Жидкостные ракетные двигатели. О двигателях для межконтинентальных баллистических ракет

Двигателистами КБ «Южное» была выполнена ответственная и сложная задача – разработка двигательного блока 11Д410 для лунного корабля.

Блок двигателей 11Д410 состоял из основного двигателя РД858 и резервного РД859 и решал следующие задачи: осуществление мягкой посадки на поверхность Луны, взлет с поверхности Луны и выведение лунного корабля на эллиптическую орбиту искусственного спутника Луны.

Так как предусматривался полет лунного корабля с экипажем на борту, то к надежности двигателей предъявлялись самые высокие требования. Надежность необходимо было подтвердить большим числом испытаний с имитацией натурных условий работы. Для обеспечения мягкой посадки на Луну и взлета с ее поверхности двигатель РД858 имеет два режима тяги: основной и режим глубокого дросселирования (РГД) и обеспечивает два включения. На основном режиме диапазон регулирования тяги составляет ±9,8%, на РГД – ±35%. Такое глубокое дросселирование требовало применения особых конструктивных мер для обеспечения устойчивости работы камеры двигателя при надежном охлаждении.

Резервный двигатель РД859 – однорежимный с регулированием тяги в диапазоне ±9,8%.

Высочайшие требования предъявлялись к надежности турбонасосных агрегатов двигателей: в частности к торцовым уплотнениям, разделяющим полости насоса окислителя и турбины. Потребовался значительный объем экспериментальных работ, в результате которых была подобрана наиболее надежная и работоспособная пара трения. Конструкция оказалась удачной – ТНА имели ресурс, оценивающийся тысячами секунд.

Для обеспечения надежного охлаждения корпус камеры в зоне высоких тепловых потоков имеет спиральные фрезерованные канавки переменного оптимального сечения на сложнопрофильных деталях.

Количество включений на одном двигателе достигало двенадцати вместо двух в полете. Резервный двигатель является уникальным по возможности запуска после трехсекундного перерыва между выключением и повторным запуском. Процессы выключения двигателя, опорожнения трактов камеры и повторного запуска после трехсекундной паузы тщательно исследовались для подтверждения сходимости характеристик. Параметры повторного запуска при испытаниях были идентичны первому. Ни один из существующих двигателей с турбонасосной системой подачи не обеспечивал такую возможность. Для двигателей с турбонасосной системой подачи, обеспечивающих широкий диапазон регулирования тяги, эти ЖРД имеют весьма высокие величины удельного импульса. Масса и габариты блока двигателей свидетельствуют о высокой степени совершенства конструкции, даже с учетом того, что в ее состав входили системы контроля работы двигателей и регулирования тяги. Общая масса двигателей составляет 110 кг при суммарной тяге 4100 кгс. Для сравнения: масса двигателя верхней ступени РН Ариан-5 при тяге 2700 кгс превышает 100 кг.

Очень большим был объем отработки: 181 двигатель РД858 при суммарной наработке 253281 с и 181 двигатель РД859 при суммарной наработке 209463 с. Испытано 11 блоков двигателей 11Д410 с имитацией аварийных ситуаций.

В целом блок ЖРД лунного посадочного модуля является одним из самых надежных среди своего класса двигателей. Три блока двигателей прошли успешные испытания на орбите вокруг Земли в составе специальных космических аппаратов Т-2К, запущенных ракетой-носителем Р-7.

Маршевые двигатели

Название

Тяга в пустоте, кгс

Компоненты топлива

Масса, кг

Окислитель –

азотная кислота + 27% N2O4

Горючее –

Предназначен для второй ступени ракеты 8К66 (SS-7).

Окислитель –

тетраоксид диазота

Горючее –

несимметричный диметилгидразин

Предназначен для торможения и управления орбитальным космическим аппаратом по всем каналам стабилизации (разгонная ступень 8K69) (SS-9-2).

Окислитель –

тетраоксид диазота

Горючее –

несимметричный диметилгидразин

Предназначен для второй ступени ракеты 8К99 (SS-15).

Окислитель –

тетраоксид диазота

Горючее –

несимметричный диметилгидразин

123

Предназначен для создания тяги управления третьей ступенью ракеты 11К68 («Циклон-3») на активном участке полета по всем каналам стабилизации.

Окислитель –

тетраоксид диазота

Горючее –

несимметричный диметилгидразин

192

Предназначен для вторых ступеней ракет 15А15 и 15А16 (SS-17-1) и (SS-17-2).

Окислитель –

тетраоксид диазота

Горючее –

несимметричный диметилгидразин

199

Предназначен для создания двух режимов тяги и управления по всем каналам стабилизации при полете ступени разведения ракеты 15А18 (SS-18-2).

Окислитель –

тетраоксид диазота

Горючее –

несимметричный диметилгидразин

125,4

Предназначен для установки в головном отсеке космического буксира и ступеней разведения 15Ж44, 15Ж60 (SS-24-1) и (SS-24-2).

Окислитель –

тетраоксид диазота

Горючее –

несимметричный диметилгидразин

125

Предназначен для использования в составе апогейной ступени РН «Зенит» и «Циклон-4».

Окислитель –

азотная кислота +

Горючее –

несимметричный диметилгидразин

196

Предназначен для управления полетом космического буксира второй ступени ракеты 15А18М (SS-18-3) по всем каналам стабилизации.

История жидкостных ракетных двигателей

Первым опытом самостоятельного создания в КБ «Южное» жидкостных ракетных двигателей (ЖРД) стали начатые в 1958 г. работы по разработке рулевых двигателей для первой и второй ступеней МБР 8К64. Основной особенностью данной ракеты стало применение впервые в паре с окислителем АК-27 нового горючего – несимметричного диметилгидразина (НДМГ), которое стало основным для нескольких поколений ЖРД.

Успех, достигнутый в создании первых рулевых ЖРД, позволил начать в 1960 г. разработку нового более сложного и многофункционального двигателя РД853 для второй ступени ракеты 8К66.

В 1961 г. были начаты работы по созданию рулевых двигателей для первой и второй ступеней ракеты 8К67, работающих на новой паре компонентов топлива – тетраоксид диазота (АТ) и НДМГ.

В 1962 г. началось проектирование и отработка ЖРД РД854 на топливе АТ+НДМГ без дожигания генераторного газа для тормозной двигательной установки орбитальной головной части МБР 8К69. При проектировании двигателя впервые в практике отечественного двигателестроения было разработано и освоено в производстве трубчатое сопло камеры двигателя.

В 1964 г. были начаты работы по созданию маршевого двигателя РД857 второй ступени комбинированной ракеты 8К99, для которого впервые была разработана схема с дожиганием восстановительного генераторного газа в камере сгорания. На этом двигателе также впервые управление вектором тяги осуществлено с помощью вдува генераторного газа в сверхзвуковую часть сопла.

КБ «Южное» приняло участие и в советской лунной программе, в рамках которой в 1965 г. началась разработка ракетного блока (блока Е) лунного корабля комплекса 11А52. Созданный в КБ «Южное» блок двигателей лунного корабля состоял из основного двигателя РД858 и резервного РД859 и решал следующие задачи: осуществление мягкой посадки на поверхность Луны, взлет с поверхности Луны и выведение лунного корабля на эллиптическую орбиту искусственного спутника Луны. В целом блок ЖРД лунного посадочного модуля являлся одним из самых надежных среди своего класса двигателей. Три блока двигателей прошли успешные испытания на орбите вокруг Земли в составе специальных космических аппаратов Т-2К, запущенных с помощью РН «Союз».

Проектирование двигателя РД861 для третьей ступени РН «Циклон-3» было начато в 1966 г. Этот двигатель обладает весьма высокими энергомассовыми характеристиками.

В 1976 г., в ходе создания МБР 15А18, начались работы по разработке четырехкамерного двигателя РД864, работающего на АТ и НДМГ по схеме без дожигания генераторного газа. Двигатель обеспечил работу на двух режимах: основном и дросселированном с многократным (до 25 раз) переключением с одного режима на другой. Для этого двигателя были впервые разработаны и применены агрегаты регулирования на встречных струях высокого давления, отличающиеся высокой точностью и быстродействием.

Модификацией этого двигателя стал двигатель РД869 для МБР 15А18М, обладающий еще более высокими характеристиками.

Новым этапом для КБ «Южное» явилась разработка РН «Зенит-2», которая началась в 1977 г. Особенностью данной РН является использование на ней криогенных компонентов топлива: керосина и жидкого кислорода, при этом впервые в практике двигателестроения рулевой двигатель на указанных компонентах топлива было решено проектировать по схеме с дожиганием генераторного газа. Благодаря накопленному опыту конструирования ЖРД, внедрению передовых технических решений в ходе проектирования двигателя РД-8 удалось получить высокие энергомассовые характеристики, обеспечить высокую надежность и длительный ресурс работы.

Рулевые двигатели

Название

Тяга у Земли, кгс

Компоненты топлива

Удельный импульс в пустоте, кгс?с/кг

Масса, кг

Окислитель –

азотная кислота + 27% N2O4

Горючее –

несимметричный диметилгидразин

Предназначен для управления первой ступенью ракеты 8К64 (SS-7) по всем каналам стабилизации.

4920 (в пустоте)

Окислитель –

азотная кислота + 27% N2O4

Горючее –

несимметричный диметилгидразин

Предназначен для управления второй ступенью ракеты 8К64 (SS-7) по всем каналам стабилизации.

Окислитель –

тетраоксид диазота

Горючее –

несимметричный диметилгидразин

Предназначен для управления первой ступенью ракеты 8К67 (SS-9-1; SS-9-2) и ракет-носителей «Циклон» по всем каналам стабилизации.

5530 (в пустоте)

Окислитель –

тетраоксид диазота

Горючее –

несимметричный диметилгидразин

Предназначен для управления второй ступенью ракеты 8К67 (SS-9-1; SS-9-2) и ракет-носителей «Циклон» по всем каналам стабилизации.

Окислитель –

тетраоксид диазота

Горючее –

несимметричный диметилгидразин

Предназначен для управления полетом первой ступени ракет 15А15 и 15А16 (SS-17-1) и (SS-17-2).

8000 (в пустоте)

Окислитель –

жидкий кислород

Горючее –

Предназначен для управления полетом второй ступени ракет-носителей «Зенит» по всем каналам стабилизации.

Космическая и солнечная радиация, логистика в условиях невесомости и другое. Но самая сложная проблема - это просто оторвать космический корабль от земли. Здесь не обойтись без ракетного двигателя, поэтому в этой статье мы рассмотрим именно это изобретение человечества.

С одной стороны, ракетные двигатели настолько просто устроены, что за небольшую копейку вы сможете построить ракету самостоятельно. С другой стороны, ракетные двигатели (и их ) настолько сложны, что доставкой людей на орбиту, по сути, занимаются только три страны мира.

Когда люди задумываются о двигателе или моторе, они думают о вращении. К примеру, бензиновый двигатель автомобиля производит энергию вращения, чтобы двигать колеса. Электродвигатель производит энергию вращения для движения вентилятора или диска. Паровой двигатель делает то же самое, чтобы вращать паровую турбину.

Ракетные двигатели принципиально отличаются. Ракетные двигатели - это . Основной принцип движения ракетного двигателя - это , «на каждое действие есть равное противодействие». Ракетный двигатель выбрасывает массу в одном направлении, а благодаря принципу Ньютона движется в противоположном направлении.

Понятие «выбрасывания массы и движения по принципу Ньютона» может быть сложно понять с первого раза, потому что ничего не разобрать. Ракетные двигатели, кажется, работают с огнем, шумом и давлением, а не «толкают вещи». Давайте рассмотрим несколько примеров, чтобы получить более полную картину реальности.

Если вы когда-нибудь стреляли из оружия, желательно из дробовика 12-го калибра, то вы знаете, что такое отдача. Когда вы стреляете из оружия, оно отдает вам в плечо, достаточно ощутимо. Этот толчок и есть реакция. Дробовик выпуливает около 30 грамм металла в одном направлении со скоростью больше 1000 км/ч, и ваше плечо чувствует отдачу. Если бы вы стояли на скейтборде или были в роликах, то выстрел из дробовика сработал бы как реактивный двигатель, и вы покатились бы в противоположном направлении.

Если вы когда-либо наблюдали за работой пожарного шлага, вы наверняка заметили, что его достаточно сложно удержать (иногда пожарные вдвоем и втроем его держат). Шланг работает как ракетный двигатель. Он выбрасывает воду в одном направлении, а пожарные используют свою силу, чтобы противостоять реакции. Если они упустят рукав, он будет метаться повсюду. Если бы пожарные стоял на скейтбордах, пожарный рукав разогнал бы их до приличной скорости.

Когда вы надуваете воздушный шарик и выпускаете его, он летает по всей комнате, испуская воздух, - так работает ракетный двигатель. В данном случае вы выпускаете молекулы воздуха из шара. Многие считают, что молекулы воздуха ничего не весят, но это не так. Когда вы выпускаете их из шарика, шарик летит в противоположном направлении.

Еще один сценарий, который поможет объяснить действие и противодействие, — это космический бейсбол. Представьте, что вы вышли в скафандре в космос недалеко от своего космического судна, и у вас в руке бейсбольный мяч. Если вы его бросите, ваше тело среагирует в противоположном направлении от мяча. Допустим, он весит 450 гр, а ваше тело вместе со скафандром весит 45 кг. Вы бросаете бейсбольный мяч весом почти в полкило со скоростью 34 км/ч. Таким образом, вы ускоряете полукилограммовый мяч своей рукой так, что он набирает скорость 34 км/ч. Ваше тело реагирует в противоположном направлении, но весит в 100 раз больше мяча. Таким образом, оно принимает одну сотую ускорения мяча, или 0,34 км/ч.

Если вы хотите создать большую тягу от своего бейсбольного мяча, у вас есть два варианта: увеличить его массу или увеличить ускорение. Вы можете бросить мячик потяжелее или бросать мячи один за другим, либо бросить мяч быстрее. Но на этом все.

Ракетный двигатель, как правило, выбрасывает массу в форме газа под высоким давлением. Двигатель выбрасывает массу газа в одном направлении, чтобы получить реактивное движение в противоположном направлении. Масса идет от веса топлива, которое сгорает в двигателе ракеты. Процесс горения ускоряет массы топлива так, что они выходят из сопла ракеты на высокой скорости. Тот факт, что топливо превращается из твердого тела или жидкости в процессе сгорания, никак не меняет его массу. Если вы сожжете килограмм ракетного топлива, вы получите килограмм выхлопа в виде горячих газов на высокой скорости. Процесс сжигания ускоряет массу.

«Сила» ракетного двигателя называется тягой. Тяга измеряется в ньютонах в метрической системе и «фунтах тяги» в США (4,45 ньютона тяги эквивалентны одному фунту тяги). Фунт тяги - это количество тяги, необходимое для удержания 1-фунтового объекта (0,454 кг) неподвижным относительно силы тяжести Земли. Ускорение земной гравитации составляет 9,8 м/с².

Одной из забавных проблем ракет является то, что топливный вес, как правило, в 36 раз больше полезной нагрузки. Потому что помимо того, что двигателю нужно поднимать вес, этот же вес и способствует собственному подъему. Чтобы вывести крошечного человека в космос, нужна огромная ракета и много-много топлива.

Обычная скорость для химических ракет составляет от 8000 до 16 000 км/ч. Топливо горит около двух минут и вырабатывает 3,3 миллиона фунтов тяги на старте. Три основных двигателя космического шаттла, например, сжигают топливо в течение восьми минут и вырабатывают около 375 000 фунтов тяги каждый в процессе горения.

Твердотопливные ракеты: топливная смесь

Ракетные двигатели на твердом топливе - это первые двигатели, созданные человеком. Они были изобретены сотни лет назад в Китае и используются до сих пор. О красных бликах ракет поется в национальном гимне (написанном в начале 1800-х) - имеются в виду небольшие боевые ракеты на твердом топливе, используемые для доставки бомб или зажигательных устройств. Как видите, такие ракеты существуют уже давненько.

Идея, которая лежит в основе ракеты на твердом топливе, довольно проста. Вам нужно создать нечто, что будет быстро гореть, но не взрываться. Как вы знаете, порох не подходит. Оружейный порох на 75 % состоит из нитрата (селитры), 15 % угля и 10 % серы. В ракетном двигателе взрывы не нужны - нужно, чтобы топливо горело. Можно изменить смесь до 72 % нитрата, 24 % угля и 4 % серы. Вместо пороха вы получите ракетное топливо. Эта смесь будет быстро гореть, но не взорвется, если правильно ее загрузить. Вот типичная схема:


Слева вы видите ракету до зажигания. Твердое топливо отображается зеленым цветом. Оно в форме цилиндра с трубой, просверленной по центру. При зажигании горючее сгорает вдоль стенки трубы. По мере горения оно выгорает к корпусу, пока не сгорит полностью. В небольшой модели ракетного двигателя или крошечной ракетке процесс горения может длиться в течение секунды или того меньше. В большой ракете же топливо горит не менее двух минут.

Твердотопливные ракеты: конфигурации

Читая описание для современных твердотопливных ракет, часто можно найти вот такое:

«Ракетное топливо состоит из перхлората аммония (окислитель, 69,6 % по весу), алюминия (топливо, 16 %), оксида железа (катализатор, 0,4 %), полимера (связующей смеси, удерживающей топливо вместе, 12,04 %) и эпоксидный отверждающий агент (1,96 %). Перфорация выполнена в форме 11-конечной звезды в переднем сегменте двигателя и в форме дважды усеченного конуса в каждом из остальных сегментов, включая конечный. Такая конфигурация обеспечивает высокую тягу при розжиге, а затем уменьшает тягу примерно на треть спустя 50 секунд после старта, предотвращая перенапряжение аппарата во время максимального динамического давления». - NASA

Здесь объясняется не только состав топлива, но и форма канала, пробуренного в центре топлива. «Перфорация в виде 11-конечной звезды» может выглядеть вот так:


Смысл в том, чтобы увеличить площадь поверхности канала, а значит, увеличить площадь выгорания, а значит - тягу. По мере того, как топливо сгорает, форма меняется к кругу. В случае с космическим шаттлом такая форма дает мощную начальную тягу и чуть послабее - в середине полета.

Твердотопливные двигатели обладают тремя важными преимуществами :

  • простота
  • низкая стоимость
  • безопасность

Но есть и два недостатка :

  • тягу невозможно контролировать
  • после зажигания двигатель нельзя отключить или запустить повторно

Недостатки означают, что твердотопливные ракеты полезны для непродолжительных задач (ракеты) или систем ускорения. Если вам понадобится управлять двигателем, вам придется обратиться к системе жидкого топлива.

Жидкотопливные ракеты

В 1926 году Роберт Годдард испытал первый двигатель на основе жидкого топлива. Его двигатель использовал бензин и жидкий кислород. Также он пытался решить и решил ряд фундаментальных проблем в конструкции ракетного двигателя, включая механизмы накачки, стратегии охлаждения и рулевые механизмы. Именно эти проблемы делают ракеты с жидким топливом такими сложными.

Основная идея проста. В большинстве жидкотопливных ракетных двигателях топливо и окислитель (например, бензин и жидкий кислород) закачиваются в камеру сгорания. Там они сгорают, чтобы создать поток горячих газов с высокой скоростью и давлением. Эти газы проходят через сопло, которое еще больше их ускоряет (от 8000 до 16 000 км/ч, как правило), а после выходят. Ниже вы найдете простую схему.


Эта схема не показывает фактические сложности обычного двигателя. К примеру, норальное топливо - это холодный жидкий газ вроде жидкого водорода или жидкого кислорода. Одной из крупных проблем такого двигателя является охлаждение камеры сгорания и сопла, поэтому холодная жидкость сначала циркулирует вокруг перегретых частей, чтобы охладить их. Насосы должны генерировать чрезвычайно высокое давление, чтобы преодолеть давление, которое создает в камере сгорания сжигаемое топливо. Вся эта подкачка и охлаждение делает ракетный двигатель больше похожим на неудачную попытку сантехнической самореализации. Давайте посмотрим на все виды комбинаций топлива, используемого в жидкотопливных ракетных двигателях:
  • Жидкий водород и жидкий кислород (основные двигатели космических шаттлов).
  • Бензин и жидкий кислород (первые ракеты Годдарда).
  • Керосин и жидкий кислород (использовались на первой ступени «Сатурна-5» в программе «Аполлон»).
  • Спирт и жидкий кислород (использовались в немецких ракетах V2).
  • Четырехокись азота/монометилгидразин (использовались в двигателях «Кассини»).

Будущее ракетных двигателей

Мы привыкли видеть химические ракетные двигатели, которые сжигают топливо для производства тяги. Но есть масса других способов для получения тяги. Любая система, которая способна толкать массу. Если вы хотите ускорить бейсбольный мячик до невероятной скорости, вам нужен жизнеспособный ракетный двигатель. Единственная проблема при таком подходе - это выхлоп, который будет тянуться через пространство. Именно эта небольшая проблема приводит к тому, что ракетные инженеры предпочитают газы горящим продуктам.

Многие ракетные двигатели крайне малы. К примеру, двигатели ориентации на спутниках вообще не создают большую тягу. Иногда на спутниках практически не используется топливо - газообразный азот под давлением выбрасывается из резервуара через сопло.

Новые конструкции должны найти способ ускорить ионы или атомные частицы до высокой скорости, чтобы сделать тягу более эффективной. А пока будем пытаться делать и ждать, что там еще выкинет Элон Маск со своим SpaceX.

Среди технических достижений человечества ракетные двигатели занимают особенно место. Устройства, созданные умом человека и его руками, являются не только вершиной научно-технического прогресса. Благодаря этим сложнейшим машинам – человечество сумело вырваться из объятий нашей планеты и выйти на просторы космоса.

Это сегодня в распоряжении человека самые мощнейшие ракетные двигатели в мире, способные развивать тягу в сотни тонна сил. Начиналась ракетная гонка тысячи лет назад, когда в древнем Китае умельцы сумели создать первые пороховые заряды для фейерверка. Пройдет огромный промежуток времени прежде чем будет создан первый двигатель на реактивной тяге в прямом смысле этого слова.

Отбросив в сторону порох и получив реактивную тягу на жидком топливе, человек перешел к строительству реактивных самолетов и получил возможность создавать более мощные образцы ракетной техники.

Первые шаги человека в мир ракетных технологий

Человечество уже достаточно долго знакомо с реактивным движением. Еще древние греки пытались использовать механические устройства, приводимые в движение сжатым воздухом. Позже уже стали появляться устройства и механизмы, совершающие полет за счет сгорания порохового заряда. Созданные в Китае, а затем появившиеся в Западной Европе первые примитивные ракеты были далеки от совершенства. Однако уже в те далекие годы стала обретать первые очертания теория ракетного двигателя. Изобретатели и ученые пытались найти объяснение процессам, которые возникали при горении пороха, обеспечивая стремительный полет физического, материального тела. Реактивное движение все больше и больше интересовало человека, открывая новые горизонты в развитии техники.

История с изобретением пороха дала новый импульс в развитии ракетной техники. Первые представления о том, что такое тяга реактивного двигателя, формировались в процессе длительных опытов и экспериментов. Работы и изыскания велись с использованием дымного пороха. Оказалось, что процесс горения пороха вызывает большое количество газов, которые обладают огромным рабочим потенциалом. Огнестрельное оружие натолкнуло ученых на идею использовать энергию пороховых газов с большей эффективностью.

Использовать другое топливо для создания реактивного движения не представлялось возможным в силу несовершенства технической базы. Именно пороховой ракетный двигатель стал первым твердотопливным устройством, прообразом современных ракетных двигателей, стоящих на службе человека.

Вплоть до начала XX века ракетная техника пребывала в первобытном состоянии, основываясь на самых примитивных представлениях о реактивном движении. Только в конце XIX века предпринимаются первые попытки объяснить с научной точки зрения процессы, способствующие возникновению реактивного движения. Оказалось, что с увеличением заряда увеличивалась сила тяги, которая являлась основным фактором работающего двигателя. Это соотношение объясняло, как работает ракетный двигатель и в каком направлении следует идти, чтобы добиться большей эффективности запущенного устройства.

Первенство в этой области принадлежит российским ученым. Николай Тихомиров уже в 1894 году пытался математически объяснить теорию реактивного движения и создать математическую модель ракетного (реактивного) двигателя. Огромный вклад в развитие ракетной техники внес выдающийся ученый XX столетия Константин Циолковский. Результатом его трудов стали основы теории ракетных двигателей, которыми в дальнейшем пользовался любой конструктор ракетных двигателей. Все последующие разработки, создание ракетной техники шли с использование теоретической части, созданной российскими учеными.

Циолковский, поглощенный теорией космических полетов, впервые озвучил идею использовать вместо твердых видов топлива жидкие компоненты — водород и кислород. С его подачи появился жидкостный реактивный двигатель, который сегодня является самым эффективным и работоспособным типом двигателя. Все последующие разработки основных моделей ракетных двигателей, которые использовались при запуске ракет, в основной своей массе работали на жидком топливе, где окислителем мог быть кислород, использовались другие химические элементы.

Типы ракетных двигателей: конструкция, схема и устройство

Глядя на схему ракетного двигателя и на промышленные готовые изделия, трудно назвать это вершиной технического гения. Даже такое совершенное устройство, каким является российский ракетный двигатель Рд-180, на первый взгляд выглядит достаточно прозаично. Однако главное в этом устройстве — используемая технология и параметры, которыми обладает это чудо техники. Суть ракетного двигателя – обычный реактивный двигатель, в котором за счет сгорания топлива создается рабочее тело, обеспечивающее необходимое тяговое усилие. Единственное отличие заключается в виде топлива и в условиях, при которых происходит сгорание топлива и образование рабочего тела. Для того чтобы двигатель мог развить максимальную тягу в первые секунды своей работы, требуется много топлива.

В реактивных двигателях сгорание компонентов топлива осуществляется при участии атмосферного воздуха. Прямоточный реактивный двигатель сегодня является основной рабочей лошадкой, где авиационный керосин в камере сгорания сгорает вместе с кислородом, образуя на выходе мощный реактивный поток газов. Ракетный двигатель – это полностью автономная система, где реактивная тяга создается при сгорании твердого или жидкого топлива без участия атмосферного кислорода. К примеру, жидкостный ракетный двигатель работает на топливе, где окислителем является один из химических элементов, подаваемый в камеру сгорания. Твердотопливные ракеты работают на твердых видах топлива, которые находятся в одной емкости. При их сгорании выделяется огромное количество энергии, которая под высоким давлением из камеры сгорания выходит наружу.

Перед началом работы, масса топлива составляет 90% массы ракетного двигателя. По мере расхода топлива его изначальный вес уменьшается. Соответственно растет тяга ракетного двигателя, обеспечивающая выполнение полезной работы по переносу груза.

Процессы горения, происходящие внутри камеры сгорания ракетного двигателя без участия воздуха, делают использование ракетных двигателей идеальными устройствами для полетов на большие высоты и в космическое пространство. Среди всех ракетных двигателей, с которыми работает современная ракетная техника, следует выделить следующие типы:

  • твердотопливные ракетные двигатели (ТРД);
  • жидкостные (ЖРД);
  • химические ракетные двигатели (ХРД);
  • ионный ракетный двигатель;
  • электрический ракетный двигатель;
  • гибридный ракетный двигатель (ГРД).

К отдельному типу относятся детонационный ракетный двигатель (импульсный), который в основном устанавливается на космических аппаратах, путешествующих в космическом пространстве.

В зависимости от эксплуатации и технических возможностей устройства делятся на стартовые ракетные двигатели и рулевые. К первому типу относятся самые мощные ракетные двигатели, обладающие огромной тягой и способные преодолеть силу земного притяжения. Самые известные представители этого типа — советский двигатель, жидкостный РД-170/171, развивающий тягу во время старта ракеты в 700 тс. Создаваемое в камере сгорания давление имеет колоссальные значения 250 кгс/см2. Этот тип двигателя создавался для ракеты-носителя «Энергия». В качестве топлива для работы установки используется смесь керосина и кислорода.

Советская техника оказалась мощнее знаменитого американского устройства F-1, обеспечивающего полет ракет американской лунной программы «Аполлон».

Стартовые ракетные двигатели или маршевые могут использоваться в качестве двигательной установки для первой и второй ступени. Именно они обеспечивают заданную скорость и стабильный полет ракеты по заданной траектории и могут быть представлены всеми типами ракетных двигателей, которые существуют на сегодняшний день. Последний тип — рулевые двигатели — применяется для осуществления маневра ракетной техники как во время маршевого полета в слоях атмосферы, так и во время корректировки космических аппаратов в космосе.

На сегодняшний день только несколько государств обладают техническими возможностями для изготовления маршевых ракетных двигателей большой мощности, способных вывести в космос большие объемы груза. Такие устройства выпускаются в России, в США, в Украине и в странах Европейского Союза. Российский ракетный двигатель РД -180, украинские двигатели ЖРД 120 и ЖРД 170 являются сегодня основными двигательными установками для ракетной техники, используемой для освоения космических программ. Ракетными двигателями России сегодня оснащаются американские ракеты-носители «Сатурн» и «Антарес».

Наиболее распространенными двигателями, с которыми сегодня работает современная техника, являются твердотопливные и жидкостные ракетные двигатели. Первый тип является наиболее простым в эксплуатации. Второй тип — жидкостные ракетные двигатели представляют собой мощные и сложные устройства закрытого цикла, в которых основным компонентами топлива являются химические элементы. К этим двум типам двигательных установок относятся химические РД, которые отличаются только агрегатным состоянием топливных компонентов. Однако эксплуатация этого типа техники происходит в экстремальных условиях, с соблюдением высоких мер безопасности. Основным топливом для этого типа двигателей является водород и углерод, которые взаимодействуют с кислородом, выполняющим функцию окислителя.

Для химических реактивных двигателей в качестве компонентов топлива используются керосин, спирт и другие легкогорючие вещества. Окислителем такой смеси служат фтор, хлор или кислород. Топливная масса для работы химических двигателей является очень токсичной и опасной для человека.

В отличие от своих твердотопливных собратьев, рабочий цикл которых слишком быстр и неконтролируем, двигатели на жидком топливе позволяют регулировать свою работу. Окислитель находится в отдельной емкости и подается в камеру сгорания в ограниченном количестве, где вместе с другими компонентами образуется рабочее тело, выходя через сопло, создавая тягу. Такая особенность двигательных установок позволяет не только регулировать тягу двигателя, но и соответственно следить за скоростью полета ракеты. Лучший ракетный двигатель, который сегодня используется для старта космических ракет — российский РД -180. Это устройство обладает высокими техническими характеристиками и экономично, делая эго эксплуатацию рентабельной.

Оба типа двигателей имеют свои преимущества и недостатки, которые нивелируются сферой их использования и техническими задачами, стоящими перед создателями ракетной техники. Последней из когорты химических двигателей является криогенный метановый ракетный двигатель SpaceX Raptor, создаваемый для ракеты, способной совершать межпланетные перелеты.

Современные типы ракетных двигателей

Главной рабочей характеристикой ракетных двигателей является удельный импульс. Эта величина определяется соотношением создаваемой тяги к количеству топлива, расходуемого за единицу времени. Именно по этому параметру сегодня определяется эффективность ракетной техники, ее экономическая целесообразность. Современные технологии направлены на достижение высоких значений этого параметра, чтобы получить высокий показатель удельного импульса. Может быть, чтобы добиться быстрого и бесконечного движения космического аппарата придется использовать другие виды топлива.

Химические ракетные двигатели как твердотопливные, так и жидкостные, достигли пика своего развития. Несмотря на то, что эти типы двигателей являются основными для баллистических и космических ракет, их последующее усовершенствование проблематично. Сегодня ведутся работы, чтобы использовать другие источники энергии.

Среди приоритетных направлений можно выделить два:

  • ядерные ракетные двигатели (ионные);
  • электрические ракетные двигатели (импульсные).

Оба типа выглядят приоритетными в сфере строительства космических кораблей. Несмотря на недостатки, которыми обладают сегодня первые опытные образцы этих двигательных установок, запускать в космос их будет значительно дешевле и эффективнее.

В отличие от химических двигателей, на которых человечество въехало в космическую эру, ядерные двигатели дают необходимый импульс не за счет сгорания жидкого или твердого топлива. В качестве рабочего тела выступают разогретые до газообразного состояния водород или аммиак. Разогреваемые за счет контакта с ядерным топливом газы под высоким давлением покидают камеру сгорания. Удельный импульс у этих типов двигателей достаточно высок. Такие установки еще называют ядерными и изотопными. Их мощность оценивается достаточно высоко. Работа ЯРД со старта на Земле считается невозможной ввиду высокой опасности радиоактивного заражения местности и обслуживающего персонала стартового комплекса. Такие двигатели можно будет использовать только во время маршевого полета в просторах космоса.

Считается, что потенциал ЯРД достаточно высокий, однако отсутствие эффективных способов контроля термоядерной реакции делает их использование в нынешних условиях довольно проблематичным и опасным.

Следующий тип — электрические двигатели ЭРД — являются экспериментальными от начала и до конца. Рассматривается сразу четыре типа этой двигательной установки: электромагнитный, электростатический, электротермический и импульсный. Наибольший интерес из этой группы представляет электростатические устройства, которые еще принято называть ионными или коллоидными. В этой установке рабочее тело(как правило, это инертный газ) нагревается электрически полем до состояния плазмы. Ионные ракетные двигатели среди всех остальных обладают самым высоким показателем удельного импульса, однако еще рано говорить о практической реализации проекта.

Несмотря на высокие показатели импульса, данная разработка имеет существенные недостатки. Двигатель требует для работы постоянные источники электроэнергии, способные обеспечить бесперебойную подачу электричества в больших объемах. Соответственно, у такого двигателя не может быть большой тяга, что сводит усилия конструкторов по созданию эффективных и экономичных космических аппаратов к слабым результатам.

Ракетный двигатель, которым сегодня располагает человечество, обеспечил выход человека в космос, дал возможность вести исследования космического пространства на больших расстояниях. Однако технические пределы, которых достигли используемые устройства, создают предпосылки для активизации работ в других направлениях. Возможно, в обозримом будущем космос будут бороздить корабли с ядерными силовыми установками, или мы окунемся в мир плазменных ракетных двигателей, совершающих полеты со скоростью, близкой к скорости света.

На прошлой неделе я описывал устройство и принцип работы всех применяемых в космонавтике химических ракетных двигателей, в том числе и жидкостный ракетный двигатель (ЖРД). Для понимания принципа работы я привел простейшую схему:

На ней все до банальности просто: трубы с компонентами топлива входят в камеру сгорания, где топливо горит, а продукты сгорания выбрасываются через сопло назад, толкая двигатель вперед.

Так как же такая простая схема на деле превращается в такое сложное переплетение всяких трубок, проводов и устройств?

Начнем с того, что компоненты топлива в камеру сгорания надо как-то подавать. Самый простой способ - подать в баки с горючим и окислителем сжатый газ, чтобы его давление вытесняло из баков жидкость в камеру сгорания.

При всей своей простоте у вытеснительной подачи есть серьезный недостаток: давление газа наддува должно быть выше рабочего давления в камере сгорания, а там ведь десятки, а то и сотни атмосфер. Для реализации такой схемы придется делать баки очень прочными, чтобы они выдержали такое чудовищное давление, а это значит, что их стенки будут очень толстыми и тяжелыми. Масса - враг номер один в ракетно-космической технике, поэтому такое решение не годится. На практике вытеснительная система подачи применяется в двигателях с рабочим давлением в камере сгорания меньше 10 атмосфер. Это могут быть двигатели малой тяги для ориентации космического аппарата и маневрирования.

Для маршевых двигателей ракетных ступеней применяют такую схему подачи топлива, где компоненты топлива под действием небольшого давления газа наддува поступают в насосы, которые в свою очередь за счет вращения крыльчаток (как обычная водяная помпа, только прочнее, мощнее и тяжелее) подают жидкости в камеру сгорания под большим давлением.

Крыльчатки насосов должны вращаться с огромной скоростью, чтобы поддерживать давление в сотни атмосфер, поэтому для их привода нужно что-то посильнее обычного электромотора. Таким приводом служит турбина - такая же крыльчатка, которая вращается под действием проходящего через нее рабочего газа. Эта крыльчатка находится на одном валу с крыльчатками насосов для горючего и окислителя, и вся конструкция называется турбонасосный агрегат (ТНА).

Но откуда берется рабочий газ? Его производит специальное устройство - газогенератор . По сути это маленький однокомпонентный ЖРД, только вместо сопла из его рабочей камеры выходит труба, подающая так называемый парогаз (смесь кислорода и раскаленного водяного пара) в турбину ТНА. После турбины отработанный парогаз выбрасывается наружу через специальный патрубок. Таким образом у нас в схеме появился бак с перекисью водорода, газогенератор, ТНА и трубопроводы, соединяющие все это добро:

Также не следует забывать про вентили, которыми автоматика управляет потоками жидкостей и газов в трубах. К каждому такому вентилю идут провода, что вносит свой вклад в этот клубок.

В более мощных двигателях в газогенератор подаются те же компоненты топлива, которые используются в основной камере сгорания. В этом случае бак с перекисью не нужен, но из основных баков выходят дополнительные трубы, а на валу ТНА появляются насосы для подачи жидкостей в газогенератор. Для запуска этой системы приходится применять пиротехнические шашки для первоначальной раскрутки ТНА.

На этом видео стендовых испытаний двигателя на 15-й секунде хорошо видно, как из патрубка рядом с соплом выбрасывается отработанный парогаз:

Двигатели, где газ после ТНА выбрасывается наружу, называются ЖРД открытого цикла. В таких двигателях можно добиваться большего давления в камере сгорания, а его ТНА меньше подвержен износу, чем в ЖРД закрытого цикла, в которых газ подается в сопло, где дожигается, принимая участие в создании тяги. ЖРД закрытого цикла обладают большим коэффициентом полезного действия (надеюсь, помните, что это такое из школьной физики? ;)).

В большинстве космических ракет используются топливные пары, в которых один или оба компонента имеют очень низкую температуру кипения (жидкий кислород и жидкий водород). Пока ракета стоит на старте, эти криогенные жидкости в баках кипят и повышают давление. Чтобы баки не разорвало, их нужно дренировать. Дренаж - это сброс в атмосферу газов, образующихся при кипении криогенных жидкостей. Для этого баки с этими жидкостями оснащаются специальной трубой с вентилем, выходящей из корпуса ракеты наружу.

На этом видео на 19.25 виден туман, идущий от ракеты сверху справа. Это дренаж кислорода. Водород при дренировании надо отводить подальше, чтобы он не образовывал с кислородом взрывоопасную смесь, поэтому его сброс виден а мачте за ракетой.

Вот, вроде бы, получили мы рабочую схему ЖРД, но только вот проблема: проработает такая схема не больше нескольких секунд, а потом камера сгорания и сопло расплавятся. Уж слишком там горячо. Значит стенки камеры сгорания и сопла надо охлаждать. Для этого применяют два способа: жидкостное охлаждение и паровую завесу.

Для осуществления первого способа стенки камеры сгорания и сопла пронизаны множеством каналов, по которым течет горючее перед тем, как попасть внутрь камеры сгорания. Система работает по принципу холодильника самогонного аппарата.

Паровая завеса - это слой паров горючего, отделяющий горящую топливную смесь от стенок камеры сгорания. Образуется он при впрыске некоторого количества горючего через специальные форсунки в стенках камеры сгорания и корпуса двигателя:

В этом видео, посвященном двигателю F-1 ракеты Сатурн-5, с 49-й секунды видно между срезом сопла и ярким пламенем некую темную область. Это и есть завеса, защищающая сопло от адского жара потока газов.

Таким образом схема ЖРД из первоначальной простоты превратилась в это:

Также стоит сказать пару слов о строении головки камеры сгорания. На этой фотографии представлена головка камеры в разрезе. Видно, что у нее довольно сложное строение.

Дело в том, что для достижения надежного зажигания и стабильного горения нужно хорошо перемешать компоненты топлива, причем, в нужной пропорции. Для этого применяются специальные схемы расположения форсунок:

Кружочками отмечены форсунки подачи окислителя, точками - горючего.
а) Шахматная схема подачи. Применяется для топливных пар, в которых горючее и окислитель смешиваются примерно один к одному.
б) Сотовая схема подачи. Самая эффективная: каждая форсунка подачи горючего окружена форсунками подачи окислителя.
в) Концентрическая схема подачи.
Обратите внимание, что во всех трех схемах внешнее кольцо форсунок подает только горючее. Это нужно для предотвращения коррозии стенок камеры сгорания под действием окислителя.

Сами форсунки тоже имеют сложную конструкцию. Например, вот такая центробежная форсунка:

В некоторые форсунки вставлен шнек - устройство наподобие винта в мясорубке. Все эти хитрости нужны для одной цели: максимально приблизить зону смешивания компонентов топлива к головке камеры сгорания, чтобы сделать камеру меньше и легче.

Теперь нам осталось поговорить о системах зажигания. Тут все достаточно просто: внутри камеры сгорания помещается некое устройство, дающее огонь. Таким устройством может быть пороховая шашка, электродуговой разрядник, газовая горелка наподобие сварочной. В последнее время проводятся эксперименты по разработке лазерных систем. В ракетах Союз пошли по совсем простому пути: пиротехнические шашки поместили в камеры сгорания на обычных деревянных палках:

А для топливной пары НДМГ+АТ (несимметричный диметилгидразин + азотный тетраоксид), используемой на ракетах Протон, системы зажигания и вовсе не нужны, так как компоненты топлива самовоспламеняются при смешивании.

И последнее, о чем мы сегодня поговорим, - запуск ЖРД в невесомости.

Это серьезная проблема, так как в невесомости жидкость в баках перемешивается с газом, слипается в пузыри и не поступает в трубопроводы. Советские конструкторы первых ракет, оснащенных третьей ступенью, пошли в обход этой проблемы: двигатель третьей ступени запускался до того, как останавливался двигатель второй ступени. Для выхода газовой струи двигателя предназначалась решетчатая конструкция между второй и третьей ступенями. Наглядно этот процесс показан на времени 11.25 здесь:

Но все время так не поделаешь: для баллистической схемы выведения и для орбитальных маневров все-таки придется запускать ЖРД в невесомости.

Самый простой вариант: заключить жидкость в баке в полимерный мешок, который предотвратит перемешивание жидкости с газом:

Но такой способ не годится для баков большого объема: слишком непрочен мешок. Поэтому система с мешком применяется для запуска двигателей малой тяги, которые работают несколько секунд, создавая ускорение, достаточное для осаживания жидкостей в больших баках.

На этом видео с самого начала виден этот процесс: три газовые струи исходят как раз от двигателей малой тяги, а через несколько секунд происходит зажигание основного двигателя.

Вот такие инженерные хитрости приходится применять для решения всех проблем, связанных с работой ЖРД. Расплатой за это становится сложность конструкции двигателя, превращающегося в такой клубок, что без бутылки и не разберешься.

ЖИДКОСТНЫЙ РАКЕТНЫЙ ДВИГАТЕЛЬ (ЖРД) - ракетный двигатель , работающий на жидком ракетном топливе . Превращение топлива в реактивную газовую струю, создающую тягу, происходит в камере . В современных ЖРД используются как двухкомпонентные ракетные топлива , состоящие из окислителя и горючего, которые хранятся в отдельных баках, так и однокомпонентные ракетные топлива , являющиеся жидкостями, способными к каталитическому разложению. По роду используемого окислителя ЖРД бывают азотнокислотные, азоттетроксидные (окислитель - четырёхокись азота), кислородные, перекисьводородные, фторные и др. В зависимости от значения тяги различают ЖРД малой, средней и большой тяги. Условными границами между ними являются 10 кН и 250 кН (на ЛА устанавливались ЖРД с тягой от десятых долей Н до 8 МН). ЖРД характеризуются также удельным импульсом тяги , режимом работы, габаритами, удельной массой , давлением в камере сгорания, общим устройством и конструкцией основных агрегатов. ЖРД является основным типом космических двигателей и широко применяется также в высотных исследовательских ракетах, боевых баллистических ракетах дальнего действия, зенитных управляемых ракетах; ограниченно - в боевых ракетах других классов, на экспериментальных самолётах и т. д.

Основные проблемы при создании ЖРД : рациональный выбор топлива, удовлетворяющего энергетическим требованиям и условиям эксплуатации; организация рабочего процесса для достижения расчётного удельного импульса; обеспечение устойчивой работы на заданных режимах, без развитых низкочастотных и высокочастотных колебаний давления, вызывающих разрушительные вибрации двигателя; охлаждение ракетного двигателя, подверженного воздействию агрессивных продуктов сгорания при весьма высоких температурах (до 5000 К) и давлениях до многих десятков МПа (это воздействие усугубляется в некоторых случаях присутствием конденсированной фазы в сопле); подача топлива (криогенного, агрессивного и др.) при давлениях, доходящих для мощных двигателей до многих десятков МПа, и расходах до нескольких т/с; обеспечение минимальной массы агрегатов и двигателя в целом, работающих в весьма напряжённых режимах; достижение высокой надёжности.

ЖРД был предложен К. Э. Циолковским в 1903 году как двигатель для полёта в космос. Учёный разработал принципиальную схему ЖРД , указал наиболее выгодные ракетные топлива, исследовал вопросы устройства основных агрегатов. Практические работы по созданию ЖРД были начаты в 1921 году в США Р. Годдардом (R. Goddard). В 1922 году он впервые зарегистрировал тягу при испытании экспериментального ЖРД , а в 1926 году осуществил пуск небольшой жидкостной ракеты. В конце 20-х – начале 30-х гг. к разработке ЖРД приступили в Германии, СССР и других странах. В 1931 году были испытаны первые советские ЖРД ОРМ и ОРМ-1, созданные В. П. Глушко в Газодинамической лаборатории. В 1933 году испытана двигательная установка ОР-2 конструкции Ф. А. Цандера, а двигатель 10, созданный Группой изучения реактивного движения, обеспечил полёт жидкостной ракеты.

До начала 2-й мировой войны 1939-45 гг. в СССР и США появились опытные образцы ЖРД с тягой до нескольких кН, предназначенные для экспериментальных летательных аппаратов. Интенсивные работы в области ракетной техники, проводившиеся в Германии во время войны, вызвали появление разнообразных типов ЖРД боевого назначения, многие из которых производились серийно. Лучшими были ЖРД конструкции X. Вальтера (H. Walter) (в т.ч. ХВК 109-509А (HWK 109-509A)) и X. Зборовского (H. Zborowski), ЖРД зенитной управляемой ракеты «Вассерфаль» (Wasserfall) и баллистической ракеты Фау-2 (V-2). До 2-й половины 40-х гг. самыми крупными советскими ЖРД были Д-1-А-1100 и РД-1, разработанные Реактивным научно-исследовательским институтом. Первыми серийными советскими ЖРД стали двигатели РД-1 и РД-1ХЗ, созданные к концу войны в ГДЛ–ОКБ. Там же в 1947-53 гг. были разработаны первые в СССР мощные ЖРД : РД-100, РД-101, РД-103. В этот же период в США изготовлялся ЖРД с тягой ~ 350 кН для баллистической ракеты «Редстоун» (Redstone).

Дальнейшее развитие ЖРД и современное их состояние определила начатая в середине 50-х гг. в СССР и США разработка МБР и РН. Для их реализации потребовалось создать мощные, экономичные и компактные ЖРД . Первыми среди них были РД-107 и РД-108, с появлением которых тяга ЖРД увеличилась вдвое, тяга ДУ – в 10 раз. Удельный импульс ЖРД возрос почти на 30%, удельная масса снизилась более чем в 1,5 раза. Эти результаты стали возможны благодаря разработке принципиально новой конструкции ЖРД , позволившей перейти с топлива кислород - этиловый спирт на кислородно-керосиновое при одновременном увеличении давления в камере сгорания в 2–2,5 раза.

С начала 60-х гг. на ракеты-носители (РН) начали также применяться ЖРД , работающие на высококипящих топливах. Первым из них был РД-214. Большое значение для развития космонавтики имело создание в середине 60-х гг. кислородно-водородных ЖРД (предназначены для верхних ступеней РН), которые по удельному импульсу превосходят кислородно-керосиновые на 30%. Т.к. кислородно-водородное топливо по сравнению с кислородно-керосиновым требует при той же массе втрое большего объёма для своего размещения, а баки водорода приходится снабжать теплоизоляцией, то число Циолковского получается для кислородно-водородного топлива на 40% большим. Этот недостаток с избытком компенсируется высокой экономичностью кислородно-водородных ЖРД . При равной стартовой массе РН они способны вывести на околоземную орбиту втрое больший полезный груз, чем кислородно-керосиновые ЖРД .

Осваивая всё более эффективные топлива, конструкторы ЖРД стремились одновременно к тому, чтобы преобразовать химическую энергию топлив в кинетическую энергию реактивной струи с возможно большим КПД . С этой целью была разработана схема ЖРД с дожиганием генераторного газа в камере. Для реализации этой схемы потребовалось создать камеры, работающие в условиях высоких механических и тепловых нагрузок, а также компактные агрегаты питания большой мощности. ЖРД с дожиганием с середины 60-х гг. широко применяются на РН, в частности используются на всех ступенях РН «Протон».

Наряду с мощными космическими ЖРД созданы многочисленные ЖРД средней и малой тяги. Безотказная работа двигателей космических аппаратов (КА) обеспечивается в большой степени использованием высококипящих однокомпонентных и самовоспламеняющихся ракетных топлив , хранение которых на борту КА не вызывает трудностей. ДУ с ЖРД на однокомпонентном топливе проще по устройству, но имеют существенно меньший удельный импульс. К середине 60-х гг. во вспомогательных ЖРД получила наибольшее применение перекись водорода, которая затем начала вытесняться гидразином и двухкомпонентными топливами. Использование гидразина позволило повысить удельный импульс ЖРД на однокомпонентном топливе примерно на 40%.

Большинство советских космических ЖРД создано в ГДЛ-ОКБ В. П. Глушко, ОКБ А. М. Исаева и ОКБ С. А. Косберга. Двигатели РД-107, РД-108, РД-214, РД-216, РД-253 и другие конструкции ГДЛ-ОКБ обеспечили старт всех советских РН; на вторых ступенях ряда РН также установлены ЖРД конструкции ГДЛ-ОКБ: РД-119, РД-219 и др. Двигатели ОКБ Косберга установлены на верхних ступенях РН «Восток», «Восход» («Союз») и «Протон». Двигатели ОКБ Исаева используются в основном на искусственных спутниках Земли (ИСЗ), межпланетных КА и космических кораблях (КК) (КРД-61, КДУ-414, ТДУ-1, КТДУ-5А и др.).

Крупнейшие из зарубежных организаций, занятых разработкой ЖРД , находятся в США. Ведущей является фирма «Рокетдайн» (Rocketdyne), которой созданы ЖРД Джей-2 (J-2), ЛР-79-НА (LR-79-NA), ЛР-89-НА (LR-89-NA), ЛР-105-НА (LR-105-NA), РС-2701 (RS-2701), Эйч-1 (H-1), Ф-1 (F-1), ССМЭ (SSME), многочисленные ЖРД средней и малой тяги на высококипящем двухкомпонентном топливе. Большинство упомянутых мощных ЖРД создано под руководством С. Гофмана (S. Hoffman). Фирмой «Аэроджет Дженерал Корпорейшн» (Aerojet General Corporation) создан ряд ЖРД на высококипящем двухкомпонентном топливе, в т.ч. ЖРД ЛР-87-АДжей-5 (LR-87-AJ-5) и ЛР-91-АДжей-5 (LR-91-AJ-5), серия ЖРД средней тяги АДжей-10 (AJ-10), включающая АДжей-10-137 (AJ-10-137) и АДжей-10-138 (AJ-10-138). Фирма «Пратт энд Уитни» (Pratt & Whitney) создала первый в мире кислородно-водородный ЖРД РЛ-10 (RL-10), фирма «Белл Aэроспейс Tекстрон» (Bell Aerospace Textron) - многочисленные вспомогательные ЖРД , а также ЖРД средней тяги ЛР-81-БА-9 (LR-81-BA-9), фирма «ТРВ» - ЖРД средней тяги ЛМДЭ (LMDE), фирма «Марквардт» (Marquardt)- ряд ЖРД на высококипящем двухкомпонентном топливе для КК и межпланетных КА. В США создано несколько десятков типов гидразиновых ЖРД (в полёте испытаны ЖРД с тягой от 0,4 Н до 2,7 кН). В числе разработчиков ЖРД для межпланетных КА - фирма «Риэкшен моторс» (Reaction Motors), создавшая также мощный ЖРД ЛР-99-РМ-1 (LR-99-RM-1). Наиболее известные из западноевропейских ЖРД - АшМ-7 (HM-7), «Валуа» (Valois), «Вексен» (Vexen), «Викинг» (Viking, Франция), «Гамма-2» (Gamma), «Гамма-8», РЗет-2 (RZ-2, Великобритания). В Западной Европе также разрабатываются ЖРД малой тяги на двух- и однокомпонентном топливах для ИСЗ. Япония производит по лицензии американские ЖРД ЛР-79-НА для собственного варианта РН «Дельта» (Delta). Для одной из ступеней этой РН фирмой «Мицубиси» (Mitsubishi) разработан ЖРД на высококипящем топливе тягой 53 кН с вытеснительной подачей. На стендах испытаны кислородно-водородные ЖРД тягой до 0,1 МН с насосной подачей. В китайских РН используются ЖРД тягой 0,7 МН с насосной подачей высококипящего топлива.

Космические ЖРД разнообразны по устройству и характеристикам. Наибольшее различие существует между мощными ЖРД , обеспечивающими разгон РН, и ЖРД реактивных систем управления КА. Первые работают на двухкомпонентном топливе. Тяга этих ЖРД достигает 8 МН (при суммарной тяге ДУ до 40 МН), размеры - несколько метров, а масса - несколько тонн. Они рассчитаны обычно на однократное включение (кроме некоторых ЖРД верхних ступеней РН) и работу в течение 2-10 мин при изменении параметров в узких пределах. К этим ЖРД предъявляется требование обеспечивать высокий удельный импульс при малых габаритах и массе. Поэтому в них применяется насосная подача топлива в камеру (исключение составляют ЖРД «Вексен» и «Валуа»). С этой целью в ЖРД предусматривается турбонасосный агрегат (ТНА) и газогенератор (ГГ). ТНА содержит высоконапорные топливные насосы (обычно осецентробежные) и приводящую их в действие турбину, которая вращается газом, получаемым в ГГ. В ЖРД без дожигания отработанный в турбине генераторный газ сбрасывается в выхлопной патрубок, рулевое сопло или сопло камеры. В ЖРД с дожиганием этот газ поступает в камеру для дожигания с остальной частью топлива.

В ЖРД без дожигания через ГГ может расходоваться 2-3% всего топлива, и целесообразный предел давления в камере сгорания ограничен значением ~ 10 МПа, что связано с потерями удельного импульса на привод ТНА: для ЖРД в целом этот параметр ниже, чем для камеры, т.к. дополнительная тяга, создаваемая истечением отработанного генераторного газа, невелика. Причиной тому являются малые значения давления и температуры этого газа. Для ЖРД РД-216 они составляют, например, 0,12 МПа и 870 К соответственно; при этом потери удельного импульса достигают 1,5% (свыше 40 м/с). С повышением давления в камере сгорания наблюдается увеличение её удельного импульса, но для этого приходится увеличивать расход генераторного газа (для обеспечения потребной мощности топливных насосов). С некоторого момента всё возрастающие потери удельного импульса на привод ТНА уравновешивают, а затем превышают прирост удельного импульса камеры. В ЖРД с дожиганием через ГГ расходуется значит, часть всего топлива (20-80%), однако привод ТНА осуществляется без ухудшения экономичности ЖРД (значения удельного импульса камеры и ЖРД совпадают). В камерах сгорания этих ЖРД удаётся реализовать давление 15-25 МПа (давление в ГГ приблизительно вдвое больше). Для мощных ЖРД с насосной подачей топлива удельный импульс достигает 3430 м/с при использовании кислородно-керосинового топлива и 4500 м/с при использовании кислородно-водородного; удельная масса ЖРД может составлять всего 0,75-0,85 г/Н.

Кроме камеры, ТНА и ГГ, мощные ЖРД содержат топливные трубопроводы с сильфонными шлангами и компенсаторами угловых и линейных перемещений, облегчающими сборку и установку ЖРД , а также обеспечивающими разгрузку от термических напряжений и позволяющими производить отклонение камеры с целью управления движением РН; трубопроводы генераторного газа и дренажа топлива; устройства и системы запуска ракетного двигателя ; агрегаты автоматики с электроприводами, пневмо-, пиро- и гидросистемами и устройствами для управления работой ЖРД (в т.ч. для его дросселирования ); агрегаты системы аварийной защиты; датчики системы телеметрических измерений; электрические кабельные стволы для подачи сигналов на агрегаты автоматики и приёма сигналов от телеметрических датчиков; теплоизоляционные чехлы и экраны, обеспечивающие надлежащую температуру в двигательном отсеке и исключающие перегрев либо переохлаждение отдельных элементов; элементы системы наддува баков (теплообменники, смесители и т. п.); шарнирный подвес или раму для крепления ЖРД к РН (рама, воспринимающая тягу, является одновременно элементом, на котором собирается двигатель); нередко - рулевые камеры и сопла с системами, обеспечивающими их работу; элементы общей сборки (кронштейны, крепёжные детали, уплотнения). По устройству различают блочные жидкостные ракетные двигатели , одно- и многокамерные (с питанием нескольких камер от одного ТНА).

ЖРД реактивных систем управления относятся к двигателям малой тяги, их масса обычно не достигает 10 кг, а высота 0,5 м; масса многих ЖРД не превышает 0,5 кг, и они умещаются на ладони. Характерной особенностью указанных ЖРД является работа в импульсном режиме (за несколько лет функционирования КА суммарное число включений ЖРД может достичь нескольких сотен тысяч, а наработка нескольких часов). Эти ЖРД представляют собой одностенные камеры, снабжённые пуско-отсечными топливными клапанами, и рассчитаны на вытеснительную подачу высококипящего топлива (двухкомпонентного самовоспламеняющегося или однокомпонентного). Давление в камерах сгорания указанных ЖРД , определяемое главным образом давлением наддува баков ДУ и гидравлическим сопротивлением питающих магистралей, находится в диапазоне 0,7-2,3 МПа. В том случае, когда газ для наддува топливных баков размещён в самих баках, его давление по мере расходования топлива снижается, что приводит к ухудшению характеристик ЖРД . Сравнительно высокий удельный импульс ЖРД (до 3050 м/с для двухкомпонентного топлива и до 2350 м/с для гидразина) достигается за счёт относительно больших размеров реактивного сопла, что обеспечивает расширение продуктов сгорания до очень малого давления. Несмотря на небольшую абсолютную массу ЖРД реактивных систем управления, их удельная масса велика (при уменьшении тяги от 500 до 1 Н возрастает приблизительно с 5 до 150 г/Н).

ЖРД космических аппаратов занимают по своим характеристикам промежуточное положение между мощными ЖРД ракет-носителей и ЖРД реактивных систем управления. Их тяга охватывает диапазон от сотен Н до десятков кН и может быть как нерегулируемой, так и регулируемой; они могут непрерывно работать десятые доли секунд и несколько тысяч секунд при числе включений от 1 до нескольких десятков. В указанных ЖРД применяются те же типы топлив, что и в ЖРД реактивных систем управления (однокомпонентное топливо используется только в ЖРД малой тяги).

В планах дальнейшего освоения космоса ЖРД отводится большая роль. Мощные ЖРД , рассчитанные на экономичное использование эффективных топлив, по-прежнему находятся в центре внимания. К 1981 году создан кислородно-водородный ЖРД с тягой свыше 2 МН, предназначенный для разгона ЛА от старта до вывода на околоземную орбиту. Благодаря достижениям в области криогенной техники и теплоизоляционных материалов становится целесообразным создание ЖРД на низкокипящих топливах, развивающих высокий удельный импульс, для использования в КА, функционирующих в космосе. Прогресс в разработке ЖРД с тягой до нескольких десятков кН, работающих на топливах, содержащих фтор и его производные (см., например, РД-301), делает реальным применение фторных ЖРД в разгонных блоках РН и в автоматических КА, которые будут совершать полёты к планетам. При стендовых испытаниях в 1977 году экспериментального кислородно-водородного ЖРД (тяга 0,1 МН), разрабатываемого для этих целей, достигнут удельный импульс 4690 м/с. Проводятся экспериментальные исследования различных проблем создания ЖРД на металлсодержащем топливе .

Наряду с освоением для ЖРД новых топлив ведутся поиски технических принципов, обеспечивающих дальнейшее увеличение КПД и уменьшение габаритов и массы ЖРД . Улучшение параметров, достигаемое путём увеличения давления в камере, с ростом давления становится всё менее ощутимым, а трудности создания ЖРД всё более возрастают. Увеличение указанного параметра свыше 25-30 МПа является малоэффективным и трудно реализуемым. Проявляется интерес к ЖРД , снабжённым соплами с центральным телом . С целью снижения стоимости запуска полезных грузов разработаны ЖРД (для КА многократного использования), рассчитанные на несколько десятков полётов и ресурс в несколько часов при малом объёме межполётных регламентных работ.



Поделиться