Синтетические сверхтвердые и керамические материалы. Сверхтвердые материалы

Самый твердый материал на Земле, который издавна применяется в качестве режущего инструмента, – природный алмаз. Алмаз – минерал, разновидность самородного углерода. Как инструментальный материал используется непрозрачный алмаз. Твердость алмаза (HV » 60–100 ГПа) при комнатной температуре гораздо выше твердости карбидов или окислов, и в условиях абразивного износа он незаменим. Плотность
3500–3600 кг/м 3 . Теплопроводность поликристаллов алмаза превышает теплоп­роводность меди.

Природный алмаз является монокристаллом и позволяет получать практически идеальные острые и прямолинейные режущие кромки. С развитием электроники, прецизионного машино- и приборостроения возрастает применение резцов из природных алмазов для точения зеркально чистых поверхностей оптических деталей, дисков памяти, барабанов копировальной техники и т. п.

Алмаз может быть эффективно применен для обработки медных коллекторов – съема небольшого слоя меди при тонкой подаче и очень высокой скорости резания. При этом обеспечивается низкая шероховатость и высокая точность обработанной поверхности. Алмазным инструментом эффективно производится чистовая обработка поршней из алюминиевых сплавов с большим содержанием кремния, в то время как при обработке таких поршней твердосплавными резцами большие кристаллы кремния вызывают быстрый износ инструмента. Алмазом хорошо обрабатывается керамика и частично спеченные карбиды. Алмаз может быть применен для правки шлифовальных кругов и т. п.

Алмаз изнашивается при взаимодействии с железом при высокой температуре, и поэтому не рекомендуется применять алмазные инструменты для обработки сталей. Теплостойкость алмаза относительно небольшая – 700–750 °С. Алмазы имеют недостаточную ударную вязкость, острые кромки алмазного инструмента легко выкрашиваются и разрушаются. Высокая стоимость и дефицитность природных алмазов ограничивает их применение в качестве инструментального материала.

Потребность в менее дорогих и дефицитных сверхтвердых материалах привела к тому, что в 1953–1957 годах в США и в 1959 году в СССР методом каталитического синтеза при высоких статических давлениях и температурах из гексагональных фаз графита (С) были получены мелкие частицы кубических фаз синтетического алмаза. Цвет от черного до белого, в зависимости от технологии изготовления синтетический алмаз может быть полупрозрачным или непрозрачным.

Размеры кристаллов обычно от нескольких десятых долей до 1–2 мм. Более крупные плотные шаровидные поликристаллические образования синтетических алмазов, предназначенные для лез­вийных инструментов, были получены в промышленных условиях в начале 1970-х годов. Синтетические поликристаллические алмазы имеют высокий модуль упругости Е = 700–800 ГПа, высокий предел прочности на сжатие s –В » 7–8 ГПа, но низкий предел прочности на изгиб s И » 0,8–1,1 ГПа.


По аналогичной технологии из бора и азота получена модификация нитрида бора BN, по структуре и свойствам напоминающая синтетический алмаз. Кристаллическая решетка – кубическая, твердость несколько ниже, чем у алмаза, но все же очень велика: 40–45 ГПа, т. е. более чем вдвое выше, чем у твердых сплавов, и почти вдвое выше твердости режущей керамики. Поликристаллический кубический нитрид бора (ПКНБ) иногда называют «боразон», «кубанит», «эльбор». Модуль упругости у нитрид бора
Е = 700–800 ГПа, предел прочности на сжатие примерно такой же, как у твердых сплавов: s –В » 2,5 –5 ГПа, а более низкий, чем у твердых сплавов и у поликристаллических алмазов, предел прочности на изгиб: s И » 0,6–0,8 ГПа.

Теплостойкость кубического нитрида бора значительно выше, чем у синтетических и природных алмазов: около 1000–1100 °С. По этой причине, а также в связи с меньшим химическим родством с углеродом, кубический нитрид бора более эффективен, чем алмаз и твердые сплавы при чистовой обработке сталей резанием, особенно при резании закаленных сталей высокой твердости с небольшими сечениями срезаемого слоя.

В основе технологии изготовления поликристаллов лежат два различных процесса: фазовый переход вещества из одного состояния в другое (собственно синтез) или спекание мелких частиц заранее синтезированного порошка ПСТМ. В нашей стране первым способом получают поликристаллический кубический нитрид бора (ПКНБ) марок: композит 01 (эльбор РМ) и композит 02 (бельбор), а также поликристаллический алмаз (ПКА) марок АСПК (карбонадо) и АСЕ (баллас).

Поликристаллические сверхтвердые материалы (ПСТМ) систематизируются по таким определяющим признакам, как состав основы поликристаллов, способы получения, характеристика исходного материала. Вся гамма поликристаллов разделяется на пять основных групп: ПСТМ на основе алмаза (СПА), ПСТМ на основе плотных модификаций нитрида бора (СПНБ), композиционные сверхтвердые материалы (КСТМ), двухслойные сверхтвердые композиционные материалы (ДСКМ).

Поликристаллы на основе синтетического алмаза можно разделить на четыре разновидности:

1) Поликристаллы, получаемые спеканием мелких алмазных порошков в чистом виде или после специальной предварительной обработки для активации процесса спекания. Изготовленные по такой схеме поликристаллы представляют собой, как правило, однофазный продукт. Примером могут служить мегадаймонд, карбонит.

2) Поликристаллы алмаза типа СВ. Они представляют собой гетерогенный композит, состоящий из частиц алмаза, скрепленных связкой – второй фазой, которая располагается в виде тонких прослоек между кристаллами алмаза.

3) Синтетические карбонады типа АСПК, получаемые путем воздействия на углеродосодержащее вещество со значительным количеством катализатора одновременно высокого давления и высокой температуры. АСПК обладают меньшей твердостью и прочностью, чем поликристаллы первых двух разновидностей.

4) Поликристаллы алмаза, получаемые пропиткой алмазного порошка металлическим связующим при высоких давлениях и температурах. В качестве связки используются никель, кобальт, железо, хром.

Существует несколько разновидностей ПСТМ на основе нитрида бора:

1) поликристаллы, синтезируемые из гексагонального нитрида бора (ГНБ) в присутствии растворителя ВМ г ВМ сф (типичным представителем является композит 01);

2) поликристаллы, получаемые в результате прямого перехода гексагональной модификации в кубическую BNrBN (композит 02);

3) поликристаллы, получаемые в результате превращения вюрцитоподобной модификации в кубическую BN g ® ВМ дф. Поскольку полнота перехода регулируется параметрами спекания, то к этой группе относятся материалы с заметно отличающимися свойствами (композит 10, композит 09);

4) поликристаллы, получаемые спеканием порошков кубического нитрида бора (КНБ) с активирующими добавками (композит 05-ИТ, киборит
и др.).

ПСТМ на основе нитрида бора, незначительно уступая алмазу по твердости, отличаются высокой термостойкостью, стойкостью к циклическому воздействию высоких температур и, что особенно важно, более слабым химическим взаимодействием с железом, являющимся основным компонентом большинства материалов, подвергаемых в настоящее время обработке резанием.

Однородные по объемукомпозиционные сверхтвердые материалы получают спеканием смеси порошков синтетического алмаза и кубического нитрида бора. Сюда относят материалы типа ПКНБ – АС, СВ, СВАБ. К классу композиционных относят также алмазосодержащие материалы на основе твердых сплавов. Из материалов этой группы, хорошо зарекомендовавших себя в эксплуатации, следует отметить «Славутич» (из природных алмазов) и «Твесал» (из синте­тических алмазов).

Принципиальной особенностью двухслойных композиционных поликристаллических материалов является то, что спекание порошков сверхтвердых материалов производится при высоких температурах и давлениях на подложке из твердых сплавов на основе карбидов вольфрама, титана, тантала, в результате чего образуется слой ПСТМ толщиной 0,5–1 мм, прочно связанный с материалом подложки. Алмазоносный слой может содержать компоненты подложки.

Синтетический алмаз (АС) и кубический нитрид бора (CBN) (торговые марки- эльбор, кубонит, боразон) относятся к сверхтвёрдым материалам (СТМ), твердость которых превышает твердость традиционных абразивных материалов.

Алмаз – самый твёрдый из известных науке материалов, состоящий практически только из чистого углерода (С), атомы которого расположены в виде узкой, высокопрочной трёхмерной матрицы. Алмазы представлены моно- и макрокристаллическими структурами с совершенной спаянностью.
В 1954 году учёными американской компанией «General Electrics» удалось синтезировать из графита алмазы в лабораторных условиях. В 1960 году синтез алмазов был освоен в СССР. В настоящее время объём производства синтетических алмазов в несколько раз превышает объём добычи природных алмазов.Большинство синтетических алмазов имеют монокристаллическую структуру. Возможные формы (морфология) кристаллов синтетических алмазов простирается от кубической формы до формы восьмигранника.Анизотропия твёрдости алмазных граней определяет наименее износоустойчивые направления: в плоской сетке октаэдра – направления, соответствующие высотам треугольных граней; в плоской сетке куба – направления, параллельные сторонам кубических граней. Наибольшей твёрдостью обладают кубические грани. В свою очередь, твёрдость октаэдрических граней больше твёрдости ромбододекаэдрических. Синтетические монокристаллические алмазы по сравнению с природными имеют более острые грани и меньшие радиуса скруглений вершин режущих кромок, чем объясняются их лучшие режущие свойства. Алмаз также имеет наибольший из всех известных материалов модуль упругости (модуль Юнга Е = 900000 МПа). При наибольшей из всех известных материалов прочности на разрыв, предел прочности алмазов при сжатии и изгибе небольшой. Обладая совершенной спаянностью, кристаллы алмаза скалываются, образуя в зависимости от дефектов строения, ровные, ступенчатые или раковистые изломы. Алмазы не смачиваются водой, но прилипают к жировым смесям. Этим свойством руководствуются при выборе типа смазочно-охлаждающей жидкости при шлифовании алмазным инструментом (масляные СОЖ оказывают смазывающее действие на алмазные зёрна, снижая работу трения). Алмаз характеризуется высокой теплопроводностью: она в два-пять раз выше, чем у металлов. Высокая теплопроводность алмаза позволяет быстрее отводить тепло с поверхности обрабатываемых изделий. Отдельные металлы, например, железо, при температуре более 800 0С частично растворяют алмаз, ограничивая его применение.

Кроме монокристаллических алмазов синтезируются поликристаллические алмазы «карбонадо» и «баллас» идентичные по структуре соответствующим природным алмазам. Путём спекания синтетических алмазов в гранулы цилиндрической или сегментной форм тёмного цвета производятся также поликристаллические алмазы типа «спеки».

Кубический нитрид бора – это искуственный абразивный материал, в основном, состава BN с плотной кубической упаковкой атомов бора и азота в тетраэдрической координации.
Кубический нитрид бора не встречается в природе. Впервые его синтез был произведён в 1957 году американской компанией «General Electrics» в результате экспериментальных поисков новых абразивных материалов. Синтез кубического нитрида бора осуществляется таким же образом, как и производство синтетических алмазов.

Кубический нитрид (КНБ) бора получают из гексагонального нитрида бора a-BN (плотность 2,34 г/см3) при высоких давлении и температуре. Переход гексагонального нитрида бора в кубический сопровождается уплотнением кристаллической решётки в 11,5 раза. На долю основной составляющей кубического нитрида бора (b-BN) приходится более 92 %. Цвет кристаллов изменяется от белого и жёлтого до аметистового и чёрного.
Вследствие более комплексной атомной структуры кубический нитрид бора имеет большее количество форм кристаллов. С одной стороны, возможные формы кристаллов кубического нитрида бора простираются от кубической формы до формы восьмигранника, как у алмазов, с другой стороны, возможные формы кристаллов кубического нитрида бора простираются от формы восьмигранника до формы четырёхгранника.
Шлифовальные материалы из КНБ имеют два вида: с зёрнами с моно- и макрокристаллическими (поликристаллическими) структурами и микрокристаллического гранулометрического состава, полученными спеканием микропорошков. гексагонального или вюрцитоподобного нитрида бора (ВНБ).

К инструментальным сверхтвердым материалам относятся алмазы и материалы на основе кубического нитрида бора. Различают природные (А) и синтетические (АС) алмазы. Алмаз является самым твердым материалом. Он обладает высокой износостойкостью, хорошей теплопроводностью, малыми коэффициентами линейного и объемного расширения, небольшим коэффициентом трения и малой адгезионной способностью к металлам, за исключением железа и стали. Однако прочность алмаза невелика. Твердость и прочность алмаза различные в разных направлениях. Обрабатывать алмаз легче в направлении, параллельном граням кристалла, так как в этом направлении атомы наиболее удалены друг от друга. Теплостойкость алмаза характеризуется тем, что при температуре около 800 °С в обычных условиях он начинает превращаться в графит. Вместе с тем алмаз обладает наиболее высокой абразивной способностью по сравнению с другими абразивными материалами. К недостаткам алмаза относится его способность интенсивно растворяться в железе и его сплавах при температуре 750...800 °С. Алмазный инструмент характеризуется высокой производительностью и стойкостью. Он наиболее эффективно применяется при об-

работке твердых сплавов, цветных металлов и их сплавов, титана и его сплавов, а также пластмасс. При этом обеспечивается высокая точность размеров и качество поверхности.

В порядке возрастания прочности, снижения хрупкости и удельной поверхности шлифовальные порошки из синтетических алмазов располагаются так: АС2 (АСО), АС4 (АСР), АС6 (АСВ), АС15 (АСК), АС32 (АСС). Зерна АС2 хорошо удерживаются в связке и рекомендуются для изготовления инструмента на органической связке. Зерна АС4 предназначены в основном для изготовления различного инструмента на металлической и керамической связках, АС6 - инструмента на металлических связках, работающего при повышенных удельных давлениях, АС 12 - для обработки камня и других твердых материалов, АС32 - для правки абразивных кругов, обработки корунда, рубина и других особо твердых материалов.

Из природных алмазов используют микропорошки марок AM и АН, а из синтетических - ACM и АСН. Микропорошки AM и ACM нормальной абразивной способности предназначены для изготовления абразивного инструмента, которым обрабатывают твердые сплавы и другие твердые и хрупкие материалы, а также детали из стали, чугуна, цветных металлов при необходимости получения высокой чистоты поверхности.

Микропорошки АН и АСН, имеющие повышенную абразивную способность, рекомендуются для обработки сверхтвердых, хрупких, труднообрабатываемых материалов. Зернистость порошков обозначается дробью, числитель которой соответствует наибольшему, а знаменатель - наименьшему размеру зерен основной фракции.

С целью повышения эффективности работы алмазного абразивного инструмента применяют алмазные зерна, покрытые тонкой металлической пленкой. В качестве покрытий используют металлы с хорошими адгезионными и капиллярными свойствами по отношению к алмазу - медь, никель, серебро, титан и их сплавы. Покрытие повышает сцепление зерен со связкой, способствует отводу тепла из зоны резания, обеспечивает возможность ориентации зерен в магнитном поле при изготовлении инструмента.

Кубический нитрид бора (элъбор , кубонит ) применяют для обработки заготовок из стали и чугуна. Особенно эффективно его

применение при окончательном и профильном шлифовании термообработанных заготовок из высоколегированных конструкционных жаропрочных и коррозионно-стойких сталей высокой твердости и заточке стального режущего инструмента. При этом расход абразивного инструмента снижается в 50-100 раз по сравнению с расходом электрокорунда.

В зависимости от показателя механической прочности эльбор подразделяют на марки: ЛО - обычной прочности, ЛП - повышенной механической прочности, Л КВ - высокопрочный. Эльбор обычной механической прочности применяют для изготовления инструмента на органической связке и шлифовальной шкурки, эльбор повышенной механической прочности - для изготовления инструмента на керамической и металлических связках, для обдирочного шлифования, глубинной заточки, обработки заготовок из труднообрабатываемых конструкционных сталей. Эльбор марки Л КВ используют для производства инструментов на металлической связке, предназначенных для работы в тяжелых условиях.

Кубонит выпускают двух марок: КО - обычной прочности, КР - повышенной прочности. Кроме того, из кубонита выпускают микропорошки двух марок: нормальной (КМ) и повышенной (КН) абразивной способности. Инструмент из кубонита имеет одинаковые с эльборовым инструментом эксплуатационные свойства. Его используют в тех же целях.

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

Государственное образовательное учреждение среднего профессионального образования Ленинградской области

Тихвинский промышленно-технологический техникум

имени Лебедева

Специальность: «Технология машиностроения»

Реферат

Твердые и сверхтвердые сплавы

Петров Сергей Игоревич

Тихвин 2010 г.

1. Типы твёрдых и сверхтвердых сплавов

2. Свойства твёрдых сплавов

3. Спечённые твёрдые сплавы

4. Литые твёрдые сплавы

5. Применение и разработки

Список литературы

Типы твёрдых и сверхтвердых сплавов

Твёрдые сплавы - твёрдые и износостойкие металлические материалы, способные сохранять эти свойства при 900-1150°С. Твердые сплавы известны человеку уже около 100 лет. В основном изготовляются на основе карбидов вольфрама, титана, тантала, хрома при различном содержании кобальта или никеля. Различают спечённые и литые твёрдые сплавы. Основой всех твёрдых сплавов являются прочные карбиды металлов, не разлагающиеся и не растворяющиеся при высоких температурах. Особенно важны для твёрдых сплавов карбиды вольфрама, титана, хрома, частично марганца. Карбиды металлов слишком хрупки и часто тугоплавки, поэтому для образования твёрдого сплава зёрна карбидов связываются подходящим металлом; в качестве связки используются железо, никель, кобальт.

Спечённые твёрдые сплавы

Композиционные материалы, состоящие из металлоподобного соединения, цементированного металлом или сплавом. Их основой чаще всего являются карбиды вольфрама или титана, сложные карбиды вольфрама и титана (часто также и тантала), карбонитрид титана, реже - другие карбиды, бориды и т. п. В качестве матрицы для удержания зерен твердого материала в изделии применяют так называемую «связку» - металл или сплав. Обычно в качестве «связки» используют кобальт (кобальт является нейтральным элементом по отношению к углероду, он не образует карбиды и не разрушает карбиды других элементов), реже - никель, его сплав с молибденом (никель-молибденовая связка).

Главной особенностью спеченных твердых сплавов является то, что изделия из них получают методами порошковой металлургии и они поддаются только обработке шлифованием или физико-химическим методам обработки (лазер, ультразвук, травление в кислотах и др), а литые твердые сплавы предназначены для наплавки на оснащаемый инструмент и проходят не только механическую, но часто и термическую обработку (закалка, отжиг, старение и др). Порошковые твердые сплавы закрепляются на оснащаемом инструменте методами пайки или механическим закреплением.

Литые твёрдые сплавы

Литые твёрдые сплавы получают методом плавки и литья.

Инструменты, оснащенные твердым сплавом, хорошо сопротивляются истиранию сходящей стружкой и материалом заготовки и не теряют своих режущих свойств при температуре нагрева до 750-1100 °С.

Установлено что твердосплавным инструментом, имеющим в своем составе килограмм вольфрама, можно обработать в 5 раз больше материала, чем инструментом из быстрорежущей стали с тем же содержанием вольфрама.

Недостатком твердых сплавов, по сравнению с быстрорежущей сталью, является их повышенная хрупкость, которая возрастает с уменьшением содержания кобальта в сплаве. Скорости резания инструментами, оснащенными твердыми сплавами, в 3-4 раза превосходят скорости резания инструментами из быстрорежущей стали. Твердосплавные инструменты пригодны для обработки закаленных сталей и таких неметаллических материалов, как стекло, фарфор и т. п.

Сверхтвёрдые материалы - группа веществ, обладающих высочайшей твердостью, к которой относят материалы, твёрдость и износоустойчивость которых превышает твёрдость и износоустойчивость твёрдых сплавов на основе карбидов вольфрама и титана с кобальтовой связкой карбидотитановых сплавов на никель-молибденовой связке. Широко применяемые сверхтвердые материалы: электрокорунд, оксид циркония, карбид кремния, карбид бора, боразон, диборид рения, алмаз. Сверхтвёрдые материалы часто применяются в качестве материалов для абразивной обработки.

В последние годы пристальное внимание современной промышленности направлено к изысканию новых типов сверхтвёрдых материалов и ассимиляции таких материалов, как нитрид углерода, сплав бор-углерод-кремний, нитрид кремния, сплав карбид титана-карбид скандия, сплавы боридов и карбидов подгруппы титана с карбидами и боридами лантаноидов.

Свойства твёрдых сплавов

Металлокерамические сплавы в зависимости от содержания в них карбидов вольфрама, титана, тантала и кобальта приобретают различные физико-механические свойства. По этой причине твердые сплавы представлены в трех группах: вольфрамовой, титановольфрамовой и титанотанталовольфрамовой. В обозначении марок сплавов используются буквы: В - карбид вольфрама, К - кобальт, первая буква Т - карбид титана, вторая буква Т - карбид тантала. Цифры после букв указывают примерное содержание компонентов в процентах. Остальное в сплаве (до 100%) - карбид вольфрама. Буквы в конце марки означают: В - крупнозернистую структуру, М - мелкозернистую, ОМ - особомелкозернистую. Промышленностью выпускаются три группы твердых сплавов: вольфрамовые - ВК, титановольфрамовые - ТК и титанотанталовольфрамовые - ТТК.

Твердые сплавы состава WC-Co (WC-Ni) характеризуются сочетанием высоких значений прочности, модуля упругости, остаточной деформации с высокой тепло- и электропроводностью (стойкость этих сплавов к окислению и коррозии незначительна); твердые сплавы состава TiC-WC-Co в сравнении с первой группой сплавов обладают меньшей прочностью и модулем упругости, однако превосходят их по стойкости к окислению, твердости и жаропрочности; твердые сплавы состава TiC-TaC-WC-Co характеризуются высокой прочностью, вязкостью и твердостью; безвольфрамовые твердые сплавы обладают наибольшим коэффициентом термического расширения, наименьшей плотностью и теплопроводностью.

Характерными признаками, определяющими режущие свойства твердых сплавов, являются высокая твердость, износостойкость и красностойкость до 1000°C. Вместе с тем эти сплавы обладают меньшей вязкостью и теплопроводностью по сравнению с быстрорежущей сталью, что следует учитывать при их эксплуатации.

При выборе твердых сплавов необходимо руководствоваться следующими рекомендациями.

Вольфрамовые сплавы (ВК), по сравнению с титановольфрамовыми (ТК), обладают при резании меньшей температурой свариваемости со сталью, поэтому их применяют преимущественно для обработки чугуна, цветных металлов и неметаллических материалов.

Сплавы группы ТК предназначены для обработки сталей.

Титанотанталовольфрамовые сплавы, обладая повышенной точностью и вязкостью, применяются для обработки стальных поковок, отливок при неблагоприятных условиях работы.

Для тонкого и чистового точения с малым сечением стружки следует выбирать сплавы с меньшим количеством кобальта и мелкозернистой структурой.

Черновая и чистовая обработки при непрерывном резании выполняются основном сплавами со средним содержанием кобальта.

При тяжелых условиях резания и черновой обработке с ударной нагрузкой следует применять сплавы с большим содержанием кобальта и крупнозернистой структурой.

В последнее время появилась новая безвольфрамовая группа твердых сплавов, в которой карбид вольфрама заменен карбидом титана, а в качестве связки используются никель и молибден (ТН-20, ТН-30). Эти сплавы имеют несколько сниженную прочность против вольфрамовых, но обеспечивают получение положительных результатов при получистовой обработке вязких металлов, меди, никеля и др.

Различают два вида порошкообразных продуктов для наплавки: вольфрамовые и не содержащие вольфрама. Вольфрамовый продукт представляет собой смесь порошкообразного технического вольфрама или высокопроцентного ферровольфрама с науглероживающими материалами. Советский сплав этого типа носит название вокар. Изготовляются подобные сплавы следующим образом: порошкообразный технический вольфрам или высокопроцентный ферровольфрам смешивается с такими материалами, как сажа, молотый кокс и т. п., полученная смесь замешивается в густую пасту на смоле или сахарной патоке. Из смеси прессуют брикеты и слегка их обжигают до удаления летучих веществ. После обжига брикеты размалывают и просеивают. Готовый продукт имеет вид чёрных хрупких крупинок величиной 1-3 мм. Характерным признаком вольфрамовых продуктов является их высокий насыпной вес.

В Советском Союзе изобретен порошкообразный сплав, не содержащий вольфрама и потому весьма дешёвый. Сплав носит название сталинит и имеет весьма широкое распространение в нашей промышленности. Многолетняя практика показала, что, несмотря на отсутствие вольфрама, сталинит обладает высокими механическими показателями, во многих случаях удовлетворяющими техническим требованиям. Кроме того, благодаря низкой температуре плавления 1300-1350° сталинит обладает существенным преимуществом перед вольфрамовым продуктом, который расплавляется лишь при температуре около 2700°. Низкая температура плавления сталинита облегчает наплавку, повышает производительность наплавки и является существенным техническим преимуществом сталинита.

Основой сталинита является смесь порошкообразных дешёвых ферросплавов, феррохрома и ферромарганца. Процесс изготовления сталинита такой же, как и вольфрамовых продуктов. Сталинит содержит от 16 до 20% хрома и от 13 до 17% марганца. Твёрдость наплавки по Роквеллу для вокара 80-82, для сталинита 76-78.

Наплавка сталинита производится угольной дугой по способу Бенардоса. Газовая горелка мало пригодна для наплавки, так как газовое пламя сдувает порошок с Места наплавки. Деталь, подлежащая наплавке, подогревается до начала красного каления, после чего на поверхность детали насыпается сталинит равномерным слоем толщиной 2-3 мм. Для получения правильных краёв и граней наплавки применяются специальные шаблоны и ограничители из красной меди, графита или угля. На насыпанном слое зажигается угольная дуга постоянного тока нормальной полярности при силе тока 150-200 а. Наплавку ведут непрерывно без обрывов дуги и по возможности без повторного расплавления наплавленного слоя.

Анализ особенностей и режущие свойства ПСТМ. Сверхтвердыми при­нято считать инструментальные материалы, имеющие твердость по Виккерсу при комнатной температуре свыше 35 ГПа.

Природный алмаз — самый твердый материал на Земле, который издавна применяется в качестве режущего инструмента. Принципиальное отличие мо — нокристаллического природного алмаза от всех других инструментальных ма­териалов, имеющих поликристаллическое строение, с точки зрения инстру­ментальщика состоит в возможности получения практически идеально острой и прямолинейной режущей кромки. Поэтому в конце XX века с развитием элек­троники, прецизионного машиностроения и приборостроения применение резцов из природных алмазов для микроточения зеркально чистых поверхно­стей оптических деталей, дисков памяти, барабанов копировальной техники и т. п. возрастает. Однако из-за дороговизны и хрупкости природные алмазы не применяются в общем машиностроении, где требования к обработке деталей не столь высоки.

Потребность в сверхтвердых материалах привела к тому, что в 1953 — 1957 годах в США и в 1959 году в СССР методом каталитического синтеза при вы­соких статических давлениях из гексагональных фаз графита (С) и нитрида бора (BN) были получены мелкие частицы кубических фаз синтетического алмаза и нитрида бора. Крупные поликристаллы, предназначенные для лез­вийных инструментов, были получены в промышленных условиях в начале 70-х годов.

Диаграмма состояния углерода и нитрида бора представлена на рис. 11.9.

В основе технологии изготовления поликристаллов диаметром 4-40 мм лежат два различных процесса: фазовый переход вещества из одного со­стояния в другое (собственно синтез) или спекание мелких частиц заранее синтезированного порошка ПСТМ. В нашей стране первым способом получают поликристаллический кубический нитрид бора (ПКНБ) марок композит 01 (эль — бор РМ) и композит 02 (бельбор), а также поликристаллический алмаз (ПКА) марок АСПК (карбонадо) и АСЕ (баллас). За рубежом изготовителями ПСТМ по технологии спекания являются три крупнейшие фирмы «General Electric» (США), «De Beers» (ЮАР) и «Sumitomo Electric» (Япония). Режущие инс­трументы из поликристаллов этих трех поставщиков производят сотни фирм во всем мире.

ПСТМ — принципиально новые, как по технологии изготовления, так и по условиям эксплуатации инструментальные материалы. Ими можно обрабаты­
вать изделия при скоростях резания на порядок выше скоростей, допускае­мых при использовании твердосплавного инструмента. Кроме того, инструмент из ПКА имеет в десятки раз более высокую скорость, чем инструмент из твер­дых сплавов.

* Коэффициент стойкости к термоудару R = ,

** Эмпирическая характеристика износостойкости И/4 Е ‘ Н:

Поликристаллические сверхтвердые материалы (ПСТМ) систематизируются по таким определяющим признакам, как состав основы поликристаллов, спосо­бы получения, характеристика исходного материала. Вся гамма поликристал­лов разделяется на пять основных групп: ПСТМ на основе алмаза (СПА),

ПСТМ на основе плотных модификаций нитрида бора (СПНБ), композиционные сверхтвердые материалы (КСТМ), двухслойные сверхтвердые композиционные материалы (ДСКМ) .

ПСТМ на основе алмазов. Поликристаллы на основе синтетического алмаза можно разделить на четыре разновидности :

1. Поликристаллы, получаемые спеканием мелких алмазных порошков в чистом виде или после специальной предварительной обработки для актива­ции процесса спекания. Изготовленные по такой схеме поликристаллы пред­ставляют собой, как правило, однофазный продукт. Примером могут служить мегадаймонд, карбонит.

2. Поликристаллы алмаза типа СВ. Они представляют собой гетерогенный композит, состоящий из частиц алмаза, скрепленных связкой — второй фазой, которая располагается в виде тонких прослоек между кристаллами алмаза.

3. Синтетические карбонады типа АСПК. Их получают путем воздействия на углеродосодержащее вещество со значительным количеством катализатора одновременно высокого давления и высокой температуры. Плотность таких поликристаллов изменяется в широких пределах, а содержание примесей со­ставляет от 2 до 20% по массе. Поэтому поликристаллы типа АСПК обладают меньшей твердостью и прочностью, чем поликристаллы первых двух разно­видностей.

4. Поликристаллы алмаза, получаемые пропиткой алмазного порошка ме­таллическим связующим при высоких давлениях и температурах. В качестве связки используются никель, кобальт, железо, хром. Алмазные поликристаллы, получаемые по указанному способу, имеют высокие механические свойства.

Физико-механические свойства ПСТМ на основе алмазов представлены в табл. 11.20.

Таблица 11.20

Физико-механические свойства ПСТМ на основе алмазов

Твердость, ГПа

Природный алмаз

Мегадаймонд

Карбонит

Синдит 025

Сумидиа ДА-150

Сумидиа ДА-200

Микротвердость поликристаллических алмазов в среднем такая же, как природных монокристаллов, но диапазон изменения ее у синтетических алма­зов шире. Отношение максимального значения к минимальному для различных типов поликристаллов находится в пределах 1,2 -2,28.

Микротвердость на периферии в 1,25 раза больше, чем в центре образца на участках, прилегающих к катализатору.

Плотность синтетических балласа и карбонадо выше, чем плотность при­родных монокристаллов алмаза, что объясняется наличием определенного количества металлических включений. С увеличением концентрации метал­лической фазы практически пропорционально возрастает и плотность.

Теплопроводность поликристаллов алмаза превышает теплопроводность меди и серебра, а в ряде случаев достигает значений теплопроводности моно­кристаллов алмаза. Теплопроводность поликристаллов зависит от температу­ры. Причем для одних материалов с увеличением температуры до 450°С теп­лопроводность возрастает, достигая максимума, а затем снижается. Для дру­гих, типа АСБ и СКМ, — монотонно снижается до 900°С.

ПСТМ на основе кубического нитрида бора. Существует несколько разновидностей ПСТМ на основе нитрида бора.

1. Поликристаллы, синтезируемые из гексагонального нитрида бора (ГНБ) в присутствии растворителя ВМгВМсф (типичным представителем является ком­позит 01);

2. Поликристаллы, получаемые в результате прямого перехода гексаго­нальной модификации в кубическую BNrBN (композит 02);

3. Поликристаллы, получаемые в результате превращения вюрцитопо — добной модификации в кубическую BNg ВМдф. Поскольку полнота перехода регулируется параметрами спекания, то к этой группе относятся материалы с заметно отличающимися свойствами (композит 10, композит 09);

4. Поликристаллы, получаемые спеканием порошков кубического нитрида бора (КНБ) с активирующими добавками (композит 05-ИТ, киборит и др.).

Основные физико-механические характеристики различных марок ПСТМ на основе плотных модификаций нитрида бора приведены в табл. 11.21.

Таблица 11.21

Основные физико-механические характеристики ПСТМ на основе плотных модификаций нитрида бора

Окончание табл. 11.21

Сумиборон

Сумиборон

ПСТМ на основе плотных модификаций нитрида бора, незначительно усту­пая алмазу по твердости, отличаются высокой термостойкостью, стойкостью к циклическому воздействию высоких температур и, что особенно важно, более слабым химическим взаимодействием с железом, являющимся основным ком­понентом большинства материалов, подвергаемых в настоящее время обра­ботке резанием.

Поликристаллы типа композит 01 имеют мелкозернистую структуру, доми­нирующей фазой которой являются мелкие зерна КНБ, сросшиеся и взаимно проросшие с образованием прочного агрегата. Примеси равномерно распреде­лены по объему образца. Наряду с основной кубической модификацией в них возможно частичное содержание непрореагировавшего гексагонального нитри­да бора.

Размеры зерен и включений сопутствующих фаз примерно равны 30 мкм, пористость равномерная, составляет 10%.

Композиционные сверхтвердые материалы (КСТМ). Однородные по объему КСТМ получают спеканием смеси порошков синтетического алмаза и кубического или вюрцитного нитрида бора. Сюда относят материалы типа ПКНБ — АС, СВАБ (СНГ), компакт (Япония). Эти материалы следует рас­сматривать как перспективные.

Из материалов этого класса наибольшей микротвердостью обладают мате­риалы СВ-1 и СВ-40, а наименьшей — СВ-14, СВАБ. Невосстановленная мик­ротвердость изменяется от 47,0 до 66,0 ГПа, а модуль упругости — от 640 до 810 ГПа.

К классу композиционных относят также алмазосодержащие материалы на основе твердых сплавов. Из материалов этой группы, хорошо зарекомендо­вавших себя в эксплуатации, следует отметить «Славутич» (из природных ал­мазов) и твесалы (из синтетических алмазов).

Двухслойные композиционные поликристаллические материалы (ДСКМ). Принципиальной особенностью ДСКМ является то, что спекание по­рошков сверхтвердых материалов производится при высоких температурах и давлениях на подложке из твердых сплавов на основе карбидов вольфрама, титана, тантала, в результате чего образуется слой ПСТМ толщиной 0,5-1 мм, прочно связанный с материалом подложки. Алмазоносный слой может со­держать компоненты подложки.

Двухслойные материалы имеют некоторые преимущества по сравнению с однородными по объему СТМ. Упрощается технология крепления режущего инструмента в корпусе державки путем пайки к твердосплавной подложке. Наличие подложки, прочно соединенной с рабочим слоем из СТМ, придает материалам повышенную ударную прочность, а использование слоя СТМ ма­лой толщины (0,5-2 мм) делает их более экономичными, поскольку при затачи­вании и перетачивании инструмента значительно уменьшаются безвозврат­ные потери дорогостоящих сверхтвердых материалов.

К наиболее известным отечественным двухслойным сверхтвердым компо­зиционным материалам из кубического нитрида бора относятся композит 05- ИТ-2С, композит 10Д, ВПК , на основе алмаза — ДАП, диамет, АМК-25, АМК-27, БПА, АТП. За рубежом двухслойные поликристаллические сверх­твердые материалы на основе алмаза выпускает фирма «De Beers» (ЮАР) с торговой маркой синдит РКД010 и РКД 025 . Синдит РКД025 рекоменду­ется главным образом для грубой обработки, а более мелкозернистый синдит марки РКД010 — для окончательной обработки.

Области применения инструмента из ПСТМ. Основная область эффек­тивного применения лезвийного режущего инструмента из ПСТМ — автоматизи­рованное производство на базе станков с ЧПУ, многоцелевых станков, авто­матических линий, специальных скоростных станков.

В табл. 11.22 приведены скорости резания, рекомендуемые для обработки различных материалов инструментом из ПСТМ.

Выбор конкретной скорости резания определяется величиной снимаемого припуска, возможностями оборудования, подачей, наличием ударных нагрузок в процессе резания и многими другими факторами.

Разработана и выпускается широкая номенклатура инструментов из ПСТМ . Это токарные проходные, подрезные, расточные, канавочные, резьбо­вые резцы, в том числе ступенчатой конструкции для снятия повышенных при­пусков с деталей типа прокатных валков, торцовые хвостовые и насадные фрезы, в том числе регулируемые и переналаживаемые, которые могут осна­щаться пластинами из различных инструментальных материалов с опти­мальной для каждого геометрией, гамма расточных напайных и сборных резцов, зенковки, расточные головки и т. д. Для обработки древесностружечных плит на автоматических линиях созданы пилы, оснащенные ПСТМ. Инструмен­ты могут оснащаться как напайными режущими элементами (цилиндрические и прямоугольные вставки, твердосплавные многогранные пластины с напа­янными в одной из вершин ПСТМ), так и сменными круглыми и многогранными пластинами цельной или двухслойной конструкции.

Таблица 11.22

Скорости резания инструментом из ПСТМ

Обрабатываемый материал

Скорость резания, м/мин при

фрезеровании

Конструкционные и инструментальные стали, термически не обработанные (HRC < 30)

Закаленные стали (HRC 35-55) Закаленные стали (HRC 55-70)

Серые и высокопрочные чугуны (НВ 150-300)

Отбеленные и закаленные чугуны (НВ 400-650)

Алюминий и алюминиевые сплавы

Алюминиевокремниевые сплавы (Si < 20%)

Медь и медные сплавы

Композиционные неметаллические мате­риалы и пластмассы

Древесностружечные материалы

Спеченные WC-Co твердые сплавы

Отметим, что для точения с ударом и фрезерования закаленных быстроре­жущих сталей и сталей с высоким содержанием хрома (типа Х12) инструмент из ПСТМ не рекомендуется.

Расчеты показали, что необходимым условием эффективности вне­дрения инструмента из ПСТМ на станках с ЧПУ и обрабатывающих центрах взамен твердосплавных резцов и фрез является увеличение интенсивности съема припуска (объем металла в единицу времени) в 1,5-2,5 раза. Однако практика внедрения высокоскоростного резания указывает на возможность повышения производительности обработки в 3-6 и более раз. Так, при соз­дании автоматизированного завода «Красный пролетарий» для чистовой обработки чугунных корпусных деталей с шероховатостью поверхности Ra 1,25 мкм на многоцелевых станках типа ИР 500 предложено использовать кас­сетные торцовые фрезы d = 125 мм новой конструкции с осевым и ради­альным регулированием положения зачистных радиусных режущих кромок (с точностью не хуже 0,005 мм) квадратных пластин из ПКНБ. Режим резания п = 3000 об/мин; v = 1177 м/мин; SM = 2000 мм/мин; t = 0,3-0,4 мм. При исполь­зовании высокоскоростных станков с п = 6000 об/мин скорость резания воз­растает до 2350 м/мин, подача до 4000 мм/мин, а производительность процес­са резания станет в 10 раз выше по сравнению с существующим уровнем.

Тенденции развития процессов механической обработки резанием позво­ляют утверждать, что в ближайшие годы высокоскоростное резание с широким применением новых инструментальных материалов станет вполне заурядным явлением на предприятиях, оснащенных передовым автоматизированным обо­рудованием.



Поделиться