Что понимают под электронным лучом. Экраны электронно-лучевых трубок

Применение электронно-лучевой трубки

Электронно-лучевые трубки применяются в осциллографах для измерения напряжения и фазовых углов, анализа формы кривой силы тока или напряжения и т. д. Эти трубки используются в телевизионных и радиолокационных установках.

Электронно-лучевые трубки бывают разных типов. По способу получения электронного луча они делятся на трубки с холодным и накаленным катодом. Трубки с холодным катодом используются сравнительно редко, так как для их работы требуются очень высокие напряжения (30-70 кВ). Трубки с накаленным катодом имеют широкое применение. Эти трубки по способу управления электронным лучом также разделяются на два вида: электростатические и магнитные. В электростатических трубках управление электронным лучом осуществляется с помощью электрического поля, а в магнитных - с помощью магнитного поля.

Электронно-лучевые трубки с электростатическим управлением применяются в осциллографах и бывают чрезвычайно разнообразны по конструктивному выполнению. Учащихся достаточно ознакомить с принципом устройства такой трубки, содержащей основные типовые элементы. Этим целям отвечает трубка типа 13ЛОЗ7, которая представлена на таблице с некоторыми упрощениями.

Электронно-лучевая трубка представляет собой хорошо вакуумированный стеклянный баллон, внутри которого находятся электроды. Широкий торец трубки - экран - с внутренней стороны покрывается флуоресцирующим веществом. Вещество экрана светится при ударах электронов. Источником электронов служит катод косвенного накала. Катод состоит из нити накала 7, вставленной в тонкую фарфоровую трубочку (изолятор), на которую надет цилиндр 6 с оксидным покрытием торца (катод), благодаря чему достигается излучение электронов только в одном направлении. Вылетевшие из катода электроны устремляются к анодам 4 и 3, имеющим довольно высокий потенциал относительно катода (несколько сотен вольт). Для придания пучку электронов формы луча и его фокусировки на экране пучок проходит через ряд электродов. Однако следует обратить внимание уча-щихся только на три электрода: модулятор (управляющий цилиндр) 5, первый анод 4 и второй анод 3. Модулятор представляет собой трубчатый электрод, на который подается отрицательный потенциал относительно катода. Благодаря этому проходящий через модулятор электронный пучок будет стягиваться в узкий пучок (луч) и направляться электрическим полем через отверстие в аноде в сторону экрана. Повышая или понижая потенциал управляющего электрода, можно регулировать коли-чество электронов в луче, т. е. интенсивность (яркость) свечения экрана. С помощью анодов не только создается ускоряющее поле (обеспечивается разгон электронов), но, изменяя потенциал одного из них, можно более точно фокусировать электронный луч на экране и получить большую резкость светящейся точки. Обычно фокусировку осуществляют путем изменения потенциала первого анода, который называется фокусирующим.

Электронный луч, выйдя из отверстия в аноде, проходит между двумя парами отклоняющих пластин 1,2 и попадает на экран, вызывая его свечение.

Подавая напряжение на отклоняющие пластины, можно вызвать отклонение луча и смещение светящегося пятна от центра экрана. Величина и направление смещения зависят от напряжения, поданного на пластины, и полярности пластин. На таблице показан случай, когда напряжение подано только на вертикальные пластины 2. При указанной полярности пластин смещение электронного луча под действием сил электрического поля происходит вправо. Если подать напряжение на го-ризонтальные пластины 1, то смещение луча будет происходить в вертикальном направлении.

В нижней части таблицы приведен способ управления лучом с помощью магнитного поля, созданного двумя взаимно перпендикулярными катушками (каждая катушка разделена на две секции), оси которых имеют вертикальное и горизонтальное направления. На таблице показан случай, когда в горизонтальной катушке ток отсутствует и вертикальная катушка обеспечивает смещение луча только в горизонтальном направлении.

Магнитное поле горизонтальной катушки вызывает смещение луча в вертикальном направлении. Совместное действие магнитных полей двух катушек обеспечивает движение луча по всему экрану.

Магнитные трубки применяются в телевизорах.

§ 137. Электронно-лучевая трубка. Осциллограф

Для наблюдения, записи, измерений и контроля различных изменяющихся процессов в устройствах автоматики, телемеханики и других областях техники применяют осциллографы (рис. 198). Основной частью осциллографа является электронно-лучевая трубка - электровакуумный прибор, в наиболее простом виде предназначенный для преобразования электрических сигналов в световые.

Рассмотрим, как отклоняется электрон и электронный луч в электрическом поле электронно-лучевой трубки осциллографа.
Если электрон поместить между двумя параллельными пластинами (рис. 199, а), имеющими разноименные электрические заряды, то под действием электрического поля, возникающего между пластинами, электрон отклонится, так как он заряжен отрицательно. Он отталкивается от пластины А , имеющей отрицательный заряд, и притягивается к пластине Б , имеющей положительный электрический заряд. Движение электрона будет направлено вдоль линий поля.


Когда в поле между пластинами попадает движущийся со скоростью V электрон (рис. 199, б), то на него действуют не только силы поля F , но и сила F 1 , направленная по его движению. В результате действия этих сил электрон отклонится от своего прямолинейного пути и будет перемещаться по линии ОК . - по диагонали.
Если между пластинами пропустить узкий пучок движущихся электронов - электронный луч (рис. 199, в), он под действием электрического поля отклонится. Угол отклонения электронного луча зависит от скорости движения электронов, из которых состоит луч, и величины напряжения, создающего электрическое поле между пластинами.
Каждая электронно-лучевая трубка (рис. 200) представляет собой баллон, из которого выкачан воздух. Коническая часть внутренней поверхности баллона покрыта графитом и называется аквадагом . Внутри баллона 3 помещается электронный прожектор 8 - электронная пушка, отклоняющие пластины 4 и 6 , и экран 5 . Электронный прожектор трубки состоит из подогревного катода, который излучает электроны, и системы электродов, образующих электронный луч. Этот луч, испускаемый катодом трубки, перемещается с большой скоростью к экрану и по существу является электрическим током, направленным в сторону, обратную движению электронов.


Катод представляет собой никелевый цилиндр, торец которого покрыт слоем оксида. Цилиндр надет на тонкостенную керамиковую трубку, а внутри нее для подогрева катода помещается нить из вольфрама, выполненная в виде спирали.
Катод расположен внутри управляющего электрода 7 , имеющего форму стаканчика. В дне стаканчика сделано небольшое отверстие, через которое проходят электроны, вылетающие из катода; это отверстие называется диафрагмой . На управляющий электрод подается небольшое отрицательное напряжение (порядка нескольких десятков вольт) по отношению к катоду. Оно создает электрическое поле, действующее на электроны, вылетающие с катода так, что они собираются в узкий луч, направленный в сторону экрана трубки. Точка пересечения траекторий полета электронов называется первым фокусом трубки . Увеличивая отрицательное напряжение на управляющем электроде, можно часть электронов отклонить настолько, что они не пройдут через отверстие и таким образом количестно электронов, попадающих на экран, уменьшится. Изменяя напряжение управляющего электрода, можно регулировать количество электронов в нем. Это позволяет изменять яркость светящегося пятна на экране электроннолучевой трубки, который покрыт специальным составом, обладающим способностью светиться под воздействием электронного луча, попадающего на него.
В состав электронной пушки также входят создающие ускоряющее поле два анода: первый - фокусирующий 1 и второй - управляющий 2 . Каждый из анодов представляет собой цилиндр с диафрагмой, которая служит для ограничения поперечного сечения электронного луча.
Аноды располагаются вдоль оси трубки на некотором расстоянии один от другого. На первый анод подается положительное напряжение порядка нескольких сотен вольт, а второй анод, соединенный с аквадагом трубки, имеет положительный потенциал, в несколько раз больший потенциала первого анода.
Электроны, вылетающие из отверстия управляющего электрода, попадая в электрическое поле первого анода, приобретают большую скорость. Пролетая внутри первого анода, пучок электронов под действием сил электрического поля сжимается и образует тонкий электронный луч. Далее электроны пролетают через второй анод, приобретают еще большую скорость (несколько тысяч километров в секунду), летят через диафрагму к экрану. На последнем под действием ударов электронов образуется светящееся пятно диаметром менее одного миллиметра. В этом пятне расположен второй фокус электронно-лучевой трубки.
Для отклонения электронного луча в двух плоскостях электронно-лучевая трубка снабжена двумя парами пластин 6 и 4 , расположенных в разных плоскостях перпендикулярно одна другой.
Первая пара пластин 6 , которая находится ближе в электронной пушке, служит для отклонения луча в вертикальном направлении; эти пластины называются вертикально отклоняющими . Вторая пара пластин 4 , расположенная ближе к экрану трубки, служит для отклонения луча в горизонтальном направлении; эти пластины называются горизонтально отклоняющими .
Рассмотрим принцип действия отклоняющих пластин (рис. 201).


Отклоняющие пластины В 2 и Г 2 подключены к движкам потенциометров П в и П г. К концам потенциометров подается постоянное напряжение. Отклоняющие пластины В 1 и Г 1 как и средние точки потенциометров, заземлены, и их потенциалы равны нулю.
Когда движки потенциометров стоят в среднем положении, потенциал на всех пластинах равен нулю, и электронный луч создает светящееся пятно в центре экрана - точку О . При перемещении движка потенциометра П г влево на пластину Г 2 подается отрицательное напряжение и поэтому электронный луч, отталкиваясь от этой пластины, отклонится и светящаяся точка на экране сместится в направлении точки А .
При перемещении движка потенциометра П г вправо потенциал пластины Г 2 будет увеличиваться и электронный луч, а следовательно, и светящаяся точка на экране сместятся по горизонтали к точке Б . Таким образом, при непрерывном изменении потенциала на пластине Г 2 электронный луч прочертит на экране горизонтальную линию АБ .
Аналогично при изменении потенциометром П в напряжения на вертикально отклоняющих пластинах луч будет отклоняться по вертикали и прочертит на экране вертикальную линию ВГ . При одновременном изменении напряжения на обеих парах отклоняющих пластин можно переместить электронный луч в любом направлении.
Экран электронно-лучевой трубки покрыт специальным составом - люминофором, способным светиться под действием ударов быстро летящих электронов. Таким образом, когда сфокусированный луч попадает в ту или иную точку экрана, то она начинает светиться.
Для покрытия экранов электронно-лучевых трубок используют люминофоры в виде окиси цинка, бериллиевого цинка, смеси сернокислого цинка с сернокислым кадмием и др. Эти материалы обладают свойством продолжать некоторое время свое свечение после прекращения ударов электронов. Это значит, что они обладают послесвечением .
Известно, что глаз человека, получив зрительное впечатление, может удержать его примерно 1/16 секунды. В электронно-лучевой трубке луч по экрану может перемещаться настолько быстро, что ряд последовательных светящихся точек на экране воспринимаются глазом в виде сплошной светящейся линии.
Напряжение, подлежащее изучению (рассмотрению) с помощью осциллографа, подается на вертикально отклоняющие пластины трубки. На горизонтально отклоняющие пластины подают пилообразное напряжение, график которого приведен на рис. 202, а.

Это напряжение дает электронный генератор пилообразных импульсов, который смонтирован внутри осциллографа. Под действием пилообразного напряжения электронный луч перемещается горизонтально по экрану. За время t 1 - t 8 луч перемещается по экрану слева направо, а за время t 9 - t 10 быстро возвращается в исходное положение, затем вновь движется слева направо и т. д.
Выясним, как можно увидеть на экране электронно-лучевой трубки осциллографа форму кривой мгновенных значений напряжения, подаваемого на вертикально отклоняющие пластины. Допустим, что к горизонтально отклоняющим трубкам подано пилообразное напряжение с амплитудой 60 в и с периодом изменения в 1/50 сек .
На рис. 202, б показан один период синусоидального напряжения, форму кривой которого мы хотим увидеть, а в круге (рис. 202, в) показано результирующее перемещение электронного луча на экране трубки осциллографа.
Напряжения в одни и те же мгновения имеют на верхних двух графиках одинаковые обозначения.
В момент времени t 1 пилообразное напряжение (U г), отклоняющее электронный луч по горизонтали, равно 60 в , а напряжение на вертикальных пластинах U в равно нулю и на экране светится точка O 1 . В момент времени t 2 напряжение U г = - 50 в , а напряжение U в = 45 в . За время, равное t 2 - t 1 , электронный луч переместится в положение O 2 по линии O 1 - O 2 . В момент времени t 3 напряжение U г = 35 в , а напряжение U в = 84,6 в . За время t 3 - t 2 луч переместится в точку O 3 по линии O 2 - O 3 и т. д.
Процесс воздействия электрических полей, создаваемых обеими парами отклоняющих пластин, на электронный луч будет продолжаться, и луч будет отклоняться далее по линии O 3 - O 4 - o 6 и т. д.
За время t 10 - t 9 электронный луч быстро отклонится влево (произойдет обратный ход луча), а затем процесс будет повторяться: Исследуемое напряжение изменяется периодически, поэтому электронный луч будет многократно перемещаться по одному и тому же пути, в результате чего будет видна довольно яркая линия, по форме совпадающая с формой кривой напряжения, поданного на вертикально отклоняющие пластины трубки.
Так как период (и частота) напряжений пилообразных импульсов развертки и исследуемого напряжения равны, то синусоида на экране будет неподвижна. Если частота этих напряжений разная и не кратная друг другу, то изображение будет перемещаться вдоль экрана трубки.
При подключении к обеим парам отклоняющих пластин двух синусоидальных напряжений одинаковых амплитуд и частот, но сдвинутых по фазе на 90°, на экране трубки будет видна окружность. Таким образом, с помощью осциллографа можно наблюдать и исследовать различные процессы, происходящие в электрических цепях. Кроме генератора пилообразных импульсов, осциллограф имеет усилители для усиления напряжения, подаваемого на пластины вертикального отклонения луча, и пилообразного напряжения, подаваемого на пластины горизонтального отклонения.

В электронно-лучевой трубке (ЭЛТ) для воспроизведения изображения на люминесцентном экране используется пучок электронов, получаемых с нагретого катода. Катод изготовляют оксидным, с косвенным нака­лом, в виде цилиндра с подогревателем. Оксидный слой нанесен на донышко катода. Вокруг катода располагается управляющий электрод, называемый модулятором, цилиндрической формы с отверстием в до­нышке. Этот электрод служит для управления плотностью электронного потока и для предва­рительной его фокусировки. На модулятор подается отрицательное напряжение в несколько десятков вольт. Чем это напряжение больше, тем больше электронов возвращается на катод. Другие элек­троды, также цилиндрической формы, являются анодами. В ЭЛТ их минимум два. На втором аноде напряжение бывает от 500 В до нескольких киловольт (порядка 20 кВ), а на первом аноде напряжение в несколько раз меньше. Внутри анодов имеются перегородки с отвер­стиями (диафрагмы). Под действием ускоряющего поля анодов электроны приобретают зна­чительную скорость. Окончательная фокусировка электронного потока осуществляется с по­мощью неоднородного электрического поля в пространстве между анодами, а также благода­ря диафрагмам. Система, состоящая из катода, модулятора и анодов, называется электронным прожектором (электронной пушкой) и служит для создания электронного луча, т. е. тонкого потока элек­тронов, летящих с большой скоростью от второго анода к люминесцентному экрану. Электронный прожектор размещается в узкой горловине колбы ЭЛТ. Этот луч отклоняется под действием электрического или магнитного поля, а интенсивность луча можно изменять посредством управляющего электрода, меняя тем самым яркость пятна. Люминесцентный экран формируется путем нанесения тонкого слоя люминофора на внутреннюю поверхность торцевой стенки конической части ЭЛТ. Кинетическая энергия электронов, бомбардирующих экран, превращается в видимый свет.

ЭЛТ С электростатическим управлением.

Электрические поля обычно используются в ЭЛТ с экраном малого размера. В системах отклонения электрическим полем вектор поля ориентирован перпендикулярно начальной траектории луча. Отклонение осуществляется приложением разности потенциалов к паре отклоняющих пластин рисунок ниже. Обычно отклоняющие пластины делают отклонение в горизонтальном направлении пропорциональным времени. Это достигается приложением к отклоняющим пластинам напряжения, которое равномерно возрастает, пока луч перемещается поперек экрана. Затем это напряжение быстро падает до своего исходного уровня и снова начинает равномерно возрастать. Сигнал, который требует исследования, подают на пластины, отклоняющие в вертикальном направлении. Если продолжительность однократной горизонтальной развертки равна периоду или соответствует частоте повторения сигнала, на экране будет непрерывно воспроизводиться один период волнового процесса.

1- экран ЭЛТ, 2-катод, 3- модулятор, 4-первый анод, 5- второй анод, П - отклоняющие пластины.

ЭЛТ с электромагнитным управлением

В тех случаях, когда требуется большое отклонение, использование электрического поля для отклонения луча становится неэффективным.

Электромагнитные трубки имеют электронную пушку, такую же, как и электростатические. Разница состоит в том, что напряжение на первом аноде не изменяется, и аноды предназначе­ны только для ускорения электронного потока. Магнитные поля требуются для отклонения луча в телевизионных ЭЛТ с большими экранами.

Фокусировка электронного луча осуществляется при помощи фокусирующей катушки. Фокусирующая катушка имеет рядовую намотку и одевается прямо на колбу трубки. Фокуси­рующая катушка создает магнитное поле. Если электроны движутся по оси, то угол между вектором скорости и магнитными силовыми линиями будет равен 0, следовательно, сила Лорен­ца равна нулю. Если электрон влетает в магнитное под углом, то за счет силы Лоренца траек­тория электрона будет отклоняться к центру катушки. В результате все траектории электронов будут пересекаться в одной точке. Изменяя ток через фокусирующую катушку, можно изме­нять местоположение этой точки. Добиваются того, чтобы эта точка находилась в плоскости экрана. Отклонение луча осуществляется при помощи магнитных по­лей, формируемых двумя парами отклоняющих катушек. Одна пара - катушки вертикального отклонения, и другая - катушки таким образом, что их магнитные силовые линии на осевой линии будут вза­имно перпендикулярны. Катушки имеют сложную форму и располагаются на горловине трубки.


При использовании магнитных полей для отклонения луча на большие углы ЭЛТ получается короткой, а также позволяет изготавливать экраны больших размеров.

Кинескопы.

Кинескопы относятся к комбинированным ЭЛТ, то есть они имеют электро­статическую фокусировку и электромагнитное отклонение луча для увеличения чувствитель­ности. Основным отличием кинескопов от ЭЛТ является следующее: электронная пушка кине­скопов имеет дополнительный электрод, который называется ускоряющим электродом. Он располагается между модулятором и первым анодом, на него подается положительное напря­жение в несколько сотен вольт относительно катода, и он служит для дополнительного уско­рения электронного потока.

Схематическое устройство кинескопа для черно-белого телевидения: 1- нить подогревателя катода; 2- катод; 3- управляющий электрод; 4- ускоряющий электрод; 5- первый анод; 6- второй анод; 7- проводящее покрытие (аквадаг); 8 и 9- катушки вертикального и горизонтального отклонения луча; 10- электронный луч; 11- экран; 12- вывод второго анода.

Вторым отличием является то, что экран кинескопа, в отличие от ЭЛТ, трехслойный:

1 слой - наружный слой - стекло. К стеклу экрана кинескопа предъявляются повышенные тре­бования по параллельности стенок и по отсутствию посторонних включений.

2 слой - это люминофор.

3 слой - это тонкая алюминиевая пленка. Эта пленка выполняет две функции:

Увеличивает яркость свечения экрана, действуя как зеркало.

Основная функция состоит в защите люминофора от тяжелых ионов, которые вылетают из катода вместе с электронами.

Цветные кинескопы.

Принцип действия основан на том, что любой цвет и оттенок можно получить смешиванием трех цветов - красного, синего и зеленого. Поэтому цветные кинескопы имеют три электронных пушки и одну общую отклоняющую систему. Экран цвет­ного кинескопа состоит из отдельных участков, каждый из которых содержит три ячейки лю­минофора, которые светятся красным, синим и зеленым цветами. Причем размеры этих ячеек настолько малы и они расположены настолько близко друг к другу, что их свечение восприни­мается глазом как суммарное. Это общий принцип построения цветных кинескопов.

Мозаика (триады) экрана цветного кинескопа с теневой маской: R- красные, G- зеленые, B- синие люминофорные «точки».

Электропроводность полупроводников

Собственная проводимость полупроводников.

Собственным полупроводником называется идеально химически чистый полупроводник с однородной кристаллической решеткой на валентной орбите которого находится четыре электрона. В полупроводниковых приборах чаще всего используются кремний Si и германий Ge .

Ниже показана электронная оболочка атома кремния. В образовании химических связей и в процессе проводимости могут участвовать только четыре электрона внешней оболочки, называемые валентными электронами. Десять внутренних электронов в таких процессах не участвуют.


Кристаллическая структура полупроводника на плоскости может быть представлена следую­щим образом.

Если электрон получил энергию, большую ширины запрещенной зоны, он разрывает ковалентную связь и становится свободным. На его месте образуется вакансия, которая имеет положительный заряд, равный по величине заряду электрона и называется дыркой . В химически чистом полупро­воднике концентрация электронов n равна концентрации дырок p .

Процесс образования пары зарядов электрон и дырка называется генерацией заряда.

Свободный электрон может занимать место дырки, восстанавливая ковалентную связь и при этом излучая избыток энергии. Такой процесс называется рекомбинацией зарядов. В процессе рекомбинации и генерации зарядов дырка как бы движется в обратную сторону от направле­ния движения электронов, поэтому дырку принято считать подвижным положительным носи­телем заряда. Дырки и свободные электроны, образующиеся в результате генерации носителей заряда, называются собственными носителями заряда, а проводимость полупроводника за счет собственных носителей заряда называется собственной проводимостью проводника.

Примесная проводимость проводников.

Так как у химически чистых полупроводников проводимость существенно зависит от внешних условий, в полупроводниковых приборах применяются примесные полупроводники.


Если в полупроводник ввести пятивалентную примесь, то 4 валентных электрона восстанав­ливают ковалентные связи с атомами полупроводника, а пятый электрон остается свободным. За счет этого концентрация свободных электронов будет превышать концентрацию дырок. Примесь, за счет которой n > p , называется донорной примесью. Полупроводник, у которого n > p , называется полупроводником с электронным типом проводимости, или полупроводником n -типа.

В полупроводнике n -типа электроны называются основными носителями заряда, а дыр­ки - неосновными носителями заряда.

При введении трехвалентной примеси три ее валентных электрона восстанавливают ковалент­ную связь с атомами полупроводника, а четвертая ковалентная связь оказывается не восста­новленной, т. е. имеет место дырка. В результате этого концентрация дырок будет больше концентрации электронов.

Примесь, при которой p > n , называется акцепторной примесью.

Полупроводник, у которого p > n , называется полупроводником с дырочным типом проводимости, или полупроводником р-типа . В полупроводнике р-типа дырки называются основными носителями заряда, а электро­ны - неосновными носителями заряда.

Образование электронно-дырочного перехода.

Ввиду неравномерной концен­трации на границе раздела р и n полупроводника возникает диффузионный ток, за счет ко­торого электроны из n -области переходят в р-область , а на их месте остаются некомпенси­рованные заряды положительных ионов донорной примеси. Электроны, приходящие в р-область, рекомбинируют с дырками, и возникают некомпенсированные заряды отрицатель­ных ионов акцепторной примеси. Ширина р- n перехода - десятые доли микрона. На грани­це раздела возникает внутреннее электрическое поле р-n перехода, которое будет тормозя­щим для основных носителей заряда и будет их отбрасывать от границы раздела.

Для неосновных носителей заряда поле будет ускоряющим и будет переносить их в область, где они будут основными. Максимум напряженности электрического поля - на границе разде­ла.

Распределение потенциала по ширине полупроводника называется потенциальной диаграм­мой. Разность потенциалов на р- n переходе называется контактной разностью потенциалов или потенциальным барьером . Для того, чтобы основной носитель заряда смог преодолеть р- n переход, его энергия должна быть достаточной для преодоления потенциального барьера.

Прямое и обратное включение р- n перехода.

Приложим внешнее напряжение плюсом к р -области. Внешнее электрическое поле направле­но навстречу внутреннему полю р- n перехода, что приводит к уменьшению потенциального барьера. Основные носители зарядов легко смогут преодолеть потенциальный барьер, и поэто­му через р- n переход будет протекать сравнительно большой ток, вызванный основными носи­телями заряда.


Такое включение р- n перехода называется прямым, и ток через р- n переход, вызванный основными носителями заряда, также называется прямым током. Считается, что при прямом включении р- n переход открыт. Если подключить внешнее напряжение минусом на р-область , а плюсом на n -область , то возникает внешнее электрическое поле, линии напряженности кото­рого совпадают с внутренним полем р- n перехода. В результате это приведет к увеличению по­тенциального барьера и ширины р- n перехода. Основные носители заряда не смогут преодо­леть р- n переход, и считается, что р- n переход закрыт. Оба поля - и внутреннее и внешнее - яв­ляются ускоряющими для неосновных носителей заряда, поэтому неосновные носители заряда будут проходить через р- n переход, образуя очень маленький ток, который называется обрат­ным током . Такое включение р- n перехода также называется обратным.

Свойства р- n перехода. Вольтамперная характеристика р- n перехода

К основным свойствам р- n перехода относятся:

- свойство односторонней проводимости;

Температурные свойства р- n перехода;

Частотные свойства р- n перехода;

Пробой р- n перехода.

Свойство односторонней проводимости р- n перехода рассмотрим на вольтамперной характеристике.

Вольтамперной характеристикой (ВАХ) называется графически выраженная зависимость величины протекающего через р- n переход тока от величины приложенного напряжения I = f (U ) – рис.29.

Так как величина обратного тока во много раз меньше, чем прямого, то обратным током мож­но пренебречь и считать, что р- n переход проводит ток только в одну сторону. Температурное свойство р- n перехода показывает, как изменяется работа р- n перехода при из­менении температуры. На р- n переход в значительной степени влияет нагрев, в очень малой степени - охлаждение. При увеличении температуры увеличивается термогенерация носи­телей заряда, что приводит к увеличению как прямого, так и обратного тока. Частотные свойства р- n перехода показывают, как работает р- n переход при подаче на него переменного напряжения высокой частоты. Частотные свойства р- n перехода определяются двумя видами емкости перехода.

Первый вид емкости - это емкость, обусловленная неподвижными зарядами ионов донорной и акцепторной примеси. Она называется зарядной, или барьерной емкостью. Второй тип емкости - это диффузионная емкость, обусловленная диффузией подвижных носи­телей заряда через р- n переход при прямом включении.

Если на р- n переход подавать переменное напряжение, то емкостное сопротивление р- n пере­хода будет уменьшаться с увеличением частоты, и при некоторых больших частотах ем­костное сопротивление может сравняться с внутренним сопротивлением р- n перехода при пря­мом включении. В этом случае при обратном включении через эту емкость потечет достаточно большой обратный ток, и р- n переход потеряет свойство односторонней проводимости.

Вывод: чем меньше величина емкости р- n перехода, тем на более высоких частотах он может работать.

На частотные свойства основное влияние оказывает барьерная емкость, т. к. диффузионная емкость имеет место при прямом включении, когда внутреннее сопротивление р- n перехода мало.

Пробой р- n перехода .

При увеличении обратного напряжения энергия электрического поля становится достаточной для генерации носителей заряда. Это приводит к сильному увеличению обратного тока. Явление сильного увеличения обратного тока при определенном обратном напряжении назы­вается электрическим пробоем р- n перехода.

Электрический пробой - это обратимый пробой, т. е. при уменьшении обратного напряжения р- n переход восстанавливает свойство односторонней проводимости. Если обратное напряже­ние не уменьшить, то полупроводник сильно нагреется за счет теплового действия тока и р- n переход сгорает. Такое явление называется тепловым пробоем р- n перехода. Тепловой пробой необратим.

Полупроводниковые диоды

Полупроводни­ковым диодом называется устройство, состоящее из кристалла полупроводника, содержа­щее обычно один р-n переход и имеющее два вывода. Существует много различных типов диодов – выпрямительные, импульсные, туннельные, обращенные, сверхвысокочастотные диоды, а также стабилитроны, варикапы, фотодиоды, светодиоды и др.

Маркировка диодов состоит из 4 обозначений:

К С -156 А

Электронно-лучевые трубки (ЭЛТ) – электровакуумные приборы, предназначенные для преобразования электрического сигнала в световое изображение с помощью тонкого электронного луча, направляемого на специальный экран, покрытый люминофором - составом, способным светиться при бомбардировке его электронами.

На рис. 15 показано устройство электронно-лучевой трубки с электростатической фокусировкой и электростатическим отклонением луча . В трубке имеется оксидный подогревный катод с эмиттирующей поверхностью, обращенной к отверстию в модуляторе. На модуляторе относительно катода устанавливается небольшой отрицательный потенциал. Далее по оси трубки (и по ходу луча) располагается фокусирующий электрод, называемый также первым анодом, его положительный потенциал способствует вытягиванию электронов из прикатодного пространства через отверстие модулятора и формированию из них узкого луча. Дальнейшую фокусировку и ускорение электронов осуществляет поле второго анода (ускоряющего электрода). Его потенциал в трубке наиболее положительный и составляет единицы – десятки киловольт. Совокупность катода, модулятора и ускоряющего электрода образует электронную пушку (электронный прожектор). Неоднородное электрическое поле в пространстве между электродами действует на электронный пучок как собирательная электростатическая линза. Электроны под действием этой линзы сходятся в точку на внутренней стороне экрана. Экран изнутри покрыт слоем люминофора – вещества, преобразующего энергию потока электронов в свет. Снаружи место падения потока электронов на экран светится.

Для управления положением светящегося пятна на экране и тем самым получения изображения электронный луч отклоняют по двум координатам с помощью двух пар плоских электродов – отклоняющих пластин X и Y. Угол отклонения луча зависит от напряжения, приложенного к пластинам. Под действием переменных отклоняющих напряжений на пластинах луч обегает разные точки на экране. Яркость свечения точки зависит от силы тока луча. Для управления яркостью подают переменное напряжение на вход модулятора Z. Для получения устойчивого изображения периодического сигнала осуществляют его периодическую развертку на экране, синхронизируя линейно изменяющееся напряжение развертки по горизонтали X исследуемым сигналом, который одновременно поступает на пластины вертикального отклонения Y. Таким путем формируют изображения на экране ЭЛТ. Электронный луч обладает малой инерционностью.

Кроме электростатической, применяется и магнитная фокусировка электронного луча. Для нее используют катушку с постоянным током, в которую вставляют ЭЛТ. Качество магнитной фокусировки выше (меньше размер пятна, меньше искажения), однако магнитная фокусировка громоздкая и непрерывно потребляет энергию.



Широко применяется (в кинескопах) магнитное отклонение луча, осуществляемое двумя парами катушек с токами. В магнитном поле электрон отклоняется по радиусу окружности, и угол отклонения может быть существенно большим, чем в ЭЛТ с электростатическим отклонением. Однако быстродействие магнитной отклоняющей системы невысокое из-за инерционности катушек с током. Поэтому в осциллографических трубках применяют исключительно электростатическое отклонение луча как менее инерционное.

Экран является важнейшей частью ЭЛТ. В качестве электролюминофоров применяют различные неорганические соединения и их смеси, например, сульфиды цинка и цинка-кадмия, силикат цинка, вольфраматы кальция и кадмия и т.п. с примесями активаторов (меди, марганца, висмута и др.). Основные параметры люминофора: цвет свечения, яркость, сила света пятна, световая отдача, послесвечение. Цвет свечения определяется составом люминофора. Яркость свечения люминофора в Кд/м 2

B ~ (dn/dt)(U-U 0) m ,

где dn/dt – поток электронов в секунду, то есть, ток луча, А;

U 0 - потенциал свечения люминофора, В;

U – ускоряющее напряжение второго анода, В;

Сила света пятна пропорциональна яркости. Световая отдача – это отношение силы света пятна к мощности луча в Кд/Вт.

Послесвечение – это время, в течение которого яркость пятна после выключения луча спадает до 1% первоначального значения. Различают люминофоры с очень коротким (менее 10 мкс) послесвечением, с коротким (от 10 мкс до 10 мс), средним (от 10 до 100 мс), длительным (от 0,1 до 16 с) и очень длительным (более 16 с) послесвечением. Выбор величины послесвечения определяется областью применения ЭЛТ. Для кинескопов применяют люминофоры с малым послесвечением, так как изображение на экране кинескопа непрерывно меняется. Для осциллографических трубок используют люминофоры с послесвечением от среднего до очень длительного, в зависимости от частотного диапазона подлежащих отображению сигналов.

Важный вопрос, требующий более подробного рассмотрения, связан с потенциалом экрана ЭЛТ. Когда электрон попадает на экран, он заряжает экран отрицательным потенциалом. Каждый электрон подзаряжает экран, и его потенциал становится все более отрицательным, так что очень быстро возникает тормозящее поле, и движение электронов к экрану прекращается. В реальных ЭЛТ это не происходит, потому что каждый электрон, попавший на экран, выбивает из него вторичные электроны, то есть, имеет место вторично-электронная эмиссия. Вторичные электроны уносят с экрана отрицательный заряд, а для их удаления из пространства перед экраном внутренние стенки ЭЛТ покрыты проводящим слоем на основе углерода, электрически соединенным со вторым анодом. Для того, чтобы этот механизм работал, коэффициент вторичной эмиссии , то есть, отношение числа вторичных электронов к числу первичных, должно превышать единицу. Однако у люминофоров коэффициент вторичной эмиссии К вэ зависит от напряжения на втором аноде U a . Пример такой зависимости изображен на рис. 16, откуда следует, что потенциал экрана не должен превышать величину

U a max , иначе яркость изображения будет не увеличиваться, а уменьшаться. В зависимости от материала люминофора напряжение U a max = 5…35 кВ. Для повышения предельного потенциала экран изнутри покрывают тонкой проницаемой для электронов пленкой металла (обычно алюминия – алюминированый экран), электрически соединенной со вторым анодом. В этом случае потенциал экрана определяется не коэффициентом вторичной эмиссии люминофора, а напряжением на втором аноде. Это позволяет использовать более высокое напряжение второго анода и получать более высокую яркость свечения экрана. Яркость свечения возрастает также и из-за отражения света, излучаемого вовнутрь трубки, от алюминиевой пленки. Последняя прозрачна лишь для достаточно быстрых электронов, поэтому напряжение второго анода должно превышать 7…10 кВ.

Срок службы электронно-лучевых трубок ограничивается не только потерей эмиссии катодом, как у других электровакуумных приборов, но также и разрушением люминофора на экране. Во-первых, мощность электронного луча используется крайне неэффективно. Не более двух процентов ее превращаются в свет, в то время как более 98% лишь нагревают люминофор, при этом происходит его разрушение, выражающееся в том, что постепенно световая отдача экрана снижается. Выгорание происходит быстрее при увеличении мощности потока электронов, при снижении ускоряющего напряжения, а также более интенсивно в местах, на которые луч падает большее время. Другой фактор, снижающий срок службы электронно-лучевой трубки, - это бомбардировка экрана отрицательными ионами, образующимися из атомов оксидного покрытия катода. Разгоняясь ускоряющим полем, эти ионы движутся к экрану, проходя отклоняющую систему. В трубках с электростатическим отклонением ионы отклоняются так же эффективно, как и электроны, поэтому попадают на разные участки экрана более или менее равномерно. В трубках с магнитным отклонением ионы отклоняются слабее из-за своей многократно большей массы, чем у электронов, и попадают, в основном, в центральную часть экрана, с течением времени образуя на экране постепенно темнеющее так называемое «ионное пятно». Трубки с алюминированным экраном гораздо менее чувствительны к ионной бомбардировке, так как пленка алюминия преграждает путь ионам к люминофору.

Наиболее широко применяются два типа электронно-лучевых трубок: осциллографические и кинескопы . Осциллографические трубки предназначены для отображения разнообразных процессов, представленных электрическими сигналами. Они имеют электростатическое отклонение луча, так как оно позволяет осциллографу отображать более высокочастотные сигналы. Фокусировка луча также электростатическая. Обычно осциллограф используется в режиме с периодической разверткой: на пластины горизонтального отклонения от внутреннего генератора развертки поступает пилообразное напряжение с постоянной частотой (напряжение развертки ), к пластинам вертикального отклонения прикладывается усиленное напряжение исследуемого сигнала. Если сигнал периодический и его частота в целое число раз превышает частоту развертки, на экране возникает неподвижный график сигнала во времени (осциллограмма ). Современные осциллографические трубки по конструкции сложнее, чем изображенная на рис. 15, они имеют большее количество электродов, применяются также двухлучевые осциллографические ЭЛТ, имеющие двойной комплект всех электродов при одном общем экране и позволяющие отображать синхронно два разных сигнала.

Кинескопы представляют собой ЭЛТ с яркостной отметкой , то есть, с управлением яркостью луча путем изменения потенциала модулятора; они применяются в бытовых и промышленных телевизорах, а также мониторах компъютеров для преобразования электрического сигнала в двумерное изображение на экране. От осциллографических ЭЛТ кинескопы отличаются большими размерами экрана, характером изображения (полутоновое на всей поверхности экрана), применением магнитного отклонения луча по двум координатам, относительно малым размером светящегося пятна, жесткими требованиями к стабильности размеров пятна и линейности разверток. Наиболее совершенными являются цветные кинескопы для мониторов компъютеров, они имеют высокое разрешение (до 2000 строк), минимальные геометрические искажения растра, правильную цветопередачу. В разное время выпускались кинескопы с размером экрана по диагонали от 6 до 90 см. Длина кинескопа по его оси обычно немного меньше размера диагонали, максимальный угол отклонения луча 110…116 0 . Экран цветного кинескопа изнутри покрыт множеством точек или узких полос из люминофоров разных составов, преобразующих электрический луч в один из трех основных цветов: красный, зеленый, голубой. В цветном кинескопе три электронные пушки, по одной на каждый основной цвет. При развертке по экрану лучи перемещаются параллельно и засвечивают соседние участки люминофора. Токи лучей разные и зависят от цвета получаемого элемента изображения. Кроме кинескопов для непосредственного наблюдения, существуют проекционные кинескопы, имеющие при небольших размерах высокую яркость изображения на экране. Это яркое изображение затем проецируют оптическими средствами на плоский белый экран, получая изображение большого размера.

Принцип работы электронно-лучевой трубки построен на испускании электронов отрицательно заряженным термокатодом, которые затем при­тягиваются положительно заряженным анодом и собираются на нем. Это принцип работы старой электронной лампы с термокатодом.

В ЭЛТ высокоскоростные электроны испускаются электронной пуш­кой (рис. 17.1). Они фокусируются электронной линзой и направляют­ся к экрану, который ведет себя как положительно заряженный анод. Экран покрыт изнутри флуоресцирующим порошком, который начинает светиться под ударами быстрых электронов. Электронный пучок (луч), испускаемый электронной пушкой, создает неподвижное пятно на экра­не. Для того чтобы электронный пучок оставил след (линию) на экране, его нужно отклонять как в горизонтальном, так и в вертикальном напра­влениях - Х и Y.

Рис. 17.1.

Методы отклонения пучка

Существует два метода отклонения пучка электронов в ЭЛТ. В электростатическом методе используются две параллельные пластины, между которыми создается разность электрических потенциалов (рис. 17.2(а)). Электростатическое поле, возникающее между пластинами, отклоняет электроны, попадающие в область действия поля. В электромагнитном методе пучок электронов управляется магнитным полем, создаваемым электрическим током, протекающим через катушку. При этом, как по­казано на рис. 17.2(б), применяются два набора управляющих катушек (в телевизорах они называются отклоняющими катушками). Оба метода обеспечивают линейное отклонение.


Рис. 17.2. Электростатический (а) и электромагнитный (б)

методы отклонения электронного пучка.

Однако метод электростатического отклонения имеет более широкий частотный диапазон, именно поэтому его применяют в осциллографах. Электромагнитное отклонение лучше подходит для высоковольтных трубок (кинескопов), работающих в те­левизорах, и к тому же более компактно в реализации, поскольку обе катушки располагаются в одном и том же месте вдоль горловины теле­визионной трубки.

Конструкция ЭЛТ

На рис. 17.3 дано схематическое представление внутреннего устройства электронно-лучевой трубки с электростатической отклоняющей систе­мой. Показаны различные электроды и соответствующие им потенциалы. Электроны, испускаемые катодом (или электронной пушкой), проходят через небольшое отверстие (апертуру) в сетке. Сетка, потенциал которой отрицателен по отношению к потенциалу катода, определяет интен­сивность или число испускаемых электронов и, таким образом, яркость пятна на экране.


Рис. 17.3.


Рис. 17.4.

Затем электронный пучок проходит сквозь электрон­ную линзу, фокусирующую пучок на экран. Конечный анод А 3 имеет потенциал в несколько киловольт (по отношению к катоду), что соот­ветствует диапазону сверхвысоких напряжений (СВН). Две пары откло­няющих пластин D 1 и D 2 обеспечивают электростатическое отклонение пучка электронов в вертикальном и горизонтальном направлениях соот­ветственно.

Вертикальное отклонение обеспечивают Y-пластины (пластины верти­кального отклонения), а горизонтальное - Х-пластины (пластины гори­зонтального отклонения). Входной сигнал подается на Y-пластины, кото­рые отклоняют электронный пучок вверх и вниз в соответствии с ампли­тудой сигнала.

X-пластины заставляют пучок перемещаться по горизонтали от одно­го края экрана к другому (развертка) с постоянной скоростью и затем очень быстро возвращаться в исходное положение (обратный ход). На Х- пластины подается сигнал пилообразной формы (рис. 17.4), вырабатывае­мый генератором. Этот сигнал называют сигналом временной развертки.

Подавая соответствующим образом сигналы на Х- и Y-пластины, можно получить такое смещение электронного пучка, при котором на экране ЭЛТ будет «прорисовываться» точная форма входного сигнала.

В этом видео рассказывается об основных принципах работы электронно-лучевой трубки:



Поделиться