Термомеханическая обработка металлических сплавов. Термомеханическая обработка металлов и сплавов

В отличие от собственно термической химико-термическая и термомеханическая обработки, кроме теплового воздействия, включают соответственно химическое и деформационное воздействия на металл. Это усложняет общую картину изменения структуры и свойств при термической обработке.

Оборудование для проведения химико-термической и термомеханической обработок, как правило, сложнее, чем при собственно термической обработке. Кроме обычных нагревательных устройств, оно включает, например, установки для создания контролируемой атмосферы, оборудование для пластической деформации.

Ниже рассмотрены общие закономерности изменения структуры и свойств при химико-термической и термомеханической обработках и их разновидности.

«Теория термической обработки металлов»,
И.И.Новиков

При ВТМО аустенит деформируют в области его термодинамической стабильности и затем проводят закалку на мартенсит (смотрите рисунок Схема обработки легированной стали). После закалки проводят низкий отпуск. Основная цель обычной термообработки с деформационного (прокатного ковочного) нагрева — исключить специальный нагрев под закалку и благодаря этому получить экономическии эффект. Главная же цель ВТМО — повышение механических свойств…

Большой интерес представляет обнаруженное М. Л. Бернштейном явление наследования («обратимости») упрочнения от ВТМО при повторной термической обработке. Оказалось, что упрочнение от ВТМО сохраняется, если сталь перезакалить с кратковременной выдержкой при температуре нагрева под закалку или если упрочненную ВТМО сталь вначале подвергнуть высокому отпуску, а затем перезакалить. Например, предел прочности стали 37XH3A после ВТМО по режиму…

Процессы ТМО сталей начали интенсивно изучать с середины 50-х годов в связи с изысканием новых путей повышения конструктивной прочности. Низкотемпературная термомеханическая обработка (НТМО) При НТМО переохлажденный аустенит деформируется в области его повышенной устойчивости, но обязательно ниже температуры начала рекристаллизации и затем (превращается в мартенсит. После этого проводят низкий отпуск (на рисунке не показан). Схема обработки…

Применение ВТМО ограничивают следующие факторы. Сплав может отличаться столь узким интервалом температур нагрева под закалку, что поддерживать температуру горячей обработки давлением в таких узких пределах практически невозможно (например, в пределах ± 5 °С для дуралюмина Д16). Оптимальный температурный интервал горячей деформации может находиться значительно ниже интервала температур нагрева под закалку. Например, при прессовании алюминиевых сплавов…

Сущность ПТМО заключается в том, что полуфабрикат, полученный после горячей деформации в нерекристаллизованном состоянии, сохраняет нерекристаллизованную структуру и при нагреве под закалку. ПТМО отличается от ВТМО тем, что операции горячей деформации и нагрева под закалку разделены (смотрите рисунок Схемы термомеханической обработки стареющих сплавов). ПТМО широко применяют в технологии производства полуфабрикатов из алюминиевых сплавов. Давно было…

При ВТМО проводят горячую деформацию, закалку с деформационного нагрева и старение (смотрите рисунок Схемы термомеханической обработки стареющих сплавов). При горячей деформации повышается плотность дислокаций и возникает горячий наклеп, который в процессе самой деформации может частично или полностью сниматься в результате развития динамической полигонизации и динамической рекристаллизации. Кривая напряжение — деформация имеет участок подъема напряжения течения,…


На рисунке приведены основные схемы ТМО стареющих сплавов. Зубчатыми линиями обозначена пластическая деформация. Схемы термомеханической обработки стареющих сплавов Низкотемпературная термомеханическая обработка (НТМО) НТМО стареющих сплавов — это первая по времени появления (30-е годы) и наиболее широко используемая в промышленности термомеханическая обработка. Основное назначение НТМО — повышение прочностных свойств. При НТМО сплав вначале подвергают обычной закалке,…

Рассмотрим вначале влияние холодной деформации на зонное старение. Казалось бы, что деформация, увеличивая плотность дислокаций и концентрацию вакансий, должна ускорять зонное старение. Но, во-первых, зоны зарождаются гомогенно, а не на дислокациях и, во-вторых, дислокации являются эффективными местами стока вакансий. Очень сильная пластическая деформация повышает концентрацию вакансий (отношение числа вакансий к числу атомов) всего на 10—6,…


Эффективность применения НТМО определяется тем, какая фаза-упрочнитель выделяется при старении. Так, например, дополнительное упрочнение от введения деформации перед искусственным старением у сплавов Al — Cu — Mg (упрочнитель — фаза S) больше, чем у сплавов Al — Cu (упрочнитель — фаза θ´). При нагреве под старение после холодной деформации рекристаллизация, как правило, не протекает, а…

Термомеханическая обработка металлов представляет собой совокупность операций деформации, нагрева и охлаждения, в результате которых формирование окончательной структуры и свойств материала происходит в условиях повышенной плотности и оптимального распределения несовершенств строения, созданных пластической деформацией.

Термомеханическая обработка стали выполняется главным образом по трем схемам: высокотемпературная (ВТМО), низкотемпературная (НТМО) и предварительная термомеханическая обработка (ПТМО).

Основная идея высокотемпературной обработки заключается в подборе режимов прокатки и охлаждения после прокатки, что обеспечивает получение мелкого и однородного зерна в готовом прокате.

Низкотемпературная обработка заключается в нагреве стали до 1000..Л 100 °С, быстром охлаждении до температуры метастабильного состояния аустенита (400...600 °С) и высокой степени (до 90 % и выше) деформации при этой температуре. После этого выполняется закалка на мартенсит и отпуск при 100...400 °С. В результате достигается значительное повышение прочности по сравнению с ВТМО, но более низкие пла­стичность и ударная вязкость. Этот способ применим практически только к легированным сталям.

Предварительная термомеханическая обработка характерна простотой выполнения технологического процесса: холодная пластическая деформация (повышает плотность дислокаций), дорекристаллизационный нагрев (обеспечивает полигонизацию структуры феррита), закалка и отпуск.

19. Медь и сплавы на основе меди. Маркировка бронзы и латуни. Применение сплавов на осно­ве меди в санитарной технике.

Медь - тягучий вязкий металл красного (в изломе розового) цвета, в очень тонких слоях на просвет выглядит зеленовато-голубым.

Свойства полученной зависят от чистоты, а уровень содержания примесей определяет ее марку: МООк - не менее 99,99 % меди, МОК - 99,97 %, М1К- 99,95 %, М2к - 99,93 % меди и др. Ё обозначении марок после буквы М (медь) указывается условный номер чистоты, а затем буквой способ и условия получения меди: к - катодная; б - бескислородная; р - раскисленная; ф - раскисленная фосфором. Вредными примесями, снижающими механические и технологические свойства меди и ее сплавов, являются свинец, висмут, сера и кислород. Содержание их в меди строго ограничено: висмута - не более 0,005 %, свинца - 0,05 % и т.д.

Медь относится к тяжелым цветным металлам. Плотность составляет 8890 кг/м 3 , температура плавления - 1083 °С. Чистая медь обладает высокой электро- и теплопроводностью.

Медь обладает высокой пластичностью и отличной обрабатываемостью давлением в холодном и горячем состояниях, хорошими литейными свойствами и удовлетворительной обрабатываемостью резанием. Механические свойства меди отно­сительно низкие: предел прочности составляет 150...200 МПа, относительное удлинение - 15...25 %.



Двойные или многокомпонентные сплавы меди с цинком и другими элементами называютсялатунями.

Маркируют латуни буквой Л (латунь), за которой стоят цифры, указывающие процентное содержание меди. Например, латунь марки Л68 содержит 68 % меди, остальное - цинк. Если латунь многокомпонентная, то после буквы Л ставят условное обозначение других элементов (А - алюминий, Ж - железо, Н - никель, К - кремний, Т - титан, Мц - марганец, О - олово, С - свинец, Ц - цинк и т.д.) и цифры, указы­вающие их усредненное процентное содержание в сплаве. Порядок букв и цифр в деформируемых и литейных латунях различный. В литейных латунях среднее содержание компонента сплава указывается сразу после буквы, обозначающей его название.

Бронза - сплав меди с оловом, алюминием, свинцом и другими элементами, среди которых цинк и никель не являются основными. Цинк и никель могут вводиться в бронзы только как дополнительные легирующие элементы. По химическому составу бронзы подразделяются на оловянные к безоловянные.

Маркируют бронзы буквами Бр, далее следуют буквенные и цифровые обозначения содержащихся элементов кроме меди. Обозначение элементов в бронзах то же, что и при маркировке латуней. Наличие меди в марке не указывается, а ее содержание определяется по разности. В марках бронз, обрабатываемых давлением, названия легирующих элементов указаны в порядке убывания их концентрации, а в конце марки в той же последовательности указаны их средние концентрации. Например, бронза марки БрОЦС4-4-2,5 содержит по 4 % олова и цинка, 2,5 % свинца, остальное - медь. В марках литейных бронз (ГОСТ 613 и 493) после каждого обозначения легирующего элемента указано его содержание. Если составы литейных и обрабатываемых давлением бронз перекрываются, например БрА9ЖЗЛ.

20. Алюминий и сплавы на основе алюминия. Применение сплавов на основе алюминия в сани­тарной технике.

Алюминий представляет собой серебристо-белый легкий металл с плотностью 2,7 г/см 3 и температурой плавления 660 °С. Характеризуется высокой тепло- и электропроводностью и хорошей коррозионной стойкостью во многих агрессивных средах. Чем чище алюминий, тем выше его коррозионная стойкость.

В зависимости от со держания примесей алюминий подразделяется на группы и марки: алюминий особой чистоты А999 - 99,999 % алюминия, высокой чистоты марок: А995 - 99,995 %, А99 - 99,99%, А97 - 99,97 %, А95 - 99,95 % алюминия, технической чистоты с содержанием примесей ОД5...1,0 %: А85, А8, А7, А6, А5, АО. Например, марка А85 обозначает, что в металле содержится 99,85 % алюминия, а марка АО - 99 % алюминия. Технический деформируемый алюминий маркируют АДО и АД1. В качестве примесей в алюминии могут присутствовать Fe, Si, Си, Mn, Zn и др.

По техническому признаку все алюминиевые сплавы подразделяют на 2 класса :

Литейные и недеформируемые.

Дюралюмины являются наиболее распространенными спла­вами этой группы, основу которых составляют алюминий, медь и магний. Дюралюмины характеризуются сочетанием высокой проч­ности и пластичности, хорошо деформируются в горячем и холодном состояниях.

Силумины - это общее название группы литейных сплавов на основе алюминия, содержащих кремний (4... 13 % а в некоторых марках до 23 %) и некоторые другие элементы. Силумины обладают высокими литейными свойствами, достаточно высокой прочностью, повышенной коррозионной стойкостью, хорошо обрабатываются резанием.

Степень воздействия жидкометаллической среды на деформируемый материал зависит от его термической и термомеханической обработки. В значительной мере это влияние определяется уровнем прочности и размером зерна, которые приобретают материалы в результате обработки. Ho действие термической и термомеханической обработки связано также с некоторыми особенностями структурного состояния материала.
В. Г. Марков исследовал эффект воздействия жидкого олова на перлитные хромомолибденованадиевые стали, подвергнутые отпуску при различных температурах. Закалку во всех случаях производили с 990° С, а отпуск - при 270, 370, 470, 570, 670 и 770° С; продолжительность отпуска при каждой температуре составляла 1,5 ч. Из заготовок сталей, прошедших указанные режимы термической обработки, изготовляли образцы с цилиндрической рабочей частью диаметром 6 мм, которые затем испытывали на растяжение со скоростью 1,25 мм/мин. Испытание образцов производили в ванне с жидким оловом и на воздухе при температуре 250/650° С.
Установлено, что наибольшему воздействию жидкого металла подвергается сталь после низкого и среднего отпуска (при температуре 270/470° С). Образцы, прошедшие такую термическую обработку, разрушаются хрупко, без пластической деформации, предел их прочности в 1,5-2 раза ниже, чем предел текучести на воздухе. Образцы, отпущенные при 570° С, разрушаются в олове нигде некоторой пластической деформации, диаграмма их растяжения обрывается в области равномерного деформирования. Отпуск при 670° С приводит к дальнейшему ослаблению влияния олова на сталь. В этом случае пределы текучести, предел прочности и равномерное удлинение образцов, испытанных на воздухе и в олове, одинаковы; влияние жидкого металла выражается лишь в снижении сосредоточенного удлинения. Образцы, прошедшие отпуск при 770° С, не обнаружили никакого влияния жидкометаллической среды.
Таким образом, повышение температуры отпуска приводит к уменьшению воздействия жидкого металла на механические свойства перлитной стали. Основная причина ослабления эффекта обусловлена в данном случае, по видимому, снижением прочности стали. Так, предел прочности на воздухе изменяется непрерывно приблизительно со 130 кг/mm2 после отпуска при 270° С до 55 кг/мм2 после отпуска при 670° С.
Аналогичные закономерности влияния термической обработки стали 30ХГСА на величину эффекта воздействия жидкого олова и оловянно-свинцового припоя установлены и работах, результаты их рассмотрены выше (см. табл. 35). В работе отмечено, что высокотемпературный отпуск перлитных хромоникелевых и углеродистых сталей уменьшает их чувствительность к воздействию расплавленных припоев.

Авторы работы исследовали влияние ртути при комнатной температуре на механические свойства дисперсионно-твердеющих алюминиевых сплавов в зависимости от продолжительности старения. На рис. 88 приведены результаты испытаний алюминиевого сплава, легированного 4,5% Cu, 0,6% Mn и 1,5% Mg. Видно, что увеличение продолжительности старения сплава, сопровождающееся упрочнением на воздухе, приводит к резкому падению его прочности в среде жидкой ртути. Интересно, что уже незначительное упрочнение сплава в начале процесса старения вызывает сильное влияние жидкого металла. Это указывает на зависимость воздействия жидкометаллической среды от структурного состояния материала.
Несколько иной характер влияния жидкого металла (ртуть с 2% Na) наблюдался при старении сплава Cu - 2% Be. Из рис. 89 следует, что испытание сплава в жидком металле не вызывает искажения (в качественном отношении) характера влияния старения на его предел текучести. В этом случае наблюдаются обычные стадии упрочнения и затем разупрочнения (при увеличении выдержки), связанного с перестарением сплава. Что же касается влияния жидкого металла на относительное удлинение материала, то оно было подобно влиянию на прочность, установленному в работе, т. е. эффект воздействия среды, выразившийся в снижении относительного удлинения, усиливается по мере упрочнения сплава и имеет наибольшую величину при максимальном упрочнении. Перестарение сплава приводит к уменьшению охрупчающего действия жидкометаллического покрытия.

На рис. 89 приводятся также результаты испытания медно-бериллиевого сплава, подвергнутого наклепу после закалки. Такая обработка способствует еще большему упрочнению сплава при старении, уменьшение же относительного удлинения выражено гораздо слабее. Например, наибольшее уменьшение удлинения после закалки и наклепа составляло около 60%, тогда как после одной закалки было близко к 100%.
Применение наклепа после термической обработки сплава, как показано в работах, обычно не вызывает изменения в степени воздействия жидкого металла. Так, наклеп медно-бериллиевого сплава после закалки и старения при 370° С в течение 0,5 и 12 ч, т. е. до пика упрочнения и за ним (см. рис. 89), не приводит ни к усилению, ни к ослаблению влияния жидкометаллической среды. Сплав, подвергшийся максимальному упрочнению при термической обработке (закалка и старение при 370° С в течение 1 ч), обнаружил усиление воздействия среды с увеличением степени наклепа.
Термомеханическая обработка материала в ряде случаев дает возможность повысить его прочность в жидкометаллической среде. В работах исследовалось влияние термомеханической обработки на механические свойства стали 40Х на воздухе и в контакте с эвтектикой Pb-Sn. Испытывали цилиндрические образцы диаметром 10 мм с круговым надрезом. Обработку материала производили в области концентратора напряжения. Образец устанавливали на специальном станке и нагревали пропусканием через него электрического тока до температуры аустенитизации; затем его охлаждали до температуры 400/600° С, при которой производили обкатку концентратора профильными роликами. Начальная глубина надреза, наносимого на токарном станке, составляла 1 мм, радиус у вершины - 0,2 мм, угол - 0,8 рад. Обкаткой роликами глубина надреза увеличивалась до 1,5 мм, радиус оставался неизменным. После обкатки образец подвергали закалке в масле с последующим отпуском. Кроме термомеханической обработки с обкаткой роликами применяли еще обработку с деформацией образца кручением. Оценивали также влияние наклепа при комнатной температуре на эффект воздействия жидкого металла на сталь после закалки и нормализации.

Из приведенных на рис. 90 диаграмм растяжения видно, что при температуре 400 и 500° С образцы, прошедшие закалку, разрушаются под действием жидкого металла в упругой области, испытывая многократное снижение прочности. Некоторое повышение прочности достигается наклепом образцов, обкаткой роликами при комнатной температуре и термомеханической обработкой с помощью кручения. К наибольшему же повышению прочности приводит термомеханическая обработка с использованием обкатки образцов роликами. Однако хотя при испытании на воздухе такая обработка дает резкое повышение пластичности образцов, при испытании в расплаве образцы разрушаются хрупко. Следует отмстить, что способ термомеханической обработки, оказавшийся эффективным для стали 40Х, не дал положительного результата для стали 2X13 ни при испытании на воздухе, ни в расплаве эвтектики Pb-Sn. Степень влияния жидкого металла в этом случае была примерно такая же, как и после закалки и отпуска, сообщающих стали тот же уровень прочности и пластичности.
Приведенные выше данные показывают, что повышение прочности материала в результате термической или термомеханической обработки приводит, как правило, к усилению воздействия жидкого металла. Эффект упрочнения стали 40Х в эвтектике Pb-Bi после обкатки концентратора напряжения роликами связан, очевидно, в основном с появлением в поверхностном слое образца сжимающих напряжений, так как термомеханическая обработка по такому же режиму, но с деформацией образца кручением не приводит к аналогичным результатам. Структурный фактор оказывает, по-видимому, влияние на степень воздействия жидкометаллической среды в случае испытания дисперсионно-упроченных сплавов. Следует ожидать усиления влияния среды на эти сплавы, так как в них возможно появление значительных концентраций напряжений в районе мелкодисперсных выделений, являющихся серьезными препятствиями на пути движения дислокаций.

02.01.2020

К устройствам горно-обогатительной отрасли относят валковые дрорбилки. В Великобритании в 1908 году была сконструирована первая такая машина. В крайндерском руднике...

02.01.2020

Нормальное функционирование современного офиса сложно представить себе без соответствующей мебели. Сюда относятся рабочие столы, кресла, стулья, разнообразные полки и...

02.01.2020

Пенобетон – это жидкая бетонная смесь, которая в процессе застывает и разрезается на формы необходимые по проекту. Пенобетон изготавливается из смеси цемента, песка,...

30.12.2019

Новомодные методы коммуникации влияют на уровень досуга современных людей. Сегодня азартные пользователи хотят оторваться на всю катушку......

30.12.2019

В современном строительстве свайный фундамент используется широко. Обращаются к нему при возведении и частных построек, и крупных объектов недвижимости, включая торговые...

30.12.2019

Интернет открывает массу возможностей любителям риска и азарта. Игровые автоматы являются самым популярным видом азартных развлечений....

29.12.2019

Корпусная мебель сегодня является наиболее востребованным вариантом среди всех существующих. Особенность мебели такого типа – она изготавливается из древесных плит,...

Чтобы изменить технические характеристики металла, можно создать сплав на его основе и добавить к нему другие компоненты. Однако существует ещё один способ изменения параметров металлического изделия - термообработка металла. С её помощью можно воздействовать на структуру материала и изменять его характеристики.

Термическая обработка металла - это ряд процессов, которые позволяют снять с детали остаточное напряжение, изменить внутреннюю структуру материала, повысить эксплуатационные качества. Химический состав металла после нагревания не изменяется. При равномерном разогревании заготовки изменяется размер зёрен структуры материала.

История

Технология термической обработки металла известна человечеству с давних времён. Во времена Средневековья, кузнецы разогревали и остужали заготовки для мечей с помощью воды. К 19 веку человек научился обрабатывать чугун. Кузнец помещал металл в емкость полную льда, а сверху засыпал сахаром. Далее начинается процесс равномерного разогревания, продолжающийся 20 часов. После этого чугунную заготовку можно было ковать.

В середине 19 века, русский металлург Д. К. Чернов задокументировал то, что при нагревании металла, его параметры изменяются. От этого учёного пошла наука - материаловедение.

Для чего нужна термическая обработка

Детали для оборудования и узлы коммуникаций, изготавливающиеся из металла, часто подвергаются серьёзным нагрузкам. Дополнительно к воздействию давлением, они могут находиться в условиях критических температур. Чтобы выдержать такие условия, материал должен быть износоустойчивым, надёжным и долговечным.

Покупные конструкции из металла не всегда способны длительное время выдерживать нагрузки. Чтобы они прослужили гораздо дольше, мастера металлургии применяют термическую обработку. Во время и после нагревания химический состав металла остается прежним, а характеристики изменяются. Процесс термической обработки увеличивает коррозионную устойчивость, износоустойчивость и прочность материала.

Преимущества термообработки

Термическая обработка металлических заготовок является обязательным процессом, если дело касается изготовления конструкций для длительного пользования. У этой технологии существует ряд преимуществ:

  1. Повышенная износостойкость металла.
  2. Готовые детали служат дольше, снижается количество бракованных заготовок.
  3. Улучшается устойчивость к коррозийным процессам.

Металлические конструкции после термической обработки выдерживают большие нагрузки, увеличивается их срок эксплуатации.

Виды термической обработки стали

В металлургии применяется три вида обработки стали: техническая, термомеханическая и химико-термическая. О каждом из представленных способах термической обработки необходимо поговорить отдельно.

Отжиг

Разновидность или еще один этап технической обработки металла. Это процесс подразумевает под собой равномерное нагревание металлической заготовки до определённой температуры и последующее её остывание естественным путём. После отжига исчезает внутреннее напряжение металла, его неоднородность. Материал размягчается под воздействием температуры. Его проще обрабатывать в дальнейшем.

Существует два вида отжига:

  1. Первого рода. Происходит незначительное изменение кристаллической решётки в металле.
  2. Второго рода. Начинаются фазовые изменения структуры материала. Его ещё называют полный отжиг металла.

Диапазон воздействия температур при проведении этого процесса - от 25 до 1200 градусов.

Закалка

Ещё один этап технической обработки. Металлическая закалка проводится для увеличения прочности заготовки и уменьшения её пластичности. Изделие разогревается до критических температур, а затем быстро остужается методом окунания в ванну с различными жидкостями. Виды закалки:

  1. Двухэтапное охлаждение. Изначально заготовка остужается до 300 градусов водой. После этого деталь кладут в ванну, заполненную маслом.
  2. Использование одной жидкости. Если обрабатываются небольшие детали используется масло. Большие заготовки охлаждаются водой.
  3. Ступенчатая. После разогревания заготовку охлаждают в расплавленных солях. После этого её выкладывают на свежий воздух до полного остывания.

Также можно выделить изотермический вид закалки. Он похож на ступенчатый, однако изменяется время выдержки заготовки в расплавленных солях.

Термомеханическая обработка

Это типовой режим термической обработки сталей. При таком технологическом процессе используется оборудование создающее давление, нагревательные элементы и ёмкости для охлаждения. При различных температурах заготовка подвергается разогреву, а после этого происходит пластическая деформация.

Отпуск

Это заключительный этап технической термообработки стали. Проводится этот процесс после закалки. Повышается вязкость металла, снимается внутреннее напряжение. Материал становится более прочным. Может проводиться при различных температурах. От этого изменяется сам процесс.

Криогенная обработка

Главное отличие термической обработки от криогенного воздействия в том, что последний подразумевает под собой охлаждение заготовки. По окончанию такой процедуры детали становятся прочнее, не требуют проведения отпуска, лучше шлифуются и полируются.

При взаимодействии с охлаждающими средами температура опускается до минус 195 градусов. Скорость охлаждения может изменяться в зависимости от материала. Чтобы охладить изделие до нужной температуры, используется процессор который генерирует холод. Заготовка равномерно охлаждается и остаётся в камере на определённый промежуток времени. После этого её достают и дают самостоятельно нагреться до комнатной температуры.

Химико-термическая обработка

Ещё один вид термообработки, при котором заготовка разогревается и подвергается воздействию различных химических элементов. Поверхность заготовки очищается и покрывается химическими составами. Проводится этот процесс перед закалкой.

Мастер может насыщать поверхность изделия азотом. Для этого они нагревается до 650 градусов. При нагревании заготовка должна находиться в криогенной атмосфере.

Термообработка цветных сплавов

Представленные виды термической обработки металлов не подходят для различных видов сплавов и цветного металла. Например, при работе с медью проводится рекристаллизационный отжиг. Бронза разогревается до 550 градусов. С латунью работают при 200 градусах. Алюминий изначально закаляют, затем отжигают и подвергают старению.

Термообработка металла считается необходимым процессом при изготовлении и дальнейшем использовании конструкций и деталей для промышленного оборудования, машин, самолётов, кораблей и другой техники. Материал становится прочнее, долговечнее и устойчивее к коррозийным процессам. Выбор технологического процесса зависит от используемого металла или сплава.

Как правило, одним из последних этапов в изготовлении изделия из стали является термическая обработка. Нагрев до требуемой температуры c дальнейшим охлаждением приводит к значительным изменениям во внутренней структуре металла. Вследствие этого он приобретает новые свойства, которые напрямую зависят от выбранных термических режимов. Термообработка стали позволяет изменять ее твердость, хрупкость и вязкость, а также делать ее устойчивой к деформации, износу и . К основным видам термообработки относят закалку, отпуск и отжиг. Кроме этого, существуют комбинированные способы: химико-термическая и термомеханическая обработки, сочетающие в себе нагрев и охлаждение с другими видами воздействия на структуру металла. При всем многообразии базовых видов и их разновидностей сущность у всех этих технологий одна – изменение внутренних фазных и структурных состояний металла с целью придания ему требуемых свойств.

Главная задача термической обработки изделия из стали - придать ему требуемое эксплуатационное качество или совокупность таких качеств. При термообработке режущего инструмента из инструментальных и легированных сталей достигается твердость 63 HRC и повышенная износостойкость. А ударный инструмент после нее должен иметь твердый поверхностный слой и пластичную ударопрочную сердцевину. Стали для изготовления пружин и рессорных пластин после термической обработки становятся прочными на изгиб и упругими, а металл для рельсов - устойчивым к деформациям и износу. Кроме того, термическими способами производят упрочнение поверхностных слоев стальных изделий, насыщая их при высокой температуре углеродом, азотом или другими соединениями, а также укрепляя закалкой нагартовку после горячей обработки давлением. Другое назначение термической обработки - это восстановление изначальных свойств металла, которое достигается их отжигом.

Преимущества термообработки металлов

Термическая обработка кардинально изменяет эксплуатационные свойства металлов, используя при этом только внутреннее перестроение их кристаллических решеток. С помощью чередования циклов нагрева и охлаждения можно в разы увеличить твердость, износостойкость, пластичность и ударную вязкость изделия. Помимо этого, термическая обработка дает возможность производить структурные изменения только в поверхностном слое на заданную глубину или воздействовать только на часть заготовки. Сочетание термообработки с горячей обработкой давлением приводит к значительному увеличению твердости металла, превышающему результаты, полученные отдельно при нагартовке или закалке. При химико-термической обработке поверхностный слой металла диффузионным способом насыщается химическими элементами, значительно повышающими его износостойкость и твердость. При этом основная часть изделия сохраняет вязкость и пластичность. С производственной точки зрения оборудование для термической обработки гораздо проще и дешевле, чем станки и установки механообрабатывающих и литейных производств.

Принцип термической обработки

Термическая обработка металлов основана на фазовых изменениях внутренней структуры, происходящих при их нагреве или охлаждении. В общем виде процесс термообработки состоит из следующих этапов:

  • нагрева, изменяющего структуру кристаллической решетки металла;
  • охлаждения, фиксирующего достигнутые при нагреве изменения;
  • отпуска, снимающего механические напряжения и упорядочивающего полученную структуру.

Особенностью технологии термической обработки стали является то, что при нагреве до 727 ºC она переходит в состояние твердого расплава - аустенита, в котором атомы углерода проникают внутрь элементарных ячеек железа, создавая равномерную структуру. При медленном охлаждении сталь возвращается в исходное состояние, а при быстром - фиксируется в виде аустенита или других структур. От способа охлаждения и дальнейшего отпуска зависят свойства закаленной стали. Здесь соблюдается принцип: чем быстрее охлаждение и ниже температура, тем выше ее хрупкость и твердость. Термообработка является одним из ключевых технологических процессов для всех сплавов железа с углеродом. Например, получить можно только путем термической обработки белого чугуна.

Виды термообработки стали

Каждый вид операций термической обработки относится к определенной группе в соответствии со своей принадлежностью к технологическому этапу. К предварительным относят нормализацию и отжиг, к основным - разнообразные способы закалки и обработки с нагревом, а к заключительным - отпуск в различных средах. Такое деление термических операций в какой-то мере является условным, т. к. иногда отпуск производят в начале термообработки, а нормализацию и отжиг - в конце. Технология горячей обработки металлов включает в себя нагревание, удержание рабочей температуры в течение требуемого периода и охлаждение с заданной скоростью. Помимо этого, для повышения износостойкости изделий из легированных сталей используется холодная термическая обработка с погружением заготовки в криогенную среду с охлаждением ниже -150 ºC.

Отжиг

Главной особенностью отжига является нагрев изделий до высокой температуры и очень медленное постепенное охлаждение. Такие термические режимы способствуют формированию равномерной кристаллической структуры и полному снятию остаточных напряжений. В зависимости от типа металла и требуемого результата отжиг делится на следующие виды:

  1. Диффузионный. Деталь нагревают до температуры около 1200 ºC, а затем постепенно остужают в течение десятков часов (для массивных изделий - до нескольких суток). Обычно такой термической обработкой устраняют дендритные неоднородности структуры стали.
  2. Полный. Нагрев заготовки производится за критическую точку образования аустенита (727 ºC) с последующим медленным остужением. Этот вид отжига используется чаще всего и применяется в основном для конструкционной стали. Его результатом является снижение зернистости кристаллической структуры, улучшение ее пластических свойств и понижение твердости, а также снятие внутренних напряжений. Полный отжиг иногда применяют до закалки для понижения зернистости металла.
  3. Неполный. В этом случае нагрев происходит до температуры выше 727 ºC, но не более чем на 50 ºC. Результат при таком отжиге практически такой же, что и при полном, хотя он не обеспечивает полного изменения кристаллической структуры. Но он менее энергозатратный, выполняется за более короткий период, а на детали образуется меньше окалины. Такая термическая обработка используется для инструментальных и подобных им сталей.
  4. Изотермический. Нагревание осуществляется до температуры, немного превышающей 727 ºC, после чего изделие сразу же переносят в ванну с расплавом при 600÷700 ºC, где оно выдерживается определенное время до окончания формирования требуемой структуры.
  5. Рекристаллизационный. Эта разновидность термической обработки применяется только для устранения нагартовки после протяжки, штамповки, волочения и пр. В данном случае стальная деталь подвергается термическому нагреву ниже 727 ºC, определенное время выдерживается в этом состоянии, а затем медленно остужается.
  6. Сфероидизирующий. Специальный вид отжига, применяемый к высокоуглеродистым сталям (более 0.8 %), при котором происходит трансформация перлитовой структуры из пластинчатой в зернистую (сферическую).

Еще одно достаточно распространенное применение отжига как в промышленности, так и в домашних мастерских - восстановление исходных свойств стали после неудачной закалки или проведения пробной термической обработки.

Закалка

Закалка является центральным звеном большинства процессов термической обработки, т. к. именно она обеспечивает получение требуемых эксплуатационных качеств закаливаемого металла. Закалка включает в себя три основных этапа: нагревание изделия выше 727 ºC, поддержание заданной температуры до завершения формирования требуемой кристаллической структуры и быстрое охлаждение для фиксации полученного результата. Основными технологическими параметрами при закалке являются температуры нагрева и охлаждения, а также скорости прохождения этих термических процессов. Температура нагревания низкоуглеродистой (до 0.8 %) стали напрямую зависит от процентного содержания углерода (см. график ниже): чем оно ниже, тем больше нужно разогревать изделие. Для инструментальных сталей достаточно нагревания на 30÷50 ºC выше 727 ºC. Параметры термической обработки легированных сталей сильно зависят от их состава, поэтому выбор температурных режимов для них необходимо производить по технологическим справочникам.

Скорость нагревания при термической обработке полностью зависит от марки стали, массы и формы детали, типа источника тепла и требуемого результата. Поэтому его можно подобрать или по справочным таблицам или же только опытным путем. Это же относится и к скорости охлаждения, которая также находится в зависимости от перечисленных характеристик. При выборе охлаждающей среды в первую очередь ориентируются на скорость охлаждения, но при этом учитывают и другие ее особенности. В первую очередь к ним относятся стабильность и безвредность ее состава, а также легкость удаления с поверхности изделия. Кроме того, при работе насосного и перемешивающего оборудования, используемого при термической обработке, важны такие характеристики, как вязкость и текучесть.

Отпуск

Отпуск - это, как правило, финишная операция термической обработки изделия. Он производится после закалки для снятия в стали остаточных напряжений и уменьшения ее хрупкости, а также повышения вязкости и сопротивляемости ударным нагрузкам. При отпуске деталь нагревают до температуры, которая находится ниже 727 ºC, а затем медленно остужают на воздухе. В зависимости от используемых температурных диапазонов обычно выделяют следующие типы отпусков:

  1. Низкий. Нагрев осуществляется до 200 ºC. Такой отпуск применяют к режущему инструменту и цементированным сталям для сохранения высокой твердости и стойкости к износу.
  2. Средний. Изделия нагревают до температуры 300÷450 ºC. Этот вид отпуска используют для повышения упругости и сопротивления усталости рессорных и пружинных сталей.
  3. Высокий. Диапазон нагрева составляет 460÷710 ºC. Термическая обработка, включающая в себя закалку с высоким отпуском, у термистов носит название улучшение, т. к. в этом случае достигается наилучшее соотношение пластичности, износостойкости и вязкости.

При низкотемпературном термическом нагреве металл покрывается цветными оксидными пленками, которые меняют свою окраску в зависимости от температуры от бледно-желтого до серовато-сизого. Это довольно надежный индикатор нагрева детали, и многие производят отпуск, ориентируясь на цвет побежалости.

Химико-термическая обработка

Одна из разновидностей комбинированной термической обработки - это высокотемпературное насыщение верхнего слоя металла химическими веществами, повышающими его твердость и износостойкость. В зависимости от состава соединений, используемых для такого насыщения, химико-термическую обработку стали делят на следующие виды:

  1. Цементация. Насыщение верхнего слоя стали углеродом при температуре в диапазоне от 900 до 950 ºC.
  2. Нитроцементация. В этом случае термическое насыщение производится одновременно азотом и углеродом из газообразной среды при нагреве от 850 до 900 ºC.
  3. Цианирование. Поверхностный слой насыщается теми же элементами, что и при нитроцементации, но из расплава солей цианидов.
  4. Азотирование. Выполняется при температуре не выше 600 ºC.
  5. Насыщение твердыми соединениями металлов и неметаллов (бора, хрома, титана, алюминия и кремния).

При первых четырех видах насыщение происходит из газовых сред, а при последнем - из порошков, расплавов, паст и суспензий.

Термомеханическая обработка

При механической обработке давлением в результате нагартовки происходит уплотнение и упрочнение поверхности металла. Это свойство стали используется при термомеханической обработке, сочетающей в себе горячую прокатку, волочение или штамповку с быстрой закалкой. Если горячий сразу погрузить в охлаждающую среду, его уплотненная структура не успевает измениться, при этом ее твердость дополнительно повышается за счет закалки. Обычно выделяют две разновидности термомеханической обработки: высоко- и низкотемпературную, которые отличаются нагревом (выше и ниже температуры начала образования аустенита). После обоих видов необходимо проводить дополнительную термическую обработку: отпуск в температурном диапазоне 200÷300 ºC. По сравнению с обычной закалкой сочетание механической и термической обработки позволяет повысить прочность металла на 30÷40 % с одновременным увеличением его пластичности.

Криогенная обработка

Криогенная обработка заключается в охлаждении стали до критически низких температур, в результате чего в ее кристаллической решетке происходят те же процессы, что и при термической закалке на мартенсит. Для этого деталь погружается в жидкий азот, который имеет температуру -195 ºC и выдерживается в нем в течение расчетного времени, зависящего от марки стали и массы изделия. После этого она естественным образом нагревается до комнатной температуры, а затем, как и при обычной термической закалке, подвергается отпуску, параметры которого зависят от требуемого результата. У изделия из стали, обработанного таким образом, повышается не только твердость, но и прочность. Кроме того, после воздействия сверхнизких температур в нем прекращаются процессы старения и в течение времени оно не меняет своих линейных размеров.

Применяемое оборудование

Оборудование, используемое для термообработки, включает в себя пять основных категорий, которые присутствуют в любом термическом цехе:

  • нагревательные установки;
  • закалочные емкости;
  • устройства для приготовления и подачи жидких и газообразных сред;
  • подъемное и транспортное оборудование;
  • измерительная и лабораторная техника.

К первому виду относятся камерные печи для термообработки металлов и сплавов. Кроме того, нагрев может осуществляться высокочастотными индукторами, газоплазменными установками и ваннами с жидкими расплавами. Отдельным видом нагревательного оборудования являются установки для химико-термической и термомеханической обработки. Загрузка и выгрузка изделий производится с помощью мостовых кранов, кран-балок и других подъемных механизмов, а перемещение между операционными узлами термической обработки - специальными тележками с крепежной оснасткой. Устройства, обеспечивающие процесс термообработки жидкими и газообразными средами, обычно располагаются вблизи соответствующего оборудования или же соединены с ним трубопроводами. Основной измерительной техникой термического цеха являются различные пирометры, а также стандартный измерительный инструмент.

Особенности термообработки цветных сплавов

Основные отличия термической обработки цветных металлов и сплавов связаны с особенностью строения их кристаллических решеток, повышенной или пониженной теплопроводностью, а также химической активностью в отношении кислорода и водорода. К примеру, практически не существует проблем с прокаливаемостью при термообработке алюминиевых и медных сплавов, а для титана это является одной из основных инженерных задач, т. к. его теплопроводность в пятнадцать раз ниже, чем у алюминия. Сплавы меди при высоких температурах активно взаимодействуют с кислородом, поэтому их термическая обработка должна выполняться в защитных средах. Алюминиевые сплавы практически инертны к атмосферным газам, а титан, напротив, имеет склонность к наводороживанию, поэтому для снижения доли водорода его необходимо отжигать в вакуумной среде.

При термической обработке изделий из деформируемых алюминиевых сплавов (профили, трубы, уголки) требуется очень точное соблюдение температуры нагрева, при этом она не очень высокая: всего 450÷500 ºC. А как можно решить эту задачу в домашних условиях минимальными средствами? Если кто-нибудь знает ответ на этот вопрос, поделитесь, пожалуйста, информацией в комментариях.



Поделиться