладке трубопро­водов диаметром более. 100 мм, при над­земной прокладке на низких опорах труб диаметром более 300 мм, а также в стес­ненных местах, где невозможно разме­стить гибкие компенсаторы.

Гибкие компенсаторы изготовляют из отводов и прямых участков труб с по­мощью электродуговой сварки. Диа­метр, толщина стенки и марка стали ком­пенсаторов такие же, как и трубопрово­дов основных участков. При монтаже гибкие компенсаторы располагают го­ризонтально; при вертикальном или на­клонном размещении требуются воз­душные или дренажные устройства, ко­торые затрудняют обслуживание.

Для создания максимальной компен­сационной способности гибкие компен­саторы перед монтажом растягивают в холодном состоянии и в таком положе­нии закрепляют распорками. Величину

растяжки компенсатора записывают в специальный акт. Растянутые компенса­торы присоединяют к теплопроводу с по­мощью сварки, после чего распорки уда­ляют. Благодаря предварительной рас­тяжке компенсационная способность уве­личивается почти вдвое. Для установки гибких компенсаторов устраивают ком­пенсаторные ниши. Ниша представляет собой непроходной канал такой же кон­струкции, по конфигурации соответст­вующий форме компенсатора.



Сальниковые (осевые) компенсаторы изготовляют из труб и из листовой стали двух типов: односторонние и двусторон­ние. Размещение двусторонних компен­саторов хорошо сочетается с установ­кой неподвижных опор. Сальниковые компенсаторы устанавливают строго по оси трубопровода, без перекосов. На­бивка, сальникового компенсатора представляет собой кольца, выполненные из асбестового прографиченного шнура и термостойкой резины. Осевые компенса­торы целесообразно применять при бесканальной прокладке трубопроводов.

Компенсационная способность саль­никовых компенсаторов с увеличением диаметра повышается.

Расчет гибкого компенсатора .

Тепловое удлинение расчетного участка трубопровода , мм, определяют по формуле

, (2.81)

где - средний коэффициент линейного расширения стали, мм/(м · о С), (для типовых расчетов можно принять =1,2· 10ˉ² мм/(м · о С),

Расчетный перепад температур, определяемый по формуле

где - расчетная температура теплоносителя, о С;

Расчетная температура наружного воздуха для проектирования отопления, о С;

L - расстояние между неподвижными опорами, м.

Компенсирующую способность сальниковых компенсаторов, уменьшают на величину запаса - 50 мм.

Реакция сальникового компенсатора - сила трения в сальниковой набивке определяется по формуле , (2.83)

где - рабочее давление теплоносителя, МПа;

Длина слоя набивки по оси сальникового компенсатора, мм;

Наружный диаметр патрубка сальникового компенсатора, м;

Коэффициент трения набивки о металл, принимается равным 0,15.

Технические характеристики сильфонных компенсаторов приведены в табл. 4.14 - 4.15 . Осевая реакция сильфонных компенсаторов складывается из двух слагаемых

где - осевая реакция, вызываемая деформацией волн, определяемая по формуле

где Dl - температурное удлинение участка трубопровода, м; e - жесткость волны, Н/м, принимаемая по паспорту компенсатора; n - количество волн (линз). - осевая реакция от внутреннего давления, определяемая по формуле

, (2.86)

где - коэффициент, зависящий от геометрических размеров и толщины стенки волны, равный в среднем 0.5 - 0.6;

D и d – соответственно наружный и внутренний диаметры волн, м;

Избыточное давление теплоносителя, Па.

При расчете самокомпенсации основной задачей является определение максимального напряжения s у основания короткого плеча угла поворота трассы, которое определяют для углов поворотов 90 о по формуле ; (2.87)

для углов более 90 о, т.е. 90+b , по формуле (2.88)

где Dl - удлинение короткого плеча, м; l - длина короткого плеча, м; Е - модуль продольной упругости, равный в среднем для стали 2· 10 5 МПа;d - наружный диаметр трубы, м;

Отношение длины длинного плеча к длине короткого.


27. Определение расчетных расходов теплоносителя. (Рис. Т.с.22,23,24)

Основная задача при расчете местных или групповых тепловых пунктов заключается:

В определении расчетных расходов теплоносителей,

В выборе типоразмеров подогревателей, насосных установок и смесительных устройств.

При чисто отопительной нагрузке расчетный эквивалент расхода сетевой воды опр-ся:

,

где G’- расчетный расход сетевой воды,

Q 0 ’- расчетная отопительная нагрузка,

τ 1’ – t воды в подающем трубопроводе при расчетном расходе теплоты на отопленеие.

При зависимой схеме подключения с-мы отопления:

T воды после отопительной установки,

При независимой схеме подключения с-мы отопления:

T воды после подогревателя с-мы отопления (теплообменника),

Эквивалент расхода сетевой воды на теплообменник при расчетном расходе теплоты на с-му отопления.

Нагрузки на неподвижные опоры делят на вертикальные и горизонтальные.

1. Вертикальные нагрузки определяются по формуле:

где – вес 1 метра трубопровода (вес трубы с водой и изоляцией).

Пролёт между подвижными опорами.

Табличное значение уменьшаем в 2 раза, т.к. установлен компенсатор.

При размещении опоры в тепловой камере, дополнительно учитывают вес арматуры , компенсаторов и вес ответвлений , приходящихся на данную опору с коэффициентом 0,5, т.к. вес распределяется между двумя опорами. Т.е.:

2. Горизонтальные нагрузки делятся на боковые и осевые.

Горизонтальные осевые нагрузки на неподвижные опоры возникают под действием сил:

Трения в опорах при тепловом удлинении трубопроводов;

Трения в компенсаторах при тепловом удлинении трубопроводов;

Упругой деформации гибких компенсаторов или самокомпенсации при растяжке в холодном состоянии или тепловом удлинении трубопроводов.

На опору действует только горизонтальная осевая нагрузка, т.к. ответвление закреплено опорой. Горизонтальная осевая нагрузка на опору при определяется по формуле табл.18:

где - сила трения в компенсаторах.

- площадь по наружному диаметру стакана сальникового компенсатора.

18. Расчет усилий, действующих на подвижные опоры

Нагрузки на подвижные опоры подразделяют на горизонтальные и вертикальные. Они зависят от веса участка трубопровода, приходящегося на опору, и типа опоры.

где – вес 1 метра трубопровода (вес трубы с водой и изоляцией). Принимаем для .

Пролёт между подвижными опорами..

Горизонтальные нагрузки возникают за счёт реакции трения опоры при её перемещении из-за теплового удлинения трубопровода. Горизонтальная нагрузка на подвижную опору определяется по формуле:

где - коэффициент трения подвижных опор. Для скользящего типа опор

Библиографический список

1. Соколов Е.Я. Теплофикация и тепловые сети: учебник для вузов. – 5-е изд., перераб. – М.: Энергоиздат, 1982. - 360с., ил.

2. Водяные тепловые сети: Справочное пособие по проектированию / И.В. Беляйкина, В.П. Витальев, Н.К. Громов и др.; Под ред. Н.К. Громова, Е.П. Шубина. – М.: Энергоатомиздат, 1988. - 376с.

3. Справочник по наладке и эксплуатации водяных тепловых сетей / В.И. Манюк, Я.И. Каллинский, Э.Б. Хиж и др. 2-е изд., перераб. И доп.– М.: Стройиздат, 1982. – 215с.

4. Ривкин С.Л., Александров А.А. Термодинамические свойства воды и водяного пара. Справочник. М.: Энергоатомиздат, 1984.



5. Теплоснабжение: Учеб. пособие для вузов / В.Е. Козин, Т.А. Левина, А.П. Марков и др. – М.: Высшая школа, 1980. - 408с.

6. Справочник проектировщика. Проектирование тепловых сетей. Под ред. А.А. Николаева. М.: Издательство литературы по строительству, 1965. – 360с. ил.

7. Справочник проектировщика промышленных, жилых и общественных зданий. Часть 1.Под ред. Староверова. М.: Издательство литературы по строительству, 1967.



Поделиться