Эксплуатация месторождений высоковязкой нефти. Добыча высоковязкой нефти

Нефть до настоящего времени является незаменимым полезным ископаемым, применяемым во многих сферах человеческой деятельности. Даже не смотря на успешные попытки найти ей альтернативу, нефть все равно остается очень востребованным продуктом. Это приводит к тому, что извлечение нефтяных запасов из земных недр осуществляется колоссальными темпами, в связи с чем, залежи нефти очень быстро сокращаются, при этом, не успевая заново образоваться. Таким образом, на смену обычной нефти, которую также называют легкой, приходит более тяжелая нефть.

Стоит отметить, что абсолютно все запасы нефти в мире классифицируются согласно ее плотности. Таким образом, нефть принято разделять на следующие типы:

  1. Суперлегкая нефть. Отличается своей малой плотностью, которая менее 0,780 г/см3 и градусами АРІ, превышающими 50.
  2. Сверхлегкая. Плотность данного типа находится в диапазоне от 0,781 до 0,820 г/см3. Градусы АРІ сосавляют 41,1 - 50,0.
  3. Легкая. Имеет плотность в пределах 0,821 - 0,870 г/см3. Ее градусы АРI - 31,1 - 41,0.
  4. Средняя нефть. Ее плотность составляет 0,871 - 0,920 г/см3, а градусы АРI - 22,3 - 31,0
  5. Тяжелая нефть. Плотность колеблется от 0,921 до 1,000 г/см3. Градусы АРI - 10,0 - 22,2.
  6. Сверхтяжелая нефть имеет плотность, превышающую 1,000 г/см3. Также она отличается своей вязкостью, которая меньше 10 000 мПа*с.
  7. Природный битум. Плотность более 1,000 г/см3. Вязкость более 10 000 мПа*с.

Стоит отметить, что градусы АРI двух последних видов нефти составляют менее 10.

Традиционно, добывается легкая нефть. Однако, как было сказано выше, ее запасы постепенно истощаются, и в этом случае, ей на смену приходит более тяжелая нефть или высоковязкая нефть.

Так, тяжелой нефтью называется нефть, имеющая очень высокую плотность, а также обладающая такими физическими свойствами, которые не позволяют доставить ее из земных недр на дневную поверхность с помощью традиционных методов. Когда речь идет о тяжелой (высоковязкой) нефти, как правило, подразумевается вся нефть, имеющая плотность свыше 0,920 г/см3, наряду с природными битумами.

Все тяжелые нефти и природные битумы отличаются наличием в своем составе достаточно большого количества смолисто-асфальтовых веществ, а также азотосодержащих, хлорсодержащих, кислородосодержащих, серосодержащих соединений и металлов.

Залежи высоковязкой нефти располагаются, как правило, в местах пересечений геологических бассейнов. Такая нефть образовывается из легкой нефти в результате разрушения низкомолекулярных ее компонентов бактериями, а также путем вымывания водой и испарением.

По некоторым данным, на сегодняшний день земные недра содержат запасы высоковязкой нефти, которые в несколько раз превышают запасы легкой. Согласно предоставленным данным Институтом Мировых Ресурсов, наибольшие месторождения высоковязкой нефти расположены на территории Канады и Венесуэлы.

Стоит отметить, что в связи с физическими свойствами такой нефти, ее добыча, транспортировка и переработка вызывает массу сложностей. Тяжелую нефть невозможно добывать теми же методами, которые применяются для добычи легкой нефти. Для этого используют различные иные методы, связанные, в первую очередь, с понижением плотности полезного ископаемого. Ведь более жидкая нефть гораздо легче движется по нефтепроводу.

Разжижить тяжелую нефть можно следующими способами:

  1. Добавлением к высоковязкой нефти углеводородов или более легкой нефти. Несомненно, это существенно облегчает как саму нефть, так и ее текучесть, а соответственно, и процесс добычи. Однако, данный способ имеет два больших недостатка. Первый из них заключается в дополнительных расходах, а второй состоит в отсутствии постоянной доступности легких нефтяных фракций.
  2. Нагреванием трубопровода, по которому нефть поступает на дневную поверхность. Для осуществления данного способа трубопровод по всей своей длине оборудуется специальной техникой. Недостаток данного метода состоит в достаточно большой потере нефти во время добычи (до 20%). Это связано с тем, что эта часть нефти используется для работы нагревательного оборудования, установленного вдоль трубопровода.
  3. Подмешиванием в нефть воды и эмульгаторов с целью получения текучей водной эмульсии. Однако, данный метод рациональный только в том случае, если используется эмульгатор невысокой стоимости, который при этом способен образовывать стабильные эмульсии. Если в образованной эмульсии содержание нефти не превышает 50%, то метод считается нерациональным, поскольку энергетические затраты во время ее извлечения вырастают ровно в половину. В качестве эмульгаторов могут быть использованы сульфатные или карбоксилированные этоксилаты. Однако, они отличаются своей дороговизной, а также дефицитом, что, в свою очередь, влияет на стоимость нефти, добытой таким способом, в сторону увеличения.
  4. Подмешиванием в тяжелую нефть водного раствора диспергатора, в результате чего образовываются эмульгирующие соединения, состоящие из этоксилированых алкилфенолов. Суть данного способа состоит в нагнетании раствора в скважину, где и происходит его соединение с нефтью, залегающей на глубине значительно большей от места нахождения откачивающего насоса. Работа насоса создает колебания, которые способствуют смешиванию нефти с дисператором, а также подачи нефти по трубопроводу на дневную поверхность. Стоит отметить, что на смешивания никоим образом не имеет влияние размер и твердость частиц, из которых состоит нефтепродукт.
  5. Подачей в призабойную пластовую область разижителя. Однако, этот способ также является затратным, поскольку закачку разжижителя необходимо периодически повторять. Однако, если разжижитель утяжеленный, то во время закачки происходит его проникновение на глубину, которая значительно ниже уровня насоса. Таким образом, получается вытеснение утяжеленным разжижителем нефти, как более легкого продукта. В составе такого разжижителя находится хлоркальциевая вода, смесь двух ПАВ, а также гидрооись щелочных металлов. Метод отличается улучшением работы глубинных насосов, повышение коэффициента подачи нефтяного сырья, снижением давления на устье скважины. Кроме этого, его использование не связано с применением дополнительного оборудования.
  6. Внутрипластовым горением. Данный метод является принципиально новым. Его суть заключается в использовании энергии, которая образуется в результате горения сырья прямо в пласте во время закачки в него воздушного пространства. Он применяется как для добычи высоковязкой нефти, так и для извлечения легкой. Стоит сказать, что метод уже неоднократно был использован на некоторых месторождениях и зарекомендовал себя очень удачно.

Для осуществления добычи высоковязкой нефти последним методом, необходимо в скважину напустить воздух, тем самым спровоцировав окислительный процесс с повышением температуры. Благодаря этому происходит испарение воды, которая превращаясь в пар, образовывает нефтяной вал. Именно он и вытесняет наружу через трубу образующиеся газы вместе с нефтью.

Различают три типа внутрипластового горения: сухое, влажное и сверхвлажное. Самым популярным является влажное горение, поскольку оно продвигает фронт горения, снижает расход воздуха, а также уменьшает концентрацию нефти, которая сжигается в пласте.

Таким образом, стоит сказать, что не смотря на дополнительные затраты, добыча высоковязкой нефти в некоторых регионах набирает свою популярность. В тоже время, очень много внимания уделяется методам, благодаря которым возможно повысить нефтеотдачу трудно-извлекаемых запасов.

УДК 553.982:539.551

Характеристика высоковязких нефтей и условия залегания их скоплений

Э .М. ХАЛИМОВ, И.М. КЛИМУШИН, Л.И. ФЕРДМАН, Н.И. МЕССИНЕВА, Л.Н. НОВИКОВА (ВНИИ)

Снижение темпов прироста ресурсов нефти обусловливает повышенный интерес к высоковязким нефтям (ВВН), число месторождений которых во многих странах мира в последние годы значительно возросло. Так, в СССР количество месторождений таких нефтей, открытых за период 1961-1984 гг., увеличилось в несколько раз. В ряде капиталистических стран (США, Канада, Венесуэла) разработка месторождений ВВН играет заметную роль в стабилизации уровней добычи нефти .

Термин «высоковязкие нефти» не имеет строгого количественного определения. Это касается как нижней, так и верхней границ величин вязкости (), которые определяются главным образом с технологических позиций. По существующим у нас в стране представлениям к высоковязким относят нефти с >=0,03 Па*с в пластовых условиях, исходя из предположения, что применение обычного (чистого) заводнения эффективно при вытеснении нефтей с вязкостью меньше этого значения. В системе Миннефтепрома эта величина используется как при дифференцированном анализе структуры запасов нефти в стране, так и при оценке перспектив добычи ее за счет применения новых методов повышения нефтеотдачи. Имеются, однако, публикации , в которых в качестве нижней границы вязкости ВВН называются 0,01 и 0,04 Па*с.

В иностранной литературе, особенно американской, чаще употребляется термин «тяжелые нефти», который отождествляется с понятием «высоковязкие нефти». По разным источникам , к ним относят нефти плотностью () свыше 0,920-0,935 г/см 3 (10-20° АНИ). Вообще же можно высказать предположение, что использование плотности нефти в качестве классификационного критерия обусловлено большей простотой и оперативностью ее определения по сравнению с вязкостью.

При существовании общей зависимости между плотностью и вязкостью нефтей в Советском Союзе и за рубежом выявлено достаточно большое число залежей, содержащих тяжелые, но не высоковязкие нефти или высоковязкие, но не тяжелые нефти . В понятии «тяжелые высоковязкие нефти» смешаны две разные характеристики нефтей, используемые в промысловой практике для различных целей. Плотность нефтей представляет интерес для специалистов, занимающихся вопросами ее переработки, а вязкость привлекает внимание специалистов в области разработки нефтяных месторождений.

Кроме того, причины утяжеления и снижения подвижности нефтей едины и в то же время различны. В случаях их единой природы, например, процессов деасфальтизации или биодеградации, отмечается одновременное и чаще всего одномасштабное увеличение плотности и вязкости. Но тяжесть нефтей нередко определяется содержанием в них металлов, механических примесей, серы, однако это не обязательно должно увеличивать вязкость нефтей. В то же время, повышенное содержание нефти. Именно подобного рода особенности влекут нарушение зависимости между различными физико-химическими ха рактеристиками нефтей.

За верхнюю границу вязкости ВВН за рубежом чаще всего принимают величину 10 Па*с . Это обосновывается тем, что залежи нефти вязкостью менее указанной величины в отличие от битумных можно разрабатывать, хотя и неэффективно, на естественном режиме через скважины. В качестве верхней границы плотности ВВН рекомендовались значения от 0,965 до 1 г/см 3 .

У нас в стране определение этой границы осуществлялось либо на основе изучения группового состава нефтей , либо по величине их вязкостей, отмечаемой в большинстве залежей , либо статистическим методом . Именно этим можно объяснить значительные расхождения в величинах некоторых характеристик ВВН, рекомендуемых различными авторами. Причем нередко смешиваются термины «высоковязкие нефти» и «природные битумы» .

Большинство отечественных исследователей указывают величины предельной вязкости ВВН, не превышающие 1-2 Па*с. При этом необходимо отметить низкую степень изученности физико-химических свойств ВВН, особенно на месторождениях Средней Азии и Западной Сибири, по которым имеются лишь единичные их пробы.

Вместе с тем представляется целесообразным за предельную вязкость ВВН принять величину 10 Па*с, учитывая последние данные, нашедшие отражение в материалах XI Мирового нефтяного конгресса , и для приведения используемой в СССР классификации УВ в соответствие с международной.

Хотя вязкость УВ во многом определяет выбор методов и способов их извлечения, однако одного этого параметра недостаточно при отнесении их к тому или иному виду. При решении подобного вопроса необходим комплексный подход и прежде всего учет группового состава УВ. Дифференциация УВ по величине их плотности, как это практикуется за рубежом, на наш взгляд, мало обоснована.

Анализ материалов более чем по 500 залежам ВВН Советского Союза показал, что состав и свойства последних изменяются в широких пределах: вязкость до 15 Па*с, плотность от 0,838 до 0,998 г/ см 3 , содержание (%): смол достигает 72, асфальтенов 14,3 углерода 72,6-86,1, водорода 11,4, серы 5,2.

Изучение изменения группового состава ВВН позволило выделить три группы таких нефтей с учетом характера распределения их вязкости ().

Проведенный анализ выявил существенное различие состава ВВН выделенных групп. Примечателен тот факт, что высокие значения содержания масел (более 80 %) отмечаются по всему диапазону изменения вязкости; в содержании смол подобных перекрытий значительно меньше. В то же время выявляется большая изменчивость наличия смол и асфальтенов по сравнению с содержанием масел.

В условиях частого отсутствия данных о вязкости нефтей практический интерес представляет установление ее взаимосвязи с плотностью. Подобная зависимость для отечественных и зарубежных месторождений нефти и природных битумов приводится в работе , однако точность ее недостаточно высока (коэффициенты корреляции 0,37-0,52).

Основываясь на результатах проведенных нами исследований, была предпринята попытка учесть групповой состав нефтей при изучении зависимости между и . Установлено, что среди основных характеристик состава нефтей относительно устойчивая связь этих двух параметров (коэффициенты корреляции 0,67-0,75) проявляется при учете содержания в них смол ().

Основное применение получаемой зависимости - определение вязкости нефтей по известным двум другим параметрам. Анализ же ее свидетельствует о соответствии названных выше граничных значений некоторых параметров ВВН. Так, их вязкость при предельной плотности, принимаемой многими отечественными и зарубежными исследователями равной 0,965 г/ см 3 , и среднем содержании в них смол около 30 % составляет 2 Па*с, а при максимальном значении =0,998 г/см 3 - около 10 Па*с.

Месторождения ВВН выявлены практически во всех основных нефтедобывающих районах Советского Союза, расположенных в 12 нефтегазоносных бассейнах (НГБ) различных генетических типов.

Наиболее активно процессы образования ВВН происходили в бассейнах впадин и синеклиз древних и молодых платформ. В пределах платформенных НГБ установлено наибольшее число месторождений с исследуемыми нефтями (237), в которых содержится 93,3 % всего количества ВВН. Основная же часть последних приурочена к Волго-Уральскому (34,4 %), Западно-Сибирскому (24,9 %) и Тимано-Печорскому (23,6 %) бассейнам. Вместе с тем они различаются существенно условиями залегания и характеристикой масштабов скоплений ВВН. Так, для первого из них характерно присутствие большого числа мелких, в пределах двух других выявлено соответственно 6 и 13 более значительных по размерам месторождений ВВН.

В бассейнах предгорных прогибов альпийских орогенных поясов рассматриваемые месторождения немногочисленны (14). На их долю приходится всего 1,3 % всего количества ВВН, из которых более половины сосредоточено на месторождениях Азово-Кубанского НГБ.

Бассейны межгорных впадин и прогибов альпийских орогенов включают 39 месторождений ВВН, доля которых составляет 5,4 %.

Залежи ВВН в осадочном разрезе нефтегазоносных бассейнов выявлены в широком диапазоне глубин: от 50 (Доссорское, Танатарское в Казахстане) до 4800м (Сарыкамышское в Таджикистане). Однако наибольшее число залежей, в которых содержится более половины ресурсов ВВН (51,1 %), залегает на глубинах 800-1400 м (). Для них характерны пластовые температуры порядка 23-25 °С и давление 12-14 МПа . Интересно, что относительно крупные скопления ВВН локализуются в интервале глубин от 130 до 950 м.

Отмеченное распределение в целом отвечает тем теоретическим концепциям, в соответствии с которыми процессы превращения нефтей происходили непосредственно в пласте под влиянием тектонических, геохимических и гидродинамических факторов.

Основные ресурсы ВВН (58,2 %) связаны с палеозойскими отложениями (девон, карбон, пермь) нефтегазоносных бассейнов впадин и синеклиз древней Восточно-Европейской платформы. Мезозойские образования контролируют залежи ВВН в бассейнах молодых платформ (35,1 % ресурсов). В НГБ предгорных и межгорных прогибов и впадин скопления ВВН связаны с отложениями палеогена, неогена и частично антропогена.

Залежи ВВН приурочены к терригенным и карбонатным коллекторам, в которых сосредоточено соответственно 63,5 и 26,5 % ресурсов. В отдельных районах они связаны только с терригенными породами (Тюменская область, Азербайджан, о. Сахалин, Краснодарский край, Чечено-Ингушская АССР), в других - только с карбонатными (Оренбургская область, Таджикистан).

В большинстве случаев залежи ВВН находятся совместно с залежами обычных нефтей, обусловливая в определенной степени зональный характер строения нефтяных месторождений.

Подтверждение этого - закономерное уменьшение вязкости нефтей с глубиной (см. ).

Отмечается также и определенная пространственная зональность в размещении месторождений ВВН В пределах НГБ. В бассейнах впадин древних и молодых платформ ареалы распространения залежей ВВН достаточно четко контролируются границами положительных структурных элементов II и III порядков: сводов, валов, мегавалов, как правило, осложняющих центральные части бассейнов. В бассейнах предгорных и межгорных прогибов и впадин наиболее благоприятными структурными условиями для концентрации скоплений ВВН характеризуются прибортовые зоны развития систем антиклинальных складок. При этом масштабы образования скоплений ВВН находятся в прямой зависимости от величины воздымания крупных структурных элементов на завершающем кайнозойском этапе тектогенеза .

Выводы

1. Для решения практических задач целесообразно в качестве основного классификационного критерия нефтей использовать их вязкость в пластовых условиях и изучать ее зависимость от плотности и группового состава.

2. Для более обоснованного установления предельных значений параметров ВВН необходимо значительно увеличить количество проб и число их физико-химических анализов. Предлагаемое в работе предельное значение вязкости ВВН потребует существенного изменения отношения к освоению неглубокозалегающих скоплений УВ, относимых ранее к природным битумам.

3. Месторождения ВВН развиты практически во всех основных нефтедобывающих районах страны. По условиям залегания они аналогичны залежам обычных нефтей, отличаясь меньшими масштабами проявлений, глубиной залегания, пластовыми температурами и давлениями.

СПИСОК ЛИТЕРАТУРЫ

1. Веревкин K .И., Дияшев Р.Н. Классификация углеводородов при выборе методов их добычи.- Нефтяное хоз-во, 1982, № 3, с. 31-34.

2. Геологические факторы формирования скоплений природных бутумов / Э.М. Халимов, И.М. Климушин, Л.И. Фердман, И.С. Гольдберг - Геология нефти и газа, 1984, № 9 , с. 46-52.

3. Депюи Марк А. Разработка месторождений тяжелой нефти.- Нефть, газ и нефтехимия за рубежом, 1982, № 1, с. 34-37.

4. Мартос В.Н. Разработка залежей тяжелых и вязких нефтей. Обзор. Сер. Нефтепромысловое дело. М., ВНИИОЭНГ, 1982, с. 41-42.

5. О классификации и рациональном использовании высоковязкой нефти Татарии / С.X . Айгистова, Р.X . Муслимов, Р.С. Касимов, А.Н. Садыков.- РНТС ВНИИОЭНГ. Сер. Нефтепромысловое дело. М„ 1980, № 2, с. 13-15.

6. Перспективы ввода в разработку залежей тяжелых нефтей и природных битумов / И.М. Мякишев, Р.Н. Дияшев, З.А. Янгуразова, Р.X . Муслимов.- Нефтяное хоз-во, 1983, № 2, с. 32-36.

7. Скороваров Ю.Н., Требин Г.Ф., Капырин Ю.В. Условия залегания тяжелых высоковязких нефтей месторождений СССР.- Геология нефти и газа, 1984, № 7 , с. 11 -13.

8. Формирование и пространственное распределение вязких и твердых нафтидов в нефтегазоносных бассейнах / Н.Н. Лисовский, Э.М. Халимов, Л.И. Фердман, И.М. Климушин - Мат. XXVII Международного геол. конгресса. Секция С, 1-3, т. 13, М., 1984, с. 34-45.

9. Byramjee R.J. Heavy crudes and bitumes categorized to help assess resources, technigues,- Oil and Gas, 1983, vol. 81, No 27, p. 78-82.

10. Martinez A.R., Ion D.C., De Sorsy G.J. Classification and nomenclature systems for petroleum reserves.- Special report for the XI World Petroleum Congress. London , 1983.

Таблица Характеристики пластовых нефтей различной вязкости

Вязкость, Па*с

Плотность, г/см 3

Содержание, %

интервал изменения

среднее значение

коэффициент вариации, %

масел

смол

асфальтенов

интервал изменения

среднее значение

коэффициент вариации, %

интервал изменения

среднее значение

коэффициент вариации, %

интервал изменения

среднее значение

коэффициент вариации, %

0,03-0,1

0,838-0,929

0,886

1,8

66,2-99,0

82,6

9,4

0,2-26,0

14,7

39,8

0,1-8,7

2,7

85,2

Способ добычи высоковязкой нефти включает подлив в затрубное пространство разжижителя, содержащего следующие компоненты, мас.%: анионное поверхностно-активное вещество 0,3-0,7, неионогенное поверхностно-активное вещество 0,8-1,2, гидроокись щелочных металлов 5-40% концентрации 0,5-8,3 и воду хлоркальциевого типа с содержанием хлористых солей до 20% остальное.

Изобретение относится к нефтедобывающей промышленности, а именно к способам добычи высоковязкой нефти. Известен способ добычи высоковязкой нефти путем закачки в призабойную зону пласта разжижителя и последующей его продавки отсепарированной нефтью, закачиваемой по затрубному пространству /I/. При данном способе временно достигается добыча, а после окончания действия разжижителя приходится вновь закачивать свежую порцию его. В результате процесс добычи нефти прерывается, а на подачу новой порции разжижителя приходится тратить значительное время. Такой способ имеет низкую эффективность. Более близким к предлагаемому является способ добычи высоковязкой нефти путем подлива в затрубное пространство разжижителя /2/. В качестве разжижителя по данному способу в затрубное пространство подливают легкую нефть. Так как эта нефть легче, чем добываемая из скважины, то она "плавает" сверху и не оказывает должного воздействия на вязкую тяжелую нефть. Поэтому подливаемая нефть скорее попадает на прием штангового насоса и откачивается из скважины, не оказывая должного разжижающего воздействия на нефть, находящуюся ниже приема насоса. Поэтому эффективность способа низкая, особенно на глубоких скважинах, где продуктивные пласты находятся на значительной глубине по сравнению с глубиной подвески штанговых насосов. К недостаткам способа следует отнести и высокие затраты на доставку легкой нефти с других площадей и необходимость строительства дополнительных коммуникаций для ее приема. Задачей настоящего изобретения является повышение эффективности добычи высоковязкой нефти и снижение затрат при этом. Эта задача достигается тем, что в известном способе добычи высоковязкой нефти путем подлива в затрубное пространство разжижителя, в качестве разжижителя используют состав при следующем соотношении компонентов, мас. анионоактивное ПАВ 0,3-0,7 Неионогенное ПАВ 0,8-1,2 Гидроокись щелочных металлов 5-40% концентрации 0,5-8,3 Вода хлоркальциевого типа с содержанием хлористых солей до 20% Остальное При этом разжижитель подают в затрубное пространство в количестве от 0,2 до 0,35 от объема добываемой нефти и его удельный вес превышает удельный вес добываемой нефти не менее чем на 0,05 г/см 3 . Способ осуществляют следующим образом. На промысле с высоковязкой нефтью монтируют емкость с разжижителем, удельный вес которого выше удельного веса добываемой нефти хотя бы на 0,05 г/см 3 . Емкость обвязывают с нефтяными скважинами и подают в затрубное пространство этих скважин разжижитель с производительностью от 0,2 до 0,35 от объема добываемой нефти. Так как разжижитель тяжелее нефти, то при подливе его в затрубное пространство он опускается ниже приема глубинного насоса, вплоть до призабойной зоны. При опускании разжижитель контактирует со всем столбом нефти, находящимся выше продуктивного пласта, и при этом оказывает комплексное воздействие на высоковязкую нефть. В разжижителе имеется три группы реагентов: вода хлоркальциевого типа, гидроокись щелочных металлов и смесь двух ПАВ. Вода хлоркальциевого типа с содержанием хлористых солей до 20% по составу близка к пластовым водам, являющихся постоянными спутниками нефтяных месторождений, поэтому при смешивании такой воды не происходит нежелательных последствий: ее загущение и пр. Добавка такой воды к нефти обеспечивает снижение межфазного натяжения на границе нефть-вода. Приведенные опыты показали, что если при добавке дистиллированной воды межфазное натяжение на границе нефть-вода составило 27,5 мН/м, то при добавке воды хлоркальциевого типа натяжение снизилось до 20,5 мН/м, а этой же воды с добавкой в нее щелочи до 8,9 мН/м. Такая вода является сильным электролитом. В результате она не только смачивает поверхность труб, но и обволакивает их, что исключает контакт с ними высоковязкой нефти, имеющей высокое трение по металлу. Это дополнительно улучшает условия продвижения нефти от продуктивного пласта до приема насоса. Однако хлористых солей в воде должно быть не больше 20% так как названные выше полезные свойства остаются на том же уровне, а удельный вес разжижителя повышается в значительной мере. Это приводит к дальнейшему увеличению удельного веса добываемой продукции, что вызывает снижение дебита нефтяных скважин. Наличие гидроокиси щелочных металлов дает возможность воздействовать на нафтеновые кислоты, имеющиеся в большом количестве в вязких нефтях. В результате взаимодействия образуются соли нафтеновых кислот, хорошо растворимые в воде. Соли нафтеновых кислот являются активными ПАВ, которые дополнительно снижают силы поверхностного натяжения на границе нефть-металл-вода. Кроме этого, эти ПАВ являются активными диспергаторами асфальто-смолисто-парафиновых образований /АСПО/ и снижают адгезию АСПО к металлу. Добавка смеси двух ПАВ: анионоактивных и неионогенных обеспечивает достижение ряда полезных моментов, которые не могут быть достигнуты при одиночном применении этих или других ПАВ. Так как данная смесь ПАВ /дальше СПАВ/ в своем составе имеет ароматические соединения, то она является активным растворителем АСПО. Одновременно эта СПАВ является диспергатором парафина. При разрушении парафина разрушается и АСПО. Раствор СПАВ в воде хлоркальциевого типа приводит к снижению температуры застывания высокопарафинистой нефти, а такими являются все высоковязкие нефти. Проведенные лабораторные исследования с нефтями Бугреватовского месторождения показали, что температура застывания нефти снижалась с 73-65 o С до 41-27 o С. Это приводит к тому, что при имеющихся температурных условиях добычи нефти в условиях Украины кристаллизация парафина почти полностью исключена при внедрении данного способа добычи. Добавка таких СПАВ предотвращает образование стойких водонефтяных эмульсий, которые ухудшают условия откачки нефти как по стволу скважины, так и по нефтепроводам. Добавки данных СПАВ снижают скорость выделения газа из нефти, за счет чего улучшается работа глубинных насосов. В растворе воды хлоркальциевого типа и с добавкой щелочи улучшается растворимость этих ПАВ. Такая система повышает олефильность мицелярных структур /а такими являются высоковязкие нефти/. За счет этого обеспечивается более надежное смачивание частичек парафина, предотвращается их слипание и отложение на стенках труб. Таким образом, каждая из входящих групп реагентов в состав разжижителя оказывает свое воздействие на вязкую нефть, а находясь вместе, они дополняют друг друга и усиливают общий эффект. Состав разжижителя подобран опытным путем. При меньших величинах состава компонентов, чем нижнее значение, не достигается нужного разжижения и падает добыча нефти. При значениях, больше чем верхний предел компонентов, указанный в формуле, резко увеличивается расход реагентов, а добыча нефти не увеличивается. При подаче разжижителя меньше 0,2 объема добываемой нефти качественного разжижения нефти не достигается и не достигается намеченной добычи нефти. При подаче разжижителя больше чем 0,35 от объема добываемой нефти, резко увеличивается расход химических реагентов, трудозатрат на их приготовление, а увеличения добычи не достигается. Более того, начиная с 0,40 от объема добываемой нефти, дебит начинает снижаться за счет того, что увеличивается удельный вес добываемой продукции. Примеры осуществления способа: Пример 1. Скважина глубиной 3800 м. Нефтяной горизонт на глубине 3639-3697 м. Нефть высоковязкая и высокопарафинистая: плотность нефти в поверхностных условиях 0,961 г/см 3 , вязкость при температуре 50 o С в поверхностных условиях 1000 спз, содержание смол 14,6% Возможный дебит скважины 9 тс/сут. Приготовили 3,5 м 3 разжижителя следующего состава, мас. Анионоактивное ПАВ /ТЭАС-М/ 0,57 NаОН 40% концентрации 5,14 Неионогенное ПАВ /неонол/ 1 Пластовая вода хлоркальциевого типа с содержанием хлористых солей 13,7% и удельного веса 1,12 г/см 3 Остальное В объемном выражении это составило, л:
ТЭАС-М 20
NаОН 180
Неонол 35
Пластовая вода 3265. Все это тщательно перемешали и получили состав удельного веса 1,13 г/см 3 . Превышение удельного веса такого состава над удельным весом нефти составило 1,13 0,961 0,169 г/см 3 , что достаточно для обеспечения нормального "продвижения" разжижителя сквозь столб нефти от приема насоса до призабойной зоны. Ввиду достаточно высокого превышения удельного веса подачу разжижителя производили со скоростью 0,2 от объема добываемой нефти, т.е. 9 0,961 х 0,2 1,87 м 3 /сут. После выхода на рабочий режим добываемая со скважины продукция имела следующие параметры: удельный вес 0,995 г/см 3 , вязкость 81 спз. Пример 2. Данные по скважине те же. Плотность нефти 0,92 г/см 3 , вязкость в поверхностных условиях при температуре 50 o С 950 спз. Дебит скважины 5 тс/сут. Приготовили 5 м 3 разжижителя следующего состава, мас. Анионоактивное ПАВ /сульфанол/ 0,57
КОН 20% концентрации 6,3
Неионогенное ПАВ/дисольван/ 0,8
Пластовая вода хлоркальциевого типа с содержанием хлористых солей 20% Остальное. В объемном выражении это составило, л:
сульфанол 28,5
КОН 315
Дисольван 40
Пластовая вода 4616,5. Все это тщательно перемешали и получили разжижитель удельного веса 1,18 г/см 3 . Превышение удельного веса приготовленного состава над удельным весом нефти равно 1,18 0,92 0,26 г/см 3 . Ввиду значительного превышения удельного веса разжижителя подачу его сделали минимальной и равной 0,2 от объема дебита скважины: 5 0,92 х 0,2 0,92 м 3 /сут. Приготовленного раствора хватит на 5 0,92 5,4 сут. После выхода на рабочий режим добываемая продукция имела следующие параметры: удельный вес 0,97 г/см 3 , вязкость 96 спз. П р и м е р 3. Плотность нефти на другом блоке этого же месторождения составила 0,89 г/см 3 , вязкость 910 спз, дебит скважины 6 тс/сут. Приготовили 4 м 3 разжижителя следующего состава, мас. Анионоактивное ПАВ /реагент ДС-РАС/ 0,3
NаОН 30% концентрации 0,5
Неионогенное ПАВ /превоцел/ 1,1
Пластовая вода хлоркальциевого типа с содержанием хлористых солей 6% Остальное. В объемном выражении это составило, л:
Реагент ДС-РАС 12
Каустическая сода 20
Превоцел 44
Пластовая вода 3924. Все это тщательно перемешали и получили состав удельного веса 1,05 г/см 3 , превышение удельного веса разжижителя над удельным весом нефти составило 1,05 0,89 0,16 г/см 3 , что достаточно для нормального опускания состава по всему стволу скважины. Подачу разжижителя делали со скоростью 0,35 от ожидаемого дебита нефти, т.е. 6 0,89 x 0,35 2,36 м 3 /сут. После выхода на рабочий режим добываемая продукция имела следующие параметры: удельный вес 0,94 г/см 3 , вязкость 90 спз. Глубинно-насосное оборудование при таких параметрах продукции работало нормально. П р и м е р 4. В другом блоке месторождения плотность нефти 0,85 г/см 3 , вязкость 521 спз, ожидаемый дебит нефти 8 тс/сут. Для таких условий приготовили 12 м 3 разжижителя следующего состава:
ТЭАС-М /анионоактивное ПАВ/ 0,7
NаОН 5% концентрации 8,3
Неионогенное ПАВ /OП-1O/ 1,2
Пластовая вода хлоркальциевого типа с содержанием хлористых солей 9% остальное. В объемном выражении это составило, л:
ТЭАС-М 84
Каустическая сода 996
ОП-10 144
Пластовая вода 10776. Все это тщательно перемешали и получили состав удельного веса 1,07 г/см 3 . Разница удельных весов составила 1,07 0,85 0,22 г/см 3 , что достаточно для нормальной добычи высоковязкой нефти по данному способу. Учитывая достаточное превышение удельного веса разжижителя над нефтью, подачу его сделали равной 0,25 от объема добываемой нефти: 8 0,85 х 0,25 2,35 м 3 /сут. После выхода на рабочий режим добываемая продукция имела следующие параметры: удельный вес 0,901 г/см 3 , вязкость 89 спз. С внедрением данного способа добычи высоковязкой нефти улучшилась работа глубинно-насосного оборудования, повысился коэффициент подачи штангового глубинного насоса. Снятые динамограммы свидетельствовали о нормальной работе всего глубинного оборудования. Уменьшилось давление на устье скважины на 12 кгс/см 2 . Технология способа проста и для ее внедрения не требуется дополнительного оборудования. С внедрением способа снижаются затраты на добычу высоковязких нефтей и их транспортировку до объектов подготовки нефти.

Формула изобретения

Способ добычи высоковязкой нефти путем подлива в затрубное пространство разжижителя, отличающийся тем, что в качестве разжижителя используют состав при следующем соотношении компонентов, мас. Анионное поверхностно-активное вещество 0,3 0,7
Неионогенное поверхностно-активное вещество 0,8 1,2
Гидроокись щелочных металлов 5-40%-ной концентрации 0,5 8,3
Вода хлоркальциевого типа с содержанием хлористых солей до 20% Остальное

Характерной особенностью современной нефтедобычи является увеличение в мировой структуре сырьевых ресурсов доли трудноизвлекаемых запасов (ТИЗ), к которым относится тяжёлая нефть с вязкостью 30 мПа*с и выше. Запасы таких видов нефти составляют не менее 1 трлн. тонн, что более чем в пять раз превышает объём остаточных извлекаемых запасов нефти малой и средней вязкости. Во многих промышленно развитых странах мира тяжёлая нефть рассматривается в качестве основной базы развития нефтедобычи на ближайшие годы. Наиболее крупными запасами тяжёлой и битуминозной нефти располагает Канада и Венесуэла, а также Мексика, США, Кувейт, Китай. Россия также обладает значительными ресурсами ТИЗ, и их объём составляет около 55 % от общих запасов российской нефти. Российские месторождения высоковязкой нефти (ВВН) расположены в Пермской области, Татарстане, Башкирии и Удмуртии. Наиболее крупные из них: Ван-Еганское, Северо-Комсомольское, Усинское, Русское, Гремихинское и др., при этом более 2/3 всех запасов высоковязкой нефти находятся на глубинах до 2000 м. Добыча ТИЗ нефти, транспортировка её к пунктам сбора и подготовки и, наконец, переработка с целью получения конечных продуктов - одна из актуальных задач нефтедобывающей промышленности.

На вопросы корреспондента журнала ТОЧКА ОПОРЫ отвечают заведующий лабораторией Института биохимической физики им. Н.М.Эмануэля РАН (ИБХФ РАН), д.х.н., научный руководитель проекта: «Технология термохимического стимулирования нефтедобычи» Евгений Николаевич АЛЕКСАНДРОВ и старший научный сотрудник, к.т.н. научно-производственного предприятия «Энергомаг» (ООО НПП «Энергомаг») Юрий Николаевич ТЕРЕХОВ.

ТОЧКА ОПОРЫ:

– Какие методы, технологии и оборудование рекомендуете применять с целью повышения нефтеотдачи при добыче ТИЗ?

Юрий ТЕРЕХОВ:

– На основе имеющегося опыта работы НПП «ЭНЕРГОМАГ» на месторождениях Татарии, Башкирии, Удмуртии, Тюменского региона и Китая с вязкими и высоковязкими парафинистыми нефтями можно рекомендовать экологически чистые безреагентные технологии виброакустического и магнитовиброакустического воздействия на флюид, подземное оборудование скважины и призабойную зону продуктивного пласта. Виброакустические колебания воздействуют на все вышеперечисленные объекты, а магнитное воздействие распространяется только на флюид.

Евгений АЛЕКСАНДРОВ:

– На данный момент лишь две технологии стимулирования добычи углеводородов обеспечивают сочетание больших затрат с надёжно прогнозируемой прибылью. Это гидроразрыв пласта (ГРП) холодной жидкостью (США) и нагрев пласта пере-гретым паром (Канада). Привлекательность тепловых методов связана с сильным уменьшением вязкости и возможностью значительного увеличения скорости добычи нефти при нагреве продуктивного плата. Например, при нагреве на 100°С тяжёлой нефти плотностью 0,96 т/м3 вязкость нефти уменьшается в 16 раз. Дебит нефти в случае достаточно высокого пластового давления может увеличиться приблизительно в 16 раз. При нагреве на 100°С обычной нефти плотностью 0,86 т/м3 вязкость нефти уменьшается в 7-8 раз, соответственно, дебит нефти также может быть значительно увеличен.

Ведущие технологии (ГПР и SAGD) усовершенствованы путём разогрева пласта теплом химических реакций бинарных смесей (БС). Бинарные смеси - это жидкие растворы химических реагентов, которые движутся по двум отдельным каналам и при встрече в зоне продуктивного пласта под пакером реагируют, выделяя газ и тепло, уходящее в пласт под давлением, созданным самой реакцией.

ТОЧКА ОПОРЫ:

– На каких месторождениях ВВН были получены положительные результаты при использовании предлагаемых технологий, методов и оборудования? Что было отмечено в ходе испытаний и эксплуатации предлагаемого оборудования?

Юрий ТЕРЕХОВ:

– Технология безреагентного вибро-акустического воздействия (ВАВ) с устья скважины широко использовалась на месторождениях ТатРИТЭКнефть (Луговом и Васильевском) на скважинах, оборудованных ШГН, и добывающих нефть с вязкостью 60-980 сПуаз. Работы проводились по ликвидации гидратно-парафиновых пробок (ЛГПП), асфальтеносмолистых отложений (АСПО) и запуска скважин в штатный режим работы.

Отмечено, что после ВАВ произошло увеличение дебита, уменьшение обводнённости флюида, повышение производительности насоса (увеличение эффективной длины хода плунжера, повышение коэффициентов заполнения и подачи), снижение разбега нагрузки на колонну насосных штанг, очистка клапанов насоса.

На Шафрановском месторождении НГДУ «Аксаковнефть» (Башнефть) были получены высокие результаты на скважине № 137, оборудованной ШГН и работающей 3-4 тёплых месяца в году. После ЛГПП при температуре окружающей среды T = -(18-21)оC и ликвидации отставания КНШ от движения головки балансира скважина запущена в штатный режим работы с замером объёма флюида в мерной ёмкости.

При ВАВ в зимнее время зафиксировано:

Приток составил 4,5 м3/сутки против 1,9 м3/сутки в летнее время;

Производительность насоса возросла в летнее время с 1,9 м3/сутки до 11,2 м3/сутки;

Снижение разбега нагрузки на КНШ с 4088 кгс до 2719 кгс;

Уменьшение вязкости флюида до 2159 сПуаз.

Евгений АЛЕКСАНДРОВ:

– В России, в республиках Татарстан и Удмуртия, Саратовской, Пермской, Оренбургской областях и др., с применением БС была обработана призабойная зона пласта в нескольких десятках скважин. Этот метод обычно использовали в малодебитных скважинах, дававших 1-2 тонны нефти в сутки. С целью прочистки скин-слоя инициировали реакцию от 0,5 до 1,5 тонн растворов БС. Растворы неорганической (минеральной) селитры и инициатора реакции (нитрата натрия), разделённые слоем буферного (инертного) раствора, закачивали в скважину по одному каналу – по насосно-компрессорной трубе (НКТ). Газ, выделившийся после выхода растворов из НКТ и реакции их в обсадной трубе, выходил в пласт. Добавочная нефть (в среднем, 0,6-0,7 тонн в сутки), полученная таким образом, в течение года после обработки окупала затраты. Тепловой вклад БС в этом случае был мал, т.к. во время подготовки скважин к откачке нефти большая часть нагретой породы успевала остыть. Расчёт показал, что технология БС способна конкурировать с ведущими мировыми технологиями только при масштабном прогреве пласта.

Следует отметить также, что из-за потерь тепла на коммуникациях пар закачивают на глубину, обычно не превышающую 800-900 м. БС закачивают холодными по отдельным каналам, и потому они могут пройти до любой глубины без потери тепла в коммуникациях.

Практика обработки пласта с вязкой нефтью показала, что горячие газы, образующиеся в зоне реакции, входят в пласт значительно легче, чем жидкость, используемая в технологии «холодного» ГРП. Поэтому при разрыве пласта горячим газом давление, опасное для скважины, возникает реже, чем при разрыве пласта не нагреваемыми жидкостями. Горячий разрыв пласта предпочтительно производить, применяя реакции БС, в которых выделяется водород. Этот газ можно использовать как проникающий теплоноситель, который облегчает развитие и ветвление новых трещин.

ТОЧКА ОПОРЫ:

– Какие перспективы совершенствования предлагаемых технологий, методов и оборудования?

Юрий ТЕРЕХОВ:

– Для совершенствования предлагаемых технологий необходимо проведение широкомасштабных лабораторных экспериментов и промысловых испытаний по определению уровня влияния виброакустического и магнитного воздействия на реологические свойства и релаксацию флюида с целью оптимизации параметров комплексного магнитовиброакустического воздействия на реологические свойства нефтей различного состава, плотности, вязкости и обводнённости флюида для каждого месторождения. На основе полученных данных – разработка и создание оборудования нового поколения виброакустического и магнитовиброакустического воздействия применимы к условиям каждого месторождения.

Кроме того, могут быть рассмотрены варианты объединения ВАВ с другими видами воздействия на флюид и призабойную зону продуктивного пласта, т.к. известно, что в этом случае результирующее воздействие возрастает кратно.

Евгений АЛЕКСАНДРОВ:

– В последние годы учёными Российской академии наук (РАН) и Московского университета (МГУ) были разработаны высокоэнергетические составы БС, пригодные для теплового стимулирования добычи нефти. Каждый килограмм таких БС, выделяет от 8 до 20 МДж тепла и способен нагреть на 100 К породу массой от 100 до 250 кг. Составы БС, разработанные в последние годы, выделяют в 4-10 раз больше тепла, чем использованные ранее на скважинах для прочистки скин-слоя.

Разработаны режимы реакции БС с пластовой водой, которые можно использовать для уменьшения количества воды в продуктивном пласте.

Разработаны режимы реакции БС, в которых образующийся водород может быть использован как средство для гидрокрекинга нефти. Для этого нужен нагрев коллектора до 300-400°С, который должен происходить в процессе реакции в трещинах пласта без нагрева труб, находящихся в стволе скважины.

Разработаны режимы закачки растворов БС, в которых выделение тепла должно происходить только в продуктивном пласте.

ТОЧКА ОПОРЫ:

– Есть ли ограничения применения предлагаемых технологий, методов и оборудования?

Юрий ТЕРЕХОВ:

– Ограничений на применение предлагаемых технологий не существует, т.к. они являются безреагентными и экологически чистыми.

Евгений АЛЕКСАНДРОВ:

– Никаких технических ограничений сегодня нет. Современная техника, хоть и дорогостоящая, предоставляет множество вариантов для строительства и обслуживания скважин. И она окупает себя. Проблемы, существующие в настоящее время, решаемы. Когда нам удастся перейти к режиму постоянно действующего контроля и регулирования процесса, тогда станет возможным переход к цивилизованным, энерго- и ресурсосберегающим методам.

ТОЧКА ОПОРЫ:

– Какое влияние может оказать использование предлагаемых методов на последующие за добычей ТИЗ этапы: транспортировку, хранение, переработку?

Юрий ТЕРЕХОВ:

– Известно, что после ВАВ снижается вязкость нефти (флюида). Возвращение к исходному состоянию (релаксация) зависит от многих факторов – состава, вязкости, плотности, температуры окружающей среды, обводнённости. После ВАВ время релаксации колеблется от нескольких часов до 3-4 суток. После магнитной обработки время релаксации – от нескольких дней до 2-3 недель. Отмечено, что после магнитовиброакустической обработки твёрдые фракции флюида достаточно долго не выпадают в осадок. Поэтому комплексное воздействие на пластовый флюид предоставляет достаточно большие выгоды по транспортировке и недлительному хранению.

Евгений АЛЕКСАНДРОВ:

– При пластовом горении часто получали так называемую «облагороженную нефть», средний молекулярный вес которой меньше, чем у исходной нефти. При нагреве пласта выше 3000С свой вклад начинает вносить процесс крекинга нефти. Рассчитывать на производство бензина прямо в пласте пока рановато, но главное - принципиальная возможность проводить такой крегинг доказана работами российских учёных. «Облагороженную нефть» легче перерабытывать.

ТОЧКА ОПОРЫ:

– Можно ли дать прогноз разработки более прогрессивных методов добычи ВВН?

Юрий ТЕРЕХОВ:

– В настоящее время наиболее перспективным направлением дальнейшего развития малозатратных технологий ВАВ и МВАВ является оптимизация уровней воздействия на пластовый флюид для каждого месторождения ТИЗ ВВН с большой плотностью при отрицательных температурах окружающей среды.

Фарманзаде А.Р. 1 , Карпунин Н.А. 2 , Хромых Л.Н. 3 , Евсенкова А.О. 4 , Аль-Гоби Г. 5

1 Аспирант, 2 студент, 3 доцент, 4 студент, 5 студент. 1,2,4,5 Национальный минерально-сырьевой университет «Горный», 3 Самарский государственный технический университет

ИССЛЕДОВАНИЕ РЕОЛОГИЧЕСКИХ СВОЙСТВ ВЫСОКОВЯЗКОЙ НЕФТИ ПЕЧЕРСКОГО МЕСТОРОЖДЕНИЯ

Аннотация

В статье изучены реологические свойства тяжелой нефти Печерского месторождения в широком температурном диапазоне. Основное внимание уделено изучению вязкой и упругой компонентам вязкости в зависимости от температуры для обоснования оптимальных условий разработки данного нефтяного месторождения.

Ключевые слова: высоковязкая нефть, битум, упругая компонента вязкости, вязкая компонента вязкости, реологические свойства.

Farmanzade A . R . 1 , Karpunin N . A . 2 , Khromykh L.N. 3 , Evsenkova A . O . 4 , Al Gobi G . 5

1 Postgraduate student, 2 student, 3 associate professor, 4 student, 5 student. 1,2,4,5 National Mineral Recourses University (University of Mines), 3 Samara State Technical University

THE INVESTIGATION RHEOLOGICAL PROPERTIES OF HEAVY OIL FIELD PECHORA

Abstract

There is the investigation of the rheological properties of heavy oil field Pechora in a wide temperatures range in this paper. Main attention is given to the study of the loss and storage modulus of the viscosity as a function of temperature for the recommendation of optimal conditions for development of this oil field.

Keywords: heavy oil, bitumen, storage modulus, loss modulus, rheological properties.

На сегодняшний день, в связи с неуклонным истощением запасов легких, маловязких нефтей, все большее значение приобретает необходимость введения в разработку месторождений трудноизвлекаемых запасов, таких как высоковязкие нефти и природные битумы, большая часть которых находится в Канаде, Венесуэле и России. В Российской Федерации более 70% высоковязких нефтей приурочены к 5 регионам: в Пермской области (более 31 %), в Татарстане (12,8 %), в Самарской области (9,7 %), в Башкортостане (8,6 %) и Тюменской области (8,3 %) .

Месторождения нефтей такого типа, как правило, характеризуются небольшими глубинами залегания нефтеносных пластов и, зачастую, низкой пластовой температурой, в то время как залегающие в них нефти или битумы обладают неньютоновскими свойствами , обусловленными большим содержанием парафинов асфальтенов и смол . При высоком содержании тяжелых компонентов в составе нефтей проявляются вязкоупругие свойства, которые впервые были обнаружены еще в 1970-х гг. .

Высокие значения вязкости таких нефтей в пластовых условиях являются причиной низких дебитов добывающих скважин, а иногда, и полного их отсутствия при попытках разработки месторождения на естественном режиме . В настоящее время термические методы воздействия на продуктивный пласт получили наибольшее распространение при разработке залежей таких углеводородов . Среди этих технологий стоит отметить циклическую (cyclic steam injection) и площадную закачку пара, как наиболее распространенные методы добычи и интенсификации притока в России и парогравитационное дренирование (SAGD – steam assisted gravity drainage), широко применяемое за рубежом .

Для изучения свойств высоковязкой нефти, залегающей в сложнопостроенном карбонатном коллекторе, было выбрано Печерское месторождение, располагающееся на берегу реки Волга, у села Печерское. Ранее на данном месторождении добывалась горная порода (известняки и доломиты), насыщенная тяжелой нефтью, для последующего извлечения из нее сырья для производства битумной мастики. Авторами были организованы полевые выходы на данное месторождение для сбора информации о строении залежи и образцов для изучения реологических свойств нефти и пустотного пространства пласта-коллектора.

В данной работе была изучена реологических свойств нефти от температуры. При этом использовался современный высокоточный ротационный вискозиметр с воздушными подшипниками.

Эксперимент по изучению зависимости динамической вязкости от температуры проводился следующим образом: на разогретую до 70°С площадку вискозиметра помещалась капля нефти объемом 1 мл, затем капля прижималась ротором, и температура повышалась до 110°С. На вискозиметре было задано значение угловой скорости 5 с -1 , после чего температура плавно опускалась до 50°С. Данная температура была предложена в качестве граничной для предотвращения излишней перегрузки двигателя вискозиметра.

Рис. 1 – Зависимость динамической вязкости высоковязкой нефти от температуры.

На представленном рисунке видно, что динамическая вязкость нефти может быть описана степенной функцией вида y=1177320551696170000x -7,24 с величиной достоверности аппроксимации R² = 0,99554. Нефть на всем интервале представленных температур является высоковязкой (вязкость при 110°С составляет 2003 мПа∙с, а при 50°С – 502343 мПа∙с). На данном этапе испытаний измерить вязкость нефти при пластовой температуре 20°С не было возможно из-за ограничения возможностей вискозиметра.

Для углубленного изучения реологических свойств данной нефти были проведены дополнительные специализированные динамические испытания по определению упругой и вязкой компонент вязкости. В ходе экспериментов было изучено влияние снижения температуры на упругую компоненту вязкости (динамический модуль сдвига, также называемый storage modulus) и вязкую компоненту вязкости (податливость или loss modulus) . Нефть Печерского месторождения, используемая для проведения исследований, в первом случае охлаждалась в выбранном интервале температур от 90ºС до 50ºС. Эксперимент проходил следующим образом: на разогретую до 70°С площадку вискозиметра помещалась капля нефти объемом 1 мл, затем капля прижималась ротором, и температура повышалась до 90°С, после чего плавно снижалась до 50°С с записью данных. Динамическая нагрузка была представлена осцилляционным движением ротора с частотой 1 Гц и нагрузкой 100 Па. Результаты представлены на рисунке 2.

Рис. 2 – Зависимость упругой (storage modulus) и вязкой (loss modulus) компонент вязкости высоковязкой нефти Печерского месторождения от температуры.

Анализируя представленные зависимости, возможно сделать следующие выводы: во-первых, как вязкая, так и упругая компоненты вязкости нефти уменьшаются с увеличением температуры и достигают относительно небольших значений при 80°С, что доказывает необходимость использования тепловой энергии при разработке данного месторождения. Во-вторых, заметно, что на исследованном интервале температур нефть обладает упругими свойствами, которые хоть и уменьшаются при увеличении температуры, но достигают значительных величин: 23,54 Па.

Исходя из результатов проведенных исследований, возможно сделать следующие выводы:

  1. Высоковязкая нефть Печерского месторождения характеризуется аномально высокой вязкостью: измеренная динамическая вязкость при 50°С составляет 502343 мПа∙с.
  2. Исходя из того, что вязкость нефти при повышении температуры от 50 до 110°С снижается с 502343 мПа∙с до 2000 мПа∙с для извлечения нефти из породы данного месторождения необходимо применение термического воздействия.
  3. Изученная нефть обладает сложными реологическими свойствами, обусловленными, вероятно, высоким содержанием асфальтенов и смол, характерным для приповерхностных месторождений Самарской области. Высокие значения вязкой и упругой компонент вязкости наблюдаются на всем интервале температур, при которых проводились динамические испытания, что несомненно окажет негативное влияние на процесс извлечения нефти из пласта-коллектора.
  4. Авторами работы запланированы дальнейшие испытания, направленные на обоснование эффективных технологий извлечения таких аномальных нефтей из продуктивных пластов, например, технологии с применением комплексного воздействия тепловыми агентами и растворителями.

Литература

  1. Девликамов В.В., Хабибуллин З.А., Кабиров М.М. Аномальные нефти. -М.: Недра, 1975. -168 с.
  2. Зиновьев А.М., Ковалев А.А., Максимкина Н.М., Ольховская В.А., Рощин П.В., Мардашов Д.В. Обоснование режима разработки залежи аномально вязкой нефти на основе комплексирования исходной геолого-промысловой информации//Вестник ЦКР Роснедра. -2014. -№3. -С. 15-23.
  3. Зиновьев А.М., Ольховская В.А., Ковалев А.А. Обоснование аналитической модели псевдоустановившегося притока нелинейно вязкопластичной нефти к вертикальной скважине//Вестник ЦКР Роснедра. -2013. -№2. -С. 40-45.
  4. Зиновьев А.М., Ольховская В.А., Максимкина Н.М. Проектирование систем разработки месторождений высоковязкой нефти с использованием модели неньютоновского течения и результатов исследования скважин на приток//Нефтепромысловое дело. -2013. -№1. -С. 4-14.
  5. Литвин В.Т., Рощин П.В. Изучение влияния растворителя «Нефрас С2-80/120» на реологические свойства парафинистой высоковязкой нефти Петрухновского месторождения//Материалы научной сессии ученых Альметьевского государственного нефтяного института. -2013. -Т.1. -№ 1. -С. 127-130.
  6. Полищук Ю.М., Ященко И.Г. Высоковязкие нефти: анализ пространственных и временных изменений физико-химических свойств // Электронный научный журнал «Нефтегазовое дело». 2005 №1. [Электронный ресурс]: http://ogbus.ru/authors/PolishukYu/PolishukYu_1.pdf (дата обращения 15.11.2015).
  7. Ольховская В.А., Сопронюк Н.Б., Токарев М.Г. Эффективность ввода в эксплуатацию небольших залежей нефти с неньютоновскими свойствами//Разработка, эксплуатация и обустройство нефтяных месторождений/Самара: Сборник научных трудов ООО «СамараНИПИнефть». -2010. -Вып.1. -С. 48-55.
  8. Ольховская В.А. Подземная гидромеханика. Фильтрация неньютоновской нефти. -М.: ОАО «ВНИИОЭНГ», 2011. -224 с.
  9. Рогачев М.К., Колонских А.В. Исследование вязкоупругих и тиксотропных свойств нефти Усинского месторождения//Нефтегазовое дело. -2009. -Т.7. -№1. -С.37-42.
  10. Рощин П.В. Обоснование комплексной технологии обработки призабойной зоны пласта на залежах высоковязких нефтей с трещинно-поровыми коллекторами: дис. канд. техн. наук. -СПб., 2014. -112 с.
  11. Рощин П.В., Петухов А.В., Васкес Карденас Л.К., Назаров А.Д., Хромых Л.Н. Исследование реологических свойств высоковязких и высокопарафинистых нефтей месторождений Самарской области. Нефтегазовая геология. Теория и практика. 2013. Т. 8. № 1. С. 12.
  12. Рощин П.В., Рогачев М.К., Васкес Карденас Л.К., Кузьмин М.И., Литвин В.Т., Зиновьев А.М. Исследование кернового материала Печерского месторождения природного битума с помощью рентгеновского компьютерного микротомографа SkyScan 1174V2. Международный научно-исследовательский журнал. 2013. № 8-2 (15). С. 45-48.
  13. Рузин Л.М. Технологические принципы разработки залежей аномально вязких нефтей и битумов / Л.М. Рузин, И.Ф. Чупров; Под ред. Н.Д. Цхадая. Ухта, 2007. 244 с.
  14. Petukhov A.V., Kuklin A.I., Petukhov A.A., Vasques Cardenas L.C., Roschin P.V. Origins and integrated exploration of sweet spots in carbonate and shale oil-gas bearing reservoirs of the Timan-Pechora basin. Society of Petroleum Engineers – European Unconventional Resources Conference and Exhibition 2014: Unlocking European Potential 2014. С. 295-305.
  15. Pierre C. et al. Composition and heavy oil rheology //Oil & Gas Science and Technology. – 2004. – Т. 59. – №. – С. 489-501.
  16. Roschin P.V., Zinoviev A.M., Struchkov I.A., Kalinin E.S., Dziwornu C.K. Solvent selection based on the study of the rheological properties of oil. Международный научно-исследовательский журнал. -2015. -№ 6-1 (37). -С. 120-122.

References

  1. Devlikamov V.V., Habibullin Z.A., Kabirov M.M. Anomal’nye nefti. -M.: Nedra, 1975. -168 s.
  2. Zinov’ev A.M., Kovalev A.A., Maksimkina N.M., Ol’hovskaja V.A., Roshhin P.V., Mardashov D.V. Obosnovanie rezhima razrabotki zalezhi anomal’no vjazkoj nefti na osnove kompleksirovanija ishodnoj geologo-promyslovoj informacii//Vestnik CKR Rosnedra. -2014. -№3. -S. 15-23.
  3. Zinov’ev A.M., Ol’hovskaja V.A., Kovalev A.A. Obosnovanie analiticheskoj modeli psevdoustanovivshegosja pritoka nelinejno vjazkoplastichnoj nefti k vertikal’noj skvazhine//Vestnik CKR Rosnedra. -2013. -№2. -S. 40-45.
  4. Zinov’ev A.M., Ol’hovskaja V.A., Maksimkina N.M. Proektirovanie sistem razrabotki mestorozhdenij vysokovjazkoj nefti s ispol’zovaniem modeli nen’jutonovskogo techenija i rezul’tatov issledovanija skvazhin na pritok//Neftepromyslovoe delo. -2013. -№1. -S. 4-14.
  5. Litvin V.T., Roshhin P.V. Izuchenie vlijanija rastvoritelja «Nefras S2-80/120» na reologicheskie svojstva parafinistoj vysokovjazkoj nefti Petruhnovskogo mestorozhdenija//Materialy nauchnoj sessii uchenyh Al’met’evskogo gosudarstvennogo neftjanogo instituta. -2013. -T.1. -№ 1. -S. 127-130.
  6. Polishhuk Ju.M., Jashhenko I.G. Vysokovjazkie nefti: analiz prostranstvennyh i vremennyh izmenenij fiziko-himicheskih svojstv // Jelektronnyj nauchnyj zhurnal «Neftegazovoe delo». 2005 №1. : http://ogbus.ru/authors/PolishukYu/PolishukYu_1.pdf (data obrashhenija 15.11.2015).
  7. Ol’hovskaja V.A., Sopronjuk N.B., Tokarev M.G. Jeffektivnost’ vvoda v jekspluataciju nebol’shih zalezhej nefti s nen’jutonovskimi svojstvami//Razrabotka, jekspluatacija i obustrojstvo neftjanyh mestorozhdenij/Samara: Sbornik nauchnyh trudov OOO «SamaraNIPIneft’». -2010. -Vyp.1. -S. 48-55.
  8. Ol’hovskaja V.A. Podzemnaja gidromehanika. Fil’tracija nen’jutonovskoj nefti. -M.: OAO «VNIIOJeNG», 2011. -224 s.
  9. Rogachev M.K., Kolonskih A.V. Issledovanie vjazkouprugih i tiksotropnyh svojstv nefti Usinskogo mestorozhdenija//Neftegazovoe delo. -2009. -T.7. -№1. -S.37-42.
  10. Roshhin P.V. Obosnovanie kompleksnoj tehnologii obrabotki prizabojnoj zony plasta na zalezhah vysokovjazkih neftej s treshhinno-porovymi kollektorami: dis. kand. tehn. nauk. -SPb., 2014. -112 s.
  11. Roshhin P.V., Petuhov A.V., Vaskes Kardenas L.K., Nazarov A.D., Hromyh L.N. Issledovanie reologicheskih svojstv vysokovjazkih i vysokoparafinistyh neftej mestorozhdenij Samarskoj oblasti. Neftegazovaja geologija. Teorija i praktika. 2013. T. 8. № 1. S. 12.
  12. Roshhin P.V., Rogachev M.K., Vaskes Kardenas L.K., Kuz’min M.I., Litvin V.T., Zinov’ev A.M. Issledovanie kernovogo materiala Pecherskogo mestorozhdenija prirodnogo bituma s pomoshh’ju rentgenovskogo komp’juternogo mikrotomografa SkyScan 1174V2. Mezhdunarodnyj nauchno-issledovatel’skij zhurnal. 2013. № 8-2 (15). S. 45-48.
  13. Ruzin L.M. Tehnologicheskie principy razrabotki zalezhej anomal’no vjazkih neftej i bitumov / L.M. Ruzin, I.F. Chuprov; Pod red. N.D. Chadaja. Uhta, 2007. 244 s.
  14. Petukhov A.V., Kuklin A.I., Petukhov A.A., Vasques Cardenas L.C., Roschin P.V. Origins and integrated exploration of sweet spots in carbonate and shale oil-gas bearing reservoirs of the Timan-Pechora basin. Society of Petroleum Engineers – European Unconventional Resources Conference and Exhibition 2014: Unlocking European Potential 2014. S. 295-305.
  15. Pierre C. et al. Composition and heavy oil rheology //Oil & Gas Science and Technology. – 2004. – T. 59. – №. 5. – S. 489-501.
  16. Roschin P. V. et al. Experimental investigation of heavy oil recovery from fractured-porous carbonate core samples by secondary surfactant-added injection//SPE Heavy Oil Conference-Canada. – Society of Petroleum Engineers, 2013.
  17. Roschin P.V., Zinoviev A.M., Struchkov I.A., Kalinin E.S., Dziwornu C.K. Solvent selection based on the study of the rheological properties of oil. Mezhdunarodnyj nauchno-issledovatel’skij zhurnal. -2015. -№ 6-1 (37). -S. 120-122.


Поделиться